
Notes on metric and Hilbert spaces
An invitation to functional analysis

Alexandru Ghitza∗

School of Mathematics and Statistics
University of Melbourne

Version of Sat 27th Jul, 2024 at 08:38

∗(aghitza@alum.mit.edu)





Contents
1. Introduction 5

1.1. What’s up with infinite-dimensional vector spaces? . . . . . . . . . . . . . . . . 5
1.2. Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Metric and topological spaces 11
2.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Open subsets of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A. Appendix 19
A.1. Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2. Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.2.1. Dual vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2.2. Inner products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3





1. Introduction

1.1. What’s up with infinite-dimensional vector
spaces?

The discussion in this section is heavily inspired by the lecture notes [1] by Karen Smith.
Despite the inevitable ups and downs, linear algebra as seen in a first-year subject is very

satisfying. There is one fundamental construct (the linear combination, built out of the two
operations defining the vector space structure) that gives rise to all the other abstract concepts
(linear transformation, subspace, span, linear independence, etc.). And one of these abstract
concepts (the basis) allows us to identify even the most ill-conceived of vector spaces with one
of the friendly standard spaces Fn, whereby we can use the concreteness of coordinates and
matrices to perform computations that allow us to give explicit answers to many questions
about these spaces.

If these vector spaces are finite-dimensional, that is. Once finite-dimensionality goes
out the window, it takes much of our clear and satisfying linear-algebraic worldview with it.
The purpose of this introduction is to bluntly point out the dangers of the infinite-dimensional
landscape, and to take some tentative steps around it to see what tools we might need to use.
After all, giving up is not an option: infinite-dimensional vector spaces are everywhere, so we
might as well learn how to deal with them.

Let F be a field and V a vector space over F. As you know, a linear combination is a finite
expression of the form

a1v1 + ⋅ ⋅ ⋅ + anvn where n ∈N, a1, . . . , an ∈ F, v1, . . . , vn ∈ V.

Finally, a subset B of V is a basis if every vector in V can be written uniquely as a finite
linear combination of vectors in B.

First year linear algebra tells us that every finite-dimensional vector space V has a basis1.
What happens if V is not finite-dimensional?

Example 1.1. The space of polynomials in one variable R[x] (sometimes called P(R)
in linear algebra) has basis B = {1, x, x2, . . .}.

Solution. This is really just a restatement of the definition of polynomial: any element f
of R[x] is of the form

f = a0 + a1x + ⋅ ⋅ ⋅ + anx
n,

thus a linear combination of elements of B.
If we have

f = a0 + a1x + ⋅ ⋅ ⋅ + anx
n = b0 + b1x + ⋅ ⋅ ⋅ + bmx

m,

1This statement appears to be circular, as “finite-dimensional” is typically defined as “having a finite basis”,
but the circularity can be resolved by provisionally defining “finite-dimensional” as “being the span of
some finite subset” until the existence of bases is established.
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1. Introduction

then the second equality is an equality of polynomials, which by definition requires n =m
and ai = bi for all i = 0, . . . , n.

This first example worked out great: the space has bases, and we can actually write down
a basis explicitly. We owe our luck to the fact that, even though the space of polynomials is
not finite-dimensional, each element of the space is in some sense “finitely generated”.

Something we can try is to start with the standard finite-dimensional spaces we know,
namely Rn, and “take the limit as n Ð→ ∞”. This leads us to consider the space R∞ of
arbitrary real sequences (x1, x2, . . . ). We may naively hope that, since {e1, e2, . . . , en} is a
basis for Rn, and these standard bases nest nicely as n increases, we end up with {e1, e2, . . .}
being a basis for R∞, but that is not the case because, for instance, the constant sequence
(1,1, . . . ) is not in the span of {e1, e2, . . .}. (See Exercise 1.3 for more details.)

For another example, take V =R viewed as a vector space over Q. One can show that the
set S = {

√
n ∶ n ∈N squarefree} is Q-linearly independent in R, but not a basis. The same is

true of the set T = {πn ∶ n ∈N}. (See Exercise 1.4.) In fact, R has no countable basis over Q.
(See Exercise 1.5.) It’s a sign that it may be rather difficult to write down an explicit Q-basis
of R.

This is turning into a very depressing motivating section, so here is some good news:

Theorem 1.2. Any vector space V has a basis.

The proof of this theorem requires the (in)famous

Lemma 1.3 (Zorn’s Lemma). Let X be a nonempty poset such that every nonempty chain C
in X has an upper bound in X. Then X has a maximal element.

For an explanation of the terms that appear in the statement of Zorn’s Lemma, as well as
a proof of Theorem 1.2, see Exercises 1.6 to 1.8.

The result is worth celebrating: we have bases for all vector spaces. . . but the proof gives
absolutely no handle on what a basis looks like or how to compute one explicitly. This severely
reduces the usefulness of the notion of a basis for an infinite-dimensional vector space.

And yet, it is hard to ignore the success of Example 1.1, where we saw an explicit, nice
basis for the space of polynomials: {1, x, x2, . . .}. We also know that many functions of one
real variable can be expressed as Taylor series, for instance

ex = 1 + x +
x2

2!
+
x3

3!
+ . . .

This suggests that maybe one should drop the finiteness condition from the definition of linear
combination and see where that leads. Consideration of Taylor series also tells us that we need
something more than just the algebraic structure of a vector space if we are to make sense of
infinite linear combinations. The notion of convergence of infinite series in real analysis is
based on the Euclidean distance function on the real line: d(x, y) = ∣x−y∣. We know from first
year linear algebra that choosing an inner product on a vector space gives rise to a distance
function, so that’s a possible direction to explore. Before saying more about it though, note
that an inner product also gives a concept of orthogonality, and of more general angles; and
it is unclear whether angles are needed for what we want to do.

So here is, in rough terms, how we will be spending our time this semester.
The first thing that we will do is axiomatise the essential properties of the Euclidean

distance function. We do this on arbitrary sets and obtain the notion of a metric space, and
see that a surprising amount of results from real analysis carry through to this more general
setting. There are certain respects in which metric spaces are not that well-behaved. Slightly
counterintuitively, we remedy this by generalising even further to topological spaces, where
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we abandon the idea of distance between points in favour of the notion of neighbourhood of a
point.

Once we have a grasp on the behaviour of general metric spaces and their topology, we
consider the special case where the underlying set has a vector space structure. These are
called normed vector spaces (in this setting, it is customary to single out the norm of a
vector rather than the distance between two vectors; the two are equivalent).

Finally, because of their importance in many applications, we specialise further to inner
product spaces. We could, for instance, consider the space V = Cts([−π, π],R) of continuous
functions f ∶ [−π,π]Ð→R, endowed with the inner product

⟨f, g⟩ = ∫
π

−π
f(x)g(x)dx.

(A normalising factor is often placed in front of the integral for convenience, but we’ll stick
with this definition.)

The distance function is of course

d(f, g) =
√
⟨f − g, f − g⟩.

This allows us to bring rigorous meaning to expressions such as

x =
∞
∑
n=1

2(−1)n+1

n
sin(nx).

In our setting, we have

f(x) = x, fn(x) =
2(−1)n+1

n
sin(nx), sN(x) =

N

∑
n=1

fn(x),

all of them elements of V , and the claim is that d(f, sN)Ð→ 0 as N Ð→∞.
It turns out that this space V has a maximal orthonormal set B such that every f ∈ V can

be written uniquely as an infinite series of elements of B, as in the example above. One can
take B to consist of

1
√
2π

,
1
√
π
sin(nx) for n ∈ Z⩾1,

1
√
π
cos(nx) for n ∈ Z⩾1,

and the unique expression of any f ∈ V in terms of these elements is the Fourier series of f .
(Note that the above B is countable, but V has uncountable dimension, a bit like Q being
countable while R is uncountable.)

A modification of the Zorn Lemma argument in Exercise 1.8 shows that any inner product
space V has a maximal orthonormal set. However, it is not true in general that every element
of V can be written uniquely as an infinite series in the elements of the maximal orthonormal
set. It is also not true in general that arbitrary infinite series give rise to an element of the
vector space, even when these series “look like” they are converging.

A Hilbert space is an inner product space V that is complete: every Cauchy sequence con-
verges to an element of V . This is certainly a desirable feature. But note that Cts([−π,π],R)
lacks it:

Example 1.4. Consider, for n ⩾ 1:

fn(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if x ⩽ 0,
x1/n otherwise.
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1. Introduction

The sequence (fn) is Cauchy in V = Cts([−π,π],R) with the distance function

d(f, g) =

√

∫
π

−π
(f − g)2(x)dx.

There is a pointwise limit given by

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if x ⩽ 0,
1 otherwise,

that is, for any x ∈ [−π,π] we have fn(x) Ð→ f(x) as n Ð→∞; but f ∉ V , so V is not
complete.

We will see that we can complete inner product spaces to obtain Hilbert spaces: in the
example above, the completion is L2([−π, π],R) consisting of (certain equivalence classes of)
functions f ∶ [−π,π]Ð→R such that

∫
π

−π
f 2(x)dx

exists and is finite.

Example 1.5. The function defined in Example 1.4

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if x ⩽ 0,
1 otherwise

defines an element of L2([−π,π],R) and the sequence (fn) defined in Example 1.4
converges to f with respect to the given distance function.

Solution. We haven’t discussed the Lebesgue integral but the function f 2 = f is Lebesgue
integrable and its Lebesgue integral is the sum of the Riemann integrals on the two
intervals on which f is continuous:

∫
π

−π
f 2(x)dx = ∫

0

−π
0dx + ∫

π

0
1dx = 0 + π = π.

For the statement about convergence we have

d(f, fn)
2 = ∫

0

−π
(0 − 0)2 dx + ∫

π

0
(1 − x1/n)2 dx = π − 2

π1+1/n

1 + 1/n
+

π1+2/n

1 + 2/n
,

so d(f, fn)Ð→ 0 as nÐ→∞.

Of course, one cannot study mathematical structures without studying the maps between
them. For topological spaces, this will mean continuous functions. For metric spaces, depending
on what we are trying to do, it could be continuous functions, or distance-preserving functions,
or contractions. For normed vector spaces, we will mostly work with continuous linear
transformations; this naturally leads to questions about eigenvalues and eigenvectors, and
ultimately to spectral theory, which is much richer than in the finite-dimensional setting.
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1.2. Notations and conventions
Set inclusions are denoted S ⊆ T (nonstrict inclusion: equality is possible) or S ⊊ T (strict
inclusion: equality is ruled out). I will definitely avoid using S ⊂ T (as it is ambiguous), and
will try to avoid S /⊆ T (not ambiguous, but too easily confused with S ⊊ T ). While we’re at
it, the power set of a set X, that is, the set of all subsets of X, is denoted P(X).

The symbols ∣z∣ will always denote the usual absolute value (or modulus) function on C:

∣z∣ =
√
x2 + y2, where z = x + iy.

It, of course, defines a restricted function ∣ ⋅ ∣ ∶ S Ð→R⩾0 for any subset S ⊆C, which is the
same as the real absolute value function when S =R.

For better or worse, the natural numbers

N = {0,1,2,3, . . .}

start at 0. The variant starting at 1 is

Z⩾1 = {1,2,3, . . .}.

I use the term countable to mean what is more precisely called countably infinite, that is, a
set in bijection with N.

A Hermitian inner product is linear in the first variable and conjugate-linear in the second
variable:

⟨λx, y⟩ = λ⟨x, y⟩, ⟨x,λy⟩ = λ⟨x, y⟩ for all λ ∈C.

Unless otherwise specified, F denotes an arbitrary field.
I am not the right person to ask about foundational questions of logic or set theory: I

neither know enough or care sufficiently about the topic. It’s of course okay if you care and
(want to) know more about these things. I am happy to spend my mathematical life in ZFC
(Zermelo–Fraenkel set theory plus the Axiom of Choice), and these notes are part of my life
so they are also hanging out in ZFC. In particular, I am very likely to use the Axiom of
Choice without comment (and sometimes without noticing); I may occasionally point it out if
someone brings my attention to it.

Acknowledgements
Thanks go to Thomas Black, Stephanie Carroll, Isaac Doosey-Shaw, Jack Gardiner, Leigh
Greville, Ethan Husband, Peter Karapalidis, Rose-Maree Locsei, Quan Nguyen, Quang Ong,
Hai Ou, Joshua Pearson, Kashma Pillay, Guozhen Wu, Corey Zelez, and Chengjing Zhang for
corrections and suggestions on various incarnations of these notes.
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2. Metric and topological spaces

2.1. Metrics
Think of Euclidean distance in R:

d(x, y) = ∣x − y∣.

What properties does it have? Well, certainly distances are non-negative, and two points are
at distance zero from each other only if they are equal. The distance from x to y is equal to
the distance from y to x. And we all love the triangle inequality: if you want to get from x to
y, adding an intermediate stopover point t will not make the journey shorter.

We already know of other spaces where such functions exist (Rn comes to mind). So let’s
formalise these properties and see what we get.

Let X be a set. A metric (or distance) on X is a function

d ∶ X ×X Ð→R⩾0

such that:

(a) d(x, y) = d(y, x) for all x, y ∈X;

(b) d(x, y) ⩽ d(x, t) + d(t, y) for all x, y, t ∈X;

(c) d(x, y) = 0 with x, y ∈X if and only if x = y.

The pair (X,d) is called a metric space; when the choice of metric is understood, we may
drop it from the notation and simply write X.

Of course, the simplest example of a metric space is R with the Euclidean distance. But
there are many other examples, some of which are quite exotic:

Example 2.1. Let X =Q and fix a prime number p. We define a metric dp on X that,
in some sense, measures the distance between rational numbers from the point of view of
divisibility by p. The definition proceeds in several stages:

(i) Define the p-adic valuation vp ∶ ZÐ→ Z⩾0 ∪ {∞} by:

vp(n) = the largest power of p that divides n,

with the convention that vp(0) =∞.
Show that vp(mn) = vp(m) + vp(n) for all m,n ∈ Z.

(ii) Extend to the p-adic valuation vp ∶ QÐ→ Z ∪ {∞} by defining

vp (
m

n
) = vp(m) − vp(n).
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2. Metric and topological spaces

Show that for all x, y ∈Q we have

vp(xy) = vp(x) + vp(y)

and
vp(x + y) ⩾min{vp(x), vp(y)},

with equality holding if vp(x) ≠ vp(y).

(iii) Next define the p-adic absolute value ∣ ⋅ ∣p ∶ QÐ→Q⩾0 by:

∣x∣p = p
−vp(x),

with the convention that ∣0∣p = p−∞ = 0.
Show that for all x, y ∈Q we have

∣xy∣p = ∣x∣p ∣y∣p

and
∣x + y∣p ⩽max{∣x∣p, ∣y∣p},

with equality if ∣x∣p ≠ ∣y∣p.

(iv) Finally define the p-adic metric on Q by

dp(x, y) = ∣x − y∣p.

Show that (Q, dp) is indeed a metric space.

Solution.

(i) Using the fundamental theorem of arithmetic (the existence of a unique prime
factorisation of any natural number ⩾ 2), we have m = pvp(m)m′ and n = pvp(n)n′

with p ∤m′ and p ∤ n′. Then

mn = pvp(m)+vp(n)m′n′ and p ∤m′n′,

so that vp(m) + vp(n) is indeed the same as vp(mn).

(ii) Write x = m
n , y = a

b , then

vp(xy) = vp (
ma

nb
) = vp(ma)− vp(nb) = vp(m)+ vp(a)− vp(n)− vp(b) = vp(x)+ vp(y).

For vp(x + y), without loss of generality assume v ∶= vp(x) ⩽ vp(y) =∶ u and write
x = pv m′

n′ , y = pu
a′

b′ . Then

x + y = pv
m′

n′
+ pu

a′

b′
= pv (

m′

n′
+ pu−v

a′

b′
) = pv (

m′b′ + pu−va′n′

n′b′
) ,

12



MAST30026 MHS

so that (since p does not divide n′b′)

vp(x + y) = v + vp(m
′b′ + pu−va′n′).

Since vp of the quantity in parentheses is non-negative, we conclude that vp(x+y) ⩾
v =min{vp(x), vp(y)}.
Moreover, if v < u then the quantity in parentheses has valuation zero, so that
vp(x + y) = v =min{vp(x), vp(y)}.

(iii) Direct from the previous part and ∣x∣p = p−vp(x).

(iv) We have
(a) Clearly vp(y − x) = vp(−1) + vp(x − y) = vp(x − y), so dp(y, x) = dp(x, y).
(b) Letting u = x − t and v = t − y, we want to prove that ∣u + v∣p ⩽ ∣u∣p + ∣v∣p. But

we have already seen that

∣u + v∣p ⩽max{∣x∣p, ∣y∣p},

and the latter is clearly ⩽ ∣x∣p + ∣y∣p.
(c) If x ∈Q ≠ 0, then vp(x) ∈ Z so ∣x∣p = p−vp(x) ∈Q ∖ {0}. Hence ∣x∣p = 0 iff x = 0,

which implies that dp(x, y) = 0 iff x = y.

Example 2.2. Let Γ be a finite connected undirected simple graph (finitely many vertices,
each pair of which are joined by at most one undirected edge; no loops). Given vertices x
and y, we let d(x, y) denote the minimum length of any path joining x and y.

Then d is a metric on the set of vertices of Γ.

Solution.

(a) Symmetry follows directly from the fact that Γ is undirected.

(b) Let x, y, t ∈ Γ, let p1 be a shortest path (of length d(x, t)) joining x and t, and p2 a
shortest path (of length d(t, y)) joining t and y. Concatenating p1 and p2 we get
a path of length d(x, t) + d(t, y) from x to y, therefore d(x, y) is at most equal to
this length.

(c) Clear (if x = y then the empty path goes from x to y; conversely, if d(x, y) = 0 then
there is an empty path joining x to y, forcing x = y).

Given a metric space, we can obtain other metric spaces by considering subsets:

Example 2.3. If (X,d) is a metric space, then for any subset S of X, the restriction of
d to S gives a metric on S. (This is called the induced metric.)

Solution. Straightforward (follows immediately from the definitions).

Or we can construct metric spaces as Cartesian products of other metric spaces. There are
many ways of doing this, none of which is particularly canonical.
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Example 2.4. Let (X1, dX1) and (X2, dX2) denote two metric spaces. Prove that the
function d1 defined by

d1((x1, x2), (y1, y2)) = dX1(x1, y1) + dX2(x2, y2)

is a metric on the Cartesian product X1 ×X2.
The definition extends in the obvious manner to the Cartesian product of finitely many

metric spaces (X1, dX1), . . . , (Xn, dXn).
(This is sometimes called the Manhattan metric or taxicab metric. In the context of

Rn =R × ⋅ ⋅ ⋅ ×R, it is called the `1 metric.)

Solution. Straightforward.

Example 2.5. Same setup as Example 2.4, but with the function

d∞((x1, x2), (y1, y2)) =max (dX1(x1, y1), dX2(x2, y2)).

The definition extends in the obvious manner to the Cartesian product of finitely many
metric spaces (X1, dX1), . . . , (Xn, dXn).

(This is called the sup norm metric or uniform norm metric. In the context of Rn, it
is called the `∞ metric.)

Solution. Straightforward; proving the triangle inequality uses

max{a + b, c + d} ⩽max{a, c} +max{b, d}.

Example 2.6. Take X1 =X2 =R with the Euclidean metric and convince yourself that
neither d1 from Example 2.4 nor d∞ from Example 2.5 is the Euclidean metric on R2.

Solution. Consider (1,2) and (0,0), then the distances are:

d1((1,2), (0,0)) = 1 + 2 = 3

d∞((1,2), (0,0)) =max{1,2} = 2

d2((1,2), (0,0)) =
√
12 + 22 =

√
5.

Not every metric has to do with lengths and geometry in an obvious way. The p-adic metric
in Example 2.1 is an example of something a little different. For another example, let n ∈ Z⩾1,
X = Fn

2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n} such that xi ≠ yi. Then d is a
metric on X; it is called the Hamming metric. See Exercise 2.7 for more details.

2.2. Open subsets of metric spaces
A metric on a set X gives us a precise notion of distance between elements of the set. We use
familiar geometric language to refer to the set of points within a fixed distance r ∈R⩾0 of a
fixed point c ∈X: the open ball of radius r and centre c is

Br(c) = {x ∈X ∶ d(x, c) < r}.

There is also, of course, a corresponding closed ball

Dr(c) = {x ∈X ∶ d(x, c) ⩽ r}

14
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and a corresponding sphere
Sr(c) = {x ∈X ∶ d(x, c) = r}.

The familiar names are useful for guiding our intuition, but beware of the temptation to
assume things about the shapes of balls in general metric spaces:

Example 2.7. Describe the Euclidean open balls centred at 0 in Z (endowed with the
metric induced from the Euclidean metric on R).

Solution. In addition to the empty set ∅ = B0(0), we have for all n ∈N the set

{−n,−n + 1, . . . ,−1,0,1, . . . , n − 1, n} = Bn+1(0) = Br(0) for any r ∈ (n,n + 1].

For more intuition-challenging examples, see Exercises 2.3 and 2.5.
We are now ready for a simple yet fundamental concept: a subset U ⊆X of a metric space
(X,d) is an open set if, for every u ∈ U , there exists r ∈R>0 such that Br(u) ⊆ U .

Example 2.8. Prove that ∅ and X are open sets.

Solution. The first statement is vacuously true; the second follows directly from the
definition of Br(x).

Example 2.9. Fix x ∈X and let U =X ∖ {x}; prove that U is an open set.

Solution. Let u ∈ U , then u ≠ x so r ∶= d(u,x) > 0. Then x ∉ Br(u), so Br(u) ⊆ U .

Example 2.10. Prove that any open ball is an open set.

Solution. Let U = Br(x). If r = 0 then U = ∅, an open set. Otherwise, let u ∈ U and let
t = r − d(u,x). Since d(u,x) < r we have t > 0.

I claim that Bt(u) ⊆ U . Let w ∈ Bt(u), so that d(w,u) < t. Then

d(w,x) ⩽ d(w,u) + d(u,x) < t + r − t = r.

What happens if we combine open sets using set operations?

Proposition 2.11. Let X be a metric space. The union of an arbitrary collection of open
sets is an open set.

Proof. Let I be an arbitrary set and, for each i ∈ I, let Ui ⊆ X be an open set. We want to
prove that

U =⋃
i∈I

Ui

is open. Let u ∈ U , then there exists i ∈ I such that u ∈ Ui. But Ui ⊆X is open, so there exists
an open ball Br(u) ⊆ Ui. Since Ui ⊆ U , we have Br(u) ⊆ U .

Intersections are a bit more delicate:

Proposition 2.12. Let X be a metric space. The intersection of a finite collection of open
sets is an open set.

15
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Proof. Let n ∈N and, for i = 1, . . . , n, let Ui ⊆X be an open set. We want to prove that

U =
n

⋂
i=1

Ui

is open. Let u ∈ U , then u ∈ Ui for all i = 1, . . . , n. Since Ui is open, there exists an open
ball Bri(u) ⊆ Ui. Let r = min{r1, . . . , rn}, then Br(u) ⊆ Bri(u) ⊆ Ui for each i = 1, . . . , n.
Therefore Br(u) ⊆ U .

Wondering about the necessity of the word “finite” in the statement of the proposition?
See Tutorial Question 2.2.

2.3. Topological spaces
Given a set X, a topology on X is a subset T ⊆ P(X) (in other words, T is a collection of
subsets of X) such that

(a) ∅ ∈ T and X ∈ T ;

(b) if {Ui ∶ i ∈ I} is an arbitrary collection of elements of T , then ⋃
i∈I

Ui ∈ T ;

(c) if {U1, . . . , Un} is a finite collection of elements of T , then
n

⋂
j=1

Uj ∈ T .

The elements of T are called open sets in X, and (X,T ) is called a topological space. A closed
set of a topological space (X,T ) is a set whose complement is open.

Putting together Example 2.8 and Propositions 2.11 and 2.12, we see that metric spaces are
topological spaces. (If (X,d) is a metric space, we call the topology defined by d the metric
topology on X.)

Topological spaces are a very general concept encompassing much more than metric spaces1.
We will not place a heavy focus on them in this subject, using them mostly to separate those
properties of metric spaces that actually depend on the metric from those that depend only
on the configuration of open subsets.

Example 2.13. Let X be an arbitrary set and let T = {∅,X}. This is called the trivial
topology on X.

Example 2.14. Let X be an arbitrary set and let T = P(X). (Every subset is an open
subset.) This is called the discrete topology on X.

Example 2.15. Let X be an arbitrary set and let

T = {S ∈ P(X) ∶ X ∖ S is finite} ∪ {∅}.

This is called the cofinite topology on X.

1We say that a topological space (X,T ) is metrisable if there exists a metric d on X such that the resulting
open sets are precisely T . For an example of a non-metrisable space, see Tutorial Question 2.3.
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In Tutorial Question 2.3 you will find all possible topologies on a set with two elements.
This game quickly becomes complicated as the size of the set increases, for instance a set

of three elements has 29 distinct topologies.
Here is an easy way to produce many topologies on a set:

Example 2.16. Let X be a set and S ⊆ P(X). The topology generated by S is obtained
by letting S′ consist of all finite intersections of elements of S, then letting T consist of
all arbitrary unions of elements of S′.

For instance, the discrete topology on X is generated by the set of singletons.
If (X,d) is a metric space, then the metric topology on X is generated by the set of

open balls, see Exercise 2.8.

If T1 and T2 are two topologies on the same set X and T1 ⊆ T2 we say that T1 is coarser
than T2 and T2 is finer than T1.

If d1 and d2 are two metrics on the same set X, we say that d1 is coarser (resp. finer) than
d2 if the topology defined by d1 is coarser (resp. finer) than the topology defined by d2. We
say that the metrics d1 and d2 are (topologically) equivalent if d1 is both finer and coarser
than d2, simply put that d1 and d2 define precisely the same topology on X.

The appropriate notion of morphism for topological spaces is that of continuous function: if
f ∶ X Ð→ Y is a function from one topological space to another, we say that f is continuous if,
for any open subset V ⊆ Y , its inverse image f−1(V ) is an open subset of X. The corresponding
notion of isomorphism of topological spaces has a special name: a homeomorphism is a bijective
continuous function f ∶ X Ð→ Y such that f−1 ∶ Y Ð→X is continuous. In this case, X and
Y are said to be homeomorphic topological spaces. It is easy to see (with the help of Tutorial
Question 2.9) that this is an equivalence relation. (As an example, the 29 distinct topologies
on a set with three elements fall into 9 homeomorphism classes.)

In the important special case of a metric space, the concept of continuous function has
equivalent formulations that are more familiar from calculus and analysis. For example, the
equivalence to the ε-δ definition is in Tutorial Question 2.8.
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A. Appendix
At the moment, this is just a disorganised pile of miscellanea.

A.1. Set theory
Theorem A.1 (Schröder–Bernstein). If A and B are sets and f ∶ AÐ→ B and g ∶ B Ð→ A
are injective functions, then A and B have the same cardinality (that is, there exists some
bijective function h ∶ AÐ→ B).

Proof. If g(B) = A then g is bijective so we can take h = g−1.
Otherwise, let X1 = A ∖ g(B). Define X2 = g(f(X1)), and more generally

Xn = g(f(Xn−1)), for n ⩾ 2.

Let
X = ⋃

n∈N
Xn.

This is a subset of A with the property that

(A.1) g(f(X)) = ⋃
n∈N

g(f(Xn)) = ⋃
n∈N

Xn+1.

If a ∈ A ∖X, then a ∉ X1 = A ∖ g(B), therefore a ∈ g(B). As g is injective, there is a unique
b ∈ B such that a = g(b), in other words, g−1(a) = {b}.

This means that

h(a) =

⎧⎪⎪
⎨
⎪⎪⎩

f(a) if a ∈X
g−1(a) if a ∈ A ∖X

gives a well-defined function h ∶ AÐ→ B.
Let’s check that h is surjective. If b ∈ f(X), then b = f(a) = h(a) for some a ∈ X and we

are done. If b ∉ f(X), then as g is injective, g(b) ∉ g(f(X)). By Equation (A.1), we have

g(b) ∉ ⋃
n∈N

Xn+1.

We also have g(b) ∈ g(B) so g(b) ∉X1 = A ∖ g(B). Therefore

g(b) ∉X =X1 ∪ ⋃
n∈N

Xn+1,

so setting a = g(b) we have

h(a) = h(g(b)) = g−1(g(b)) = b.

Finally, we check that h is injective. Suppose h(a1) = h(a2). There are three cases to
consider:
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• a1 ∈X and a2 ∈ A∖X (or vice-versa). This cannot actually occur: if h(a1) = h(a2) then
f(a1) = g−1(a2), so that

a2 = g(g
−1(a2)) = g(f(a1)) ∈ g(f(X)) ⊆X,

contradiction.

• a1, a2 ∈X, then f(a1) = f(a2) so a1 = a2 by the injectivity of f .

• a1, a2 ∈ A ∖X, then g−1(a1) = g−1(a2) so a1 = a2 by applying g.

A.2. Linear algebra
Unless specified otherwise, we use F to denote an arbitrary field.

For vector spaces V , W over F, we write

Hom(V,W ) = {f ∶ V Ð→W ∶ f is a linear transformation}.

Example A.2. Prove that Hom(V,W ) is a vector space over F.
[Hint: You may use without proof the fact that for any set X and any vector space W

over F, the set Fun(X,W ) ∶= {f ∶ X Ð→W} is a vector space over F with the obvious
vector space operations.]

Solution. We apply the Subspace Theorem.

• The zero vector of Fun(V,W ) is the constant function 0 ∶ V Ð→ W given by
0(v) = 0 ∈W for all v ∈ V . We check that this is a linear transformation:

0(v1 + v2) = 0 = 0 + 0 = 0(v1) + 0(v2)

0(λv) = 0 = λ0 = λ0(v)

• Suppose f1, f2 ∈ Hom(V,W ), then both are linear transformations. Their sum in
Fun(V,W ) is the function (f1 + f2) ∶ V Ð→W given by (f1 + f2)(v) = f1(v)+ f2(v).
We check that this is linear:

(f1 + f2)(v1 + v2) = f1(v1 + v2) + f2(v1 + v2)

= f1(v1) + f1(v2) + f2(v1) + f2(v2)

= (f1 + f2)(v1) + (f1 + f2)(v2)

(f1 + f2)(λv) = f1(λv) + f2(λv)

= λf1(v) + λf2(v)

= λ(f1 + f2)(v).

So (f1 + f2) ∈ Hom(V,W ).

• Suppose f ∈ Hom(V,W ) and λ ∈ F. We get the function (λf) ∶ V Ð→W given by
(λf)(v) = λf(v). We check that this is linear:

(λf)(v1 + v2) = λf(v1 + v2) = λf(v1) + λf(v2) = (λf)(v1) + (λf)(v2)

(λf)(µv) = λf(µv) = λµf(v) = µ(λf)(v).
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So (λf) ∈ Hom(V,W ).

TODO: define F-algebra.

Example A.3. Let V be a vector space over F. Prove that End(V ) ∶= Hom(V,V ) is an
associative unital F-algebra.

Solution. TODO

Example A.4. Let V and W be vector spaces over F. Fix a basis B of V . For any
function g ∶ B Ð→ W there exists a unique linear map f ∶ V Ð→ W such that g = f ∣B,
constructed in the following manner:

Given v ∈ V , there is a unique expression of the form

v = a1v1 + ⋅ ⋅ ⋅ + anvn, n ∈N, aj ∈ F, vj ∈ B.

Therefore the only option is to set

f(v) = a1g(v1) + ⋅ ⋅ ⋅ + ang(vn).

It is easy to see that f is linear.
We say that f is obtained from g by extending by linearity.
Check that

(a) f is injective if and only if g(B) is linearly independent in W ;

(b) f is surjective if and only if g(B) spans W ;

(c) f is bijective if and only if g(B) is a basis for W .

A.2.1. Dual vector space
Let V be a finite dimensional vector space over F. Define

V ∨ = Hom(V,F).

By Example A.2 we know that this is a vector space over F. It is called the dual vector space
to V . Its elements are sometimes called (linear) functionals and denoted with Greek letters
such as ϕ.

Example A.5. Suppose B = {v1, . . . , vn} is a basis for V . Define v∨1 , . . . , v∨n ∈ Fun(V,F)
by

v∨i (a1v1 + ⋅ ⋅ ⋅ + anvn) = ai for i = 1, . . . , n.

Show that v∨i ∈ V ∨ for i = 1, . . . , n and that the set B∨ = {v∨1 , . . . , v∨n} is a basis for V ∨. It
is called the dual basis to B.

Solution. We check that v∨i is a linear transformation.
Given v,w ∈ V , we express them in the basis B:

v = a1v1 + ⋅ ⋅ ⋅ + anvn

w = b1v1 + ⋅ ⋅ ⋅ + bnvn,
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then

v∨i (v +w) = v
∨
i (a1v1 + ⋅ ⋅ ⋅ + anvn + b1v1 + ⋅ ⋅ ⋅ + bnvn) = ai + bi = v

∨
i (v) + v

∨
i (w).

Similarly, if λ ∈ F we have

v∨i (λv) = v
∨
i (λa1v1 + ⋅ ⋅ ⋅ + λanvn) = λai = λv

∨
i (v).

So v∨i ∈ V ∨ for any i = 1, . . . , n.
Next we show that the set B∨ is linearly independent. Suppose we have

λ1v
∨
1 + ⋅ ⋅ ⋅ + λnv

∨
n = 0.

In particular, we can apply this to the basis vector vi ∈ B for any i = 1, . . . , n and get

λi = 0.

So all the coefficients in the above linear relation must be zero, therefore B∨ is linearly
independent.

Finally, we show that the set B∨ spans V ∨. Let ϕ ∈ V ∨; let v ∈ V and express v in the
basis B:

v = a1v1 + ⋅ ⋅ ⋅ + anvn.

Then, since ϕ is a linear transformation, we have

ϕ(v) = a1ϕ(v1) + ⋅ ⋅ ⋅ + anϕ(vn)

= λ1v
∨
1 (v) + ⋅ ⋅ ⋅ + λnv

∨
n(v),

where we let λ1 = ϕ(v1), . . . , λn = ϕ(vn). This shows that ϕ is in the span of the set
B∨.

If V and W are vector spaces over F, then a function β ∶ V ×W Ð→ F is said to be a
bilinear map if

(a) β(av1 + bv2,w) = aβ(v1,w) + bβ(v2,w) for all v1, v2 ∈ V , w ∈W , a, b ∈ F;

(b) β(v, aw1 + bw2) = aβ(v,w1) + bβ(v,w2) for all v ∈ V , w1,w2 ∈W , a, b ∈ F.

It is called a bilinear form if W = V .
Note that β induces linear maps

βW ∶ W Ð→ V ∨, w z→ (w∨ ∶ v z→ β(v,w))

βV ∶ V Ð→W ∨, v z→ (v∨ ∶ w z→ β(v,w)).

For instance, we can take W = V ∨ and consider β ∶ V × V ∨ Ð→ F given by

β(v,ϕ) = ϕ(v).

The corresponding linear maps are βV ∨ = idV ∨ ∶ V ∨ Ð→ V ∨, and βV ∶ V Ð→ (V ∨)
∨ given by

βV (v)(ϕ) = β(v,ϕ) = ϕ(v).
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Example A.6. Prove that if V is finite-dimensional, then βV ∶ V Ð→ (V ∨)
∨ is invertible.

Solution. Let B = {v1, . . . , vn} be a basis for V and let B∨ = {v∨1 , . . . , v∨n} be the dual
basis for V ∨ as in Example A.5.

To show that βV is injective, suppose u, v ∈ V are such that βV (u) = βV (v), in other
words

ϕ(u) = ϕ(v) for all ϕ ∈ V ∨.

Write

u = a1v1 + ⋅ ⋅ ⋅ + anvn

v = b1v1 + ⋅ ⋅ ⋅ + bnvn

then, for i = 1, . . . , n, we have

ai = v
∨
i (u) = v

∨
i (v) = bi

Therefore u = v.
We now prove that βV is surjective. (Note that we could get away with simply saying

that Example A.5 tells us that V and V ∨, and therefore also (V ∨)∨, have the same
dimension n; so βV , being injective, is also surjective.)

Let T ∶ V ∨ Ð→ F be a linear transformation. Define v ∈ V by

v = T (v∨1 )v1 + ⋅ ⋅ ⋅ + T (v
∨
n)vn.

I claim that βV (v) = T . For any ϕ ∈ V ∨ we have

βV (v)(ϕ) = ϕ(v) = T (v
∨
1 )ϕ(v1) + ⋅ ⋅ ⋅ + T (v

∨
n)ϕ(vn)

= T(ϕ(v1)v
∨
1 + ⋅ ⋅ ⋅ + ϕ(vn)v

∨
n)

= T (ϕ),

where we expressed ϕ in terms of the dual basis v∨1 , . . . , v∨n from Example A.5.

Example A.7. Consider a linear transformation T ∶ V Ð→ W , where W is another
finite-dimensional vector space over F. Define T ∨ ∶ W ∨ Ð→ V ∨ by

T ∨(ϕ) = ϕ ○ T.

Prove that T ∨ is a linear transformation. It is called the dual linear transformation to T .

Solution. It is clear that ϕ ○ T ∶ V Ð→ F is linear, being the composition of two linear
transformations.

To show that T ∨ ∶ W ∨ Ð→ V ∨ is linear, take ϕ1, ϕ2 ∈W ∨. For any v ∈ V we have

T ∨(ϕ1 + ϕ2)(v) = (ϕ1 + ϕ2)(T (v)) = ϕ1(T (v)) + ϕ2(T (v)) = T
∨(ϕ1)(v) + T

∨(ϕ2)(v).

Similarly, if ϕ ∈W ∨ and λ ∈ F, then for any v ∈ V we have

T ∨(λϕ)(v) = (λϕ)(T (v)) = λϕ(T (v)) = λT ∨(ϕ)(v).
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Example A.8. In the setup of Example A.7, suppose W = V so that T ∶ V Ð→ V and
T ∨ ∶ V ∨ Ð→ V ∨.

Let M be the matrix representation of T with respect to an ordered basis B of V , and
let M∨ be the matrix representation of T ∨ with respect to the dual basis B∨.

Express M∨ in terms of M .

Solution. As in Example A.5, we have B = (v1, . . . , vn) and B∨ = (v∨1 , . . . , v∨n). Write
(aij) for the entries of the matrix M . For future reference, the i-th row of M is

[ai1 ai2 . . . ain] .

By the definition of matrix representations, we have

T (v1) = a11v1 + a21v2 + ⋅ ⋅ ⋅ + an1vn

T (v2) = a12v1 + a22v2 + ⋅ ⋅ ⋅ + an2vn

⋮

T (vn) = a1nv1 + a2nv2 + ⋅ ⋅ ⋅ + annvn.

The i-th column of M∨ is given by the B∨-coordinates of the vector T ∨(v∨i ) = v
∨
i ○ T . To

determine these, we apply v∨i ○ T to the basis vectors v1, . . . , vn:

T ∨(v∨i )(vj) = (v
∨
i ○ T )(vj) = v

∨
i (T (vj)) = v

∨
i (a1jv1 + a2jv2 + ⋅ ⋅ ⋅ + anjvn) = aij.

This means that
T ∨(v∨i ) = ai1v

∨
1 + ai2v

∨
2 + ⋅ ⋅ ⋅ + ainv

∨
n

and the i-th column of M∨ is
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ai1
ai2
⋮

ain

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

precisely the i-th row of M .
We conclude that M∨ =MT , the transpose of the matrix M .

Example A.9. Let v1, . . . , vn ∈ V . Define Γ ∶ V ∨ Ð→ Fn by

Γ(ϕ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ϕ(v1)
⋮

ϕ(vn)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Prove that Γ is a linear transformation.

(b) Prove that Γ is injective if and only if {v1, . . . , vn} spans V .

(c) Prove that Γ is surjective if and only if {v1, . . . , vn} is linearly independent.

Solution.
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(a) Given ϕ1, ϕ2 ∈ V ∨, we have

Γ(ϕ1 + ϕ2) = ((ϕ1 + ϕ2)(v1), . . . , (ϕ1 + ϕ2)(vn))

= (ϕ1(v1), . . . , ϕ1(vn)) + (ϕ2(v1), . . . , ϕ2(vn))

= Γ(ϕ1) + Γ(ϕ2).

Given ϕ ∈ V ∨ and λ ∈ F, we have

Γ(λϕ) = ((λϕ)(v1), . . . , (λϕ)(vn))

= (λϕ(v1), . . . , λϕ(vn))

= λΓ(ϕ).

(b) Suppose Γ is injective. Let W = Span{v1, . . . , vn}. We want to prove that W = V .
Suppose W ≠ V . Let C = {w1, . . . ,wk} be a basis of W and extend it to a basis
B = {w1, . . . ,wk,wk+1, . . . ,wm} of V .
Let B∨ be the dual basis to B and consider its last element v∨m given by

v∨m(a1w1 + ⋅ ⋅ ⋅ + amwm) = am.

Then v∨m ≠ 0 (since v∨m(wm) = 1, for instance) but v∨m(w) = 0 for all w ∈ W . In
particular, v∨m(v1) = ⋅ ⋅ ⋅ = v∨m(vn) = 0, so Γ(v∨m) = 0, contradicting the injectivity of
Γ.
We conclude that W = V , in other words {v1, . . . , vn} spans V .
Conversely, suppose {v1, . . . , vn} spans V . If ϕ1, ϕ2 ∈ V ∨ are such that Γ(ϕ1) =
Γ(ϕ2), then Γ(ϕ1 −ϕ2) = 0, so setting ϕ = ϕ1 −ϕ2, we want to show that ϕ = 0, the
constant zero function.
If ϕ ≠ 0, then there exists v ∈ V − {0} such that ϕ(v) ≠ 0. Since {v1, . . . , vn} spans
V , then we can write v as

v = b1v1 + ⋅ ⋅ ⋅ + bnvn.

But Γ(ϕ) = 0, so
0 ≠ ϕ(v) = b1ϕ(v1) + ⋅ ⋅ ⋅ + bnϕ(vn) = 0,

which is a contradiction. So we must have ϕ = 0, that is ϕ1 = ϕ2. We conclude that
Γ is injective.

(c) Suppose Γ ∶ V ∨ Ð→ Fn is surjective. Let

a1v1 + ⋅ ⋅ ⋅ + anvn = 0

be a linear relation.
Let i ∈ {1, . . . , n}. Since Γ is surjective, given the standard basis vector ei ∈ Fn (1
in the i-th entry), there exists ϕi ∈ V ∨ such that Γ(ϕi) = ei. If we apply ϕi on both
sides of the linear relation, we get

ai = 0.

Since this holds for all i, the relation is trivial.
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Conversely, suppose {v1, . . . , vn} is linearly independent. This set can be enlarged
to a basis B = {v1, . . . , vn, vn+1, . . . , vm} of V , with dual basis v∨1 , . . . , v∨m.
Now take an arbitrary vector in Fn:

w =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
⋮
an

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Let
ϕ = a1v

∨
1 + ⋅ ⋅ ⋅ + anv

∨
n,

then

Γ(ϕ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a1
⋮
an

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= w.

We conclude that Γ is surjective.

Here’s a concrete example of a naturally-occurring linear functional:

Example A.10. Let V = F[x] be the vector space of polynomials in one variable with
coefficients in F. Given a scalar α ∈ F, consider the function evα ∶ V Ð→ F given by
evaluation at α:

evα(f) = f(α).

Prove that evα ∈ V ∨.

Solution. We have to prove that evα ∶ V Ð→ F is linear.
If f1, f2 ∈ F[x], then

evα(f1 + f2) = (f1 + f2)(α) = f1(α) + f2(α) = evα(f1) + evα(f2).

If f ∈ F[x] and λ ∈ F, then

evα(λf) = (λf)(α) = λf(α) = λ evα(f).

A.2.2. Inner products
We take F to be either R or C, and we denote by ⋅ the complex conjugation (which is just
the identity if F =R).

Let V be a vector space over F.
An inner product on V is a function

⟨⋅, ⋅⟩ ∶ V × V Ð→ F

such that

(a) ⟨w, v⟩ = ⟨v,w⟩ for all v,w ∈ V ;

(b) ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ for all u, v,w ∈ V ;

(c) ⟨αv,w⟩ = α ⟨v,w⟩ for all v,w ∈ V , all α ∈ F;

(d) ⟨v, v⟩ ⩾ 0 for all v ∈ V and ⟨v, v⟩ = 0 iff v = 0.
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Properties (a), (b), and (c) say that ⟨⋅, ⋅⟩ is linear in the first variable, but conjugate-linear in
the second:

⟨v,αw⟩ = ⟨αw, v⟩ = α⟨w, v⟩ = α ⟨v,w⟩.

(Such a function V × V Ð→ F is called a sesquilinear form.)
Property (d) says that ⟨⋅, ⋅⟩ is positive-definite.
An inner product space is a pair (V, ⟨⋅, ⋅⟩), where V is a vector space over F and ⟨⋅, ⋅⟩ is an

inner product on V .

Example A.11. The prototypical inner product on Cn is

⟨u, v⟩ =
n

∑
k=1

ukvk = v
Tu,

which on Rn becomes
⟨u, v⟩ =

n

∑
k=1

ukvk = v
Tu.

All other inner products on Cn are of the form

⟨u, v⟩ = vTAu,

where A is an n × n positive-definite Hermitian matrix , that is

A
T
= A and all the eigenvalues of A are real and positive.

Over R, A is a positive-definite symmetric matrix.

Define
∥v∥ =

√
⟨v, v⟩.

Proposition A.12 (Cauchy–Schwarz Inequality). Let u, v be vectors in an inner product
space V . Then

∣⟨u, v⟩∣ ⩽ ∥u∥ ∥v∥,

where equality holds if and only if u and v are parallel.

Proof. If u = 0 or v = 0, we have the equality 0 = 0. Otherwise, for any t ∈ F we have

0 ⩽ ⟨u − tv, u − tv⟩ = ⟨u,u⟩ − 2Re (t⟨u, v⟩) + tt⟨v, v⟩

= ∥u∥2 − 2Re (t⟨u, v⟩) + ∣t∣2∥v∥2.

In particular, we can take t = ⟨u,v⟩∥v∥2 :

0 ⩽ ∥u∥2 − 2Re(
∣⟨u, v⟩∣2

∥v∥2
) +
∣⟨u, v⟩∣2

∥v∥2
= ∥u∥2 −

∣⟨u, v⟩∣2

∥v∥2
,

so ∣⟨u, v⟩∣2 ⩽ ∥u∥2 ∥v∥2.
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