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1 Introduction
The next few exercises are about countability/uncountability. See Section 1.2 for clarification
on our use of the term “countable”. You may assume without proof that any subset of a
countable set is finite or countable.

Exercise 1.1. Let f ∶ X Ð→ Y be a function, with X a countable set. Then im(f) is
finite or countable.

[Hint: Reduce to the case f ∶ NÐ→ Y is surjective; construct a right inverse g ∶ Y Ð→N,
which has to be injective, of f .]

Solution. Without loss of generality, we may assume that f is surjective and we want to
show that Y is finite or countable.

Also without loss of generality (by pre-composing f with any bijection NÐ→X), we
may assume that f ∶ NÐ→ Y is surjective.

As f ∶ N Ð→ Y is surjective, there exists a right inverse g ∶ Y Ð→ N, in other words
f ○ g ∶ Y Ð→ Y is the identity function idY : given y ∈ Y , the pre-image f−1(y) ⊆ N is
nonempty, so it has a smallest element ny; we let g(y) = ny. For any y ∈ Y , we have
f(g(y)) = f(ny) = y as ny ∈ f−1(y). So f ○ g = idY .

In particular, this forces g ∶ Y Ð→N to be injective, hence realising Y as a subset of
the countable set N. We conclude that Y is finite or countable.

Exercise 1.2. Show that the union S of any countable collection of countable sets is a
countable set.

[Hint: Construct a surjective function N ×NÐ→ S.]

Solution. Write
S = ⋃

n∈N
Sn,

with each Sn a countable set. It is clear that S is infinite (as, say, S1 is, and S1 ⊆ S).
For each n ∈N, fix a bijection ϕn ∶ N Ð→ Sn. (As Chengjing rightfully points out to

me, this uses the Axiom of Countable Choice.) Define a function ψ ∶ N ×NÐ→ S by:

ψ((n,m)) = ϕn(m) ∈ Sn ⊆ S.

This is surjective, and N ×N is countable, so S is finite or countable, and we ruled out
finite above.

Exercise 1.3. Let R∞ be the set of arbitrary sequences (x1, x2, . . . ) of elements of R.
This is a vector space under the naturally-defined addition of sequences and multipli-

cation by a scalar.
Let ej ∈R∞ be the sequence whose j-th entry is 1, and all the others are 0. Describe

the subspace Span{e1, e2, . . .} of R∞. Is the set {e1, e2, . . .} a basis of R∞?
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1 Introduction

Solution. Let S = {e1, e2, . . .} and W = Span(S).
For each n ∈N, define

Wn = Span{e1, e2, . . . , en} ⊆W.

I claim that
W = ⋃

n∈N
Wn.

One inclusion is clear, as Wn ⊆W for all n ∈N.
For the other inclusion, let w ∈ W . Then there exist m ∈ N, a1, . . . , am ∈ R and

k1, . . . , km ∈N such that
w = a1ek1 + ⋅ ⋅ ⋅ + amekm .

Set n =max{k1, . . . , km}, then w ∈Wn.
Is W =R∞? No. Any w ∈W appears in a Wn for some n ∈N, therefore only the first

n entries of w can be nonzero. This means, for instance, that v = (1,1,1, . . . ) ∉W . So S
does not span R∞.

Exercise 1.4. Let V =R viewed as a vector space over Q.
Let α ∈R. Show that the set T = {αn ∶ n ∈N} is Q-linearly independent if and only if

α is transcendental.
(Note: An element α ∈R is called algebraic if there exists a monic polynomial f ∈Q[x]

such that f(α) = 0. An element α ∈R is called transcendental if it is not algebraic.)

Solution. This is a straightforward rewriting of the definition of algebraic: α is algebraic
if and only if it satisfies a polynomial equation with coefficients in Q, which is equivalent
to a nontrivial linear relation between the powers of α, which exists if and only if T is
linearly dependent.

Exercise 1.5. Let W be a Q-vector space with a countable basis B. Show that W is a
countable set.

[Hint: Use Exercise 1.2.]
Conclude that R does not have a countable basis as a vector space over Q.

Solution. Since B is countable we can enumerate it as B = {bn ∶ n ∈N}. For each n ∈N,
let Wn = Span{b1, . . . , bn}. Then for each n ∈N, Wn is isomorphic (as a Q-vector space)
to Qn, hence Wn is countable. I claim that

W = ⋃
n∈N

Wn.

One inclusion is obvious, as Wn ⊆W for all n ∈N. For the other direction, let w ∈W =
Span(B), so there exist n ∈N, a1, . . . , an ∈Q and k1, . . . , kn ∈N such that

w = a1bk1 + ⋅ ⋅ ⋅ + anbkn .

Let k =max{k1, . . . , kn}, then w ∈Wk.
So W is a countable union of countable sets, hence countable by Exercise 1.2.
The last claim follows directly from the fact that R is an uncountable set.

We now turn to posets, Zorn’s Lemma, and the existence of bases.
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A partially ordered set (poset for short) is a set X together with a partial order ⩽, that is
a relation satisfying

• x ⩽ x for all x ∈X;

• if x ⩽ y and y ⩽ x then x = y;

• if x ⩽ y and y ⩽ z then x ⩽ z.

A poset X such that for any x, y ∈ X we have x ⩽ y or y ⩽ x is called a totally ordered set,
and ⩽ is called a total order .

Exercise 1.6. Fix a set Ω and let X be the set of all subsets of Ω. Check that ⊆ is a
partial order on X. It is not a total order if Ω has at least two distinct elements.

Solution. The fact that ⊆ is a partial order follows directly from known properties of set
inclusion.

If Ω has at least two distinct elements x1 and x2, then {x1} and {x2} are not comparable
under ⊆, so the latter is not a total order.

A chain in a poset (X,⩽) is a subset C ⊆X that is totally ordered with respect to ⩽.
If S ⊆ X is a subset of a poset, then an upper bound for S is an element u ∈ X such that

s ⩽ u for all s ∈ S.
A maximal element of a poset X is an element m of X such that there does not exist any

x ∈X such that x ≠m and m ⩽ x. In other words, for any x ∈X, either x =m, or x ⩽m, or x
and m are not comparable with respect to the partial order ⩽.

Exercise 1.7. Let (X,⩽) be a nonempty finite poset. (This just means that X is a
nonempty finite set with a partial order ⩽.) Prove that X has a maximal element.

[Hint: You could, for instance, use induction on the number of elements of X.]

Solution. We proceed by induction on n, the cardinality of X.
Base case: if n = 1 then X = {x} for a single element x. Then trivially x is a maximal

element of X.
For the induction step, fix n ∈ N and suppose that any poset of cardinality n has a

maximal element. Let X be a poset of cardinality n + 1 and choose an arbitrary element
x ∈X. Let Y =X ∖{x}, then Y is a poset of cardinality n so by the induction hypothesis
has a maximal element mY , and clearly mY ≠ x.

We have two possibilities now:

• If mY ⩽ x, then x is a maximal element of X. Why? Suppose that x is not maximal
in X, so that there exists z ∈ X such that z ≠ x and x ⩽ z. Since z ≠ x, we must
have z ∈ Y . If z =mY , then z ⩽ x and x ⩽ z so z = x, contradiction. So z ≠mY , and
mY ⩽ x and x ⩽ z, so mY ⩽ z, contradicting the maximality of mY in Y .

• Otherwise, (if it is not true that mY ⩽ x), mY is a maximal element of X. Why?
Suppose there exists z ∈X such that z ≠mY and mY ⩽ z. Since mY ⩽ x is not true,
we have z ≠ x, so z ∈ Y , contradicting the maximality of mY in Y .

In either case we found a maximal element for X.
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1 Introduction

An alternative approach is to proceed by contradiction: suppose (X,⩽) is a nonempty
finite poset that does not have a maximal element. Use this to construct an unbounded
chain of elements of X, contradicting finiteness.

Zorn’s Lemma (Lemma 1.3) is used to deduce the existence of maximal elements in infnite
posets.

Exercise 1.8. Prove Theorem 1.2: any vector space V has a basis.
[Hint: Let X be the set of all linearly independent subsets of V , partially ordered by

inclusion. Prove that X has a maximal element B, and prove that this must also span
V .]

Solution. If V = {0}, then ∅ is vacuously a (in fact, the only) basis of V .
Suppose V ≠ {0}. If v ∈ V ∖ {0}, then {v} is a linearly independent subset of V . Let

X be the set of all linearly independent subsets of V , then X is nonempty. We consider
the partial order ⊆ on X given by inclusion of subsets.

Let C be a nonempty chain in X and define

U = ⋃
S∈C

S,

then clearly S ⊆ U for all S ∈ C, so we’ll know that U is an upper bound for C as soon as
we can show that it is linearly independent (so that U ∈X).

Suppose there exist n ∈N, a1, . . . , an ∈ F, and u1, . . . , un ∈ U such that

(1.1) a1u1 + ⋅ ⋅ ⋅ + anun = 0.

Let J = {1, . . . , n}. For each j ∈ J , there exists Sj ∈ C such that uj ∈ Sj. As C is
totally ordered, there exists i ∈ J such that Sj ⊆ Si for all j ∈ J . But this means that
u1, . . . , un ∈ Si, so that the linear relation of Equation (1.1) takes place in the linearly
independent set Si. Therefore a1 = ⋅ ⋅ ⋅ = an = 0.

We conclude that X satisfies the conditions of Zorn’s Lemma, hence it has a maximal
element B. I claim that B spans V , so that it is a basis of V .

We prove this last claim by contradiction: if v ∈ V ∖ Span(B), then B′ ∶= B ∪ {v} is
linearly independent, hence an element of X. But B ⊆ B′ and B ≠ B′, contradicting the
maximality of B.
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2 Metric and topological spaces

Exercise 2.1. Let (X,d) be a metric space. Show that

∣d(x, y) − d(t, y)∣ ⩽ d(x, t)

for all x, y, t ∈X.

Solution. We need to show that

−d(x, t) ⩽ d(x, y) − d(t, y) ⩽ d(x, t).

One application of the triangle inequality gives

d(x, y) ⩽ d(x, t) + d(t, y) ⇒ d(x, y) − d(t, y) ⩽ d(x, t).

Another application gives

d(t, y) ⩽ d(t, x) + d(x, y) ⇒ −d(x, t) ⩽ d(x, y) − d(t, y).

Exercise 2.2. Let (X,d) be a metric space. Show that

∣d(x, y) − d(s, t)∣ ⩽ d(x, s) + d(y, t)

for all x, s, y, t ∈X.

Solution. We have

∣d(x, y) − d(s, t)∣ = ∣d(x, y) − d(y, s) + d(y, s) − d(s, t)∣
⩽ ∣d(x, y) − d(y, s)∣ + ∣d(y, s) − d(s, t)∣
⩽ d(x, s) + d(y, t)

after one application of the triangle inequality and two applications of Exercise 2.1.

Exercise 2.3. Fix a prime p and consider the metric space (Q, dp) where dp is the p-adic
metric from Example 2.1.

(a) Let p = 3 and write down 4 elements of B1(2) and 4 elements of B1/9(3).

(b) Back to general prime p now: show that every triangle is isosceles. In other words,
given three points in Q, at least two of the three resulting (p-adic) distances are
equal.

(c) Show that every point of an open ball is a centre. In other words, take an open ball
Br(c) with r ∈R⩾0 and c ∈Q and suppose x ∈ Br(c); prove that Br(c) = Br(x).

9



2 Metric and topological spaces

(d) Show that given any two open balls, either one of them is contained in the other,
or they are completely disjoint.

Solution. (a) We have

{2,5,−7, 4
5
} ⊆ B1(2)

{3,30,−24, 39
4
} ⊆ B1/9(3).

(b) Recall that in the proof of the triangle inequality for the p-adic metric in Example 2.1,
the following stronger result was shown:

dp(x, y) ⩽max{dp(x, t), dp(t, y)}.

with equality holding if dp(x, t) ≠ dp(t, y). But this precisely says that if dp(x, t) ≠
dp(t, y), then dp(x, y) has to be equal to the largest of dp(x, t) and dp(t, y).

(c) First x ∈ Br(c) iff c ∈ Br(x) (this is true for any metric space). So it suffices to
show that x ∈ Br(c) implies Br(x) ⊆ Br(c). Let y ∈ Br(x), then dp(y, x) < r, so
that

dp(y, c) ⩽max{dp(y, x), dp(x, c)} < r,

in other words y ∈ Br(c).

(d) Consider two open balls Br(x) and Bt(y). Without loss of generality r ⩽ t. Suppose
that the balls are not disjoint and let z ∈ Br(x) ∩Bt(y). By part (c) this implies
that Br(z) = Br(x) and Bt(z) = Bt(y), so that

Br(x) = Br(z) ⊆ Bt(z) = Bt(y).

Exercise 2.4. Let n ∈ N, X = Rn with the dot product ⋅, ∥x∥ =
√
x ⋅ x for x ∈ X, and

d(x, y) = ∥x − y∥ for x, y ∈ X. Then (X,d) is a metric space. (The function d is called
the Euclidean metric or `2 metric on Rn.)

[Hint: The Cauchy–Schwarz inequality can be useful for checking the triangle inequality.]

Solution. We have

(a) d(x, y) = ∥x − y∥ =
√
(x − y) ⋅ (x − y) =

√
(−1)2 (y − x) ⋅ (y − x) = ∥y − x∥ = d(y, x);

(b) Let u = x− t and v = t−y, then we are looking to show that ∥u+v∥ ⩽ ∥u∥+∥v∥. But:

∥u + v∥2 = (u + v) ⋅ (u + v) = ∥u∥2 + 2u ⋅ v + ∥v∥2 ⩽ ∥u∥2 + 2 ∣u ⋅ v∣ + ∥v∥2

⩽ ∥u∥2 + 2 ∥u∥ ∥v∥ + ∥v∥2 = (∥u∥ + ∥v∥)2,

where the last inequality sign comes from the Cauchy–Schwarz inequality.

(c) d(x, y) = 0 iff (x − y) ⋅ (x − y) = 0 iff x − y = 0 iff x = y.

Exercise 2.5. Draw the unit open balls in the metric spaces (R2, d1) (Example 2.4),
(R2, d2) (Exercise 2.4), and (R2, d∞) (Example 2.5).
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Solution. The Manhattan unit open ball is the interior of the square with vertices (1,0),
(0,−1), (−1,0), and (0,1).

The Euclidean unit open ball is the interior of the unit circle centred at (0,0).
The sup metric unit open ball is the interior of the square with vertices (1,1), (1,−1),
(−1,−1), and (−1,1).

Exercise 2.6. Let X be a nonempty set and define

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≠ y,
0 otherwise.

Prove that (X,d) is a metric space. (The function d is called the discrete metric on X.)

Solution. It is clear from the definition that d(y, x) = d(x, y) and that d(x, y) = 0 iff
x = y.

For the triangle inequality, take x, y, t ∈X and consider the different cases:

x = y x = t t = y d(x, y) d(x, t) + d(t, y)

True True True 0 0 + 0 = 0
True False False 0 1 + 1 = 2
False True False 1 1 + 0 = 1
False False True 1 0 + 1 = 1
False False False 1 1 + 1 = 2

In all cases we see that d(x, y) ⩽ d(x, t) + d(t, y).

Exercise 2.7. Let n ∈N, X = Fn
2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n}

such that xi ≠ yi. Prove that (X,d) is a metric space. (The function d is called the
Hamming metric.)

Solution. Do this from scratch if you want to, but I prefer to deduce it from other
examples we have seen.

First look at the case n = 1, X = F2. Then d(x, y) is precisely the discrete metric on F2

(see Exercise 2.6), in particular it is a metric. I’ll denote it dF2 for a moment to minimise
confusion.

Back in the arbitrary n ∈N case, note that d(x, y) defined above can be expressed as

d(x, y) = dF2(x1, y1) + ⋅ ⋅ ⋅ + dF2(xn, yn),

which is a special case of Example 2.4, therefore also a metric.

Exercise 2.8. Let (X,d) be a metric space and let A ⊆X.

(a) Prove that the set A is open if and only if it is the union of a collection of open
balls.

(b) Conclude that the set of all open balls in X generates the metric topology of X.
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2 Metric and topological spaces

Solution. (a) In one direction, if A is a union of a collection of open balls, then A is
open by Example 2.10 and Proposition 2.11.
In the other direction, suppose A is open. Let a ∈ A, then there exists an open ball
Br(a)(a) ⊆ A. Then

A = ⋃
a∈A

Br(a)(a).

(b) Follows immediately from the definition of the topology generated by a set.

Exercise 2.9. Let Y be a subset of a metric space (X,d) and consider the induced
metric on Y .

(a) Prove that for any y ∈ Y and any r ∈R⩾0 we have

BY
r (y) = BX

r (y) ∩ Y,

where BX
r (y) is the open ball of radius r centred at y in X, and BY

r (y) is the open
ball of radius r centred at y in Y .

(b) Let A ⊆ Y . Prove that A is an open set in Y if and only if there exists an open set
U in X such that A = U ∩ Y .

Solution. (a) We have

BX
r (y) = {x ∈X ∶ d(x, y) < r}

BY
r (y) = {x ∈ Y ∶ d(x, y) < r},

so that

BX
r (y) ∩ Y = {x ∈X ∶ d(x, y) < r} ∩ Y = {x ∈ Y ∶ d(x, y) < r} = BY

r (y).

(b) In one direction, suppose A is open in Y ; by Exercise 2.8 we have some indexing
set I such that

A = ⋃
i∈I

BY
ri
(ai),

with ri > 0 and ai ∈ A for all i ∈ I. We can then let

U = ⋃
i∈I

BX
ri
(ai),

which by Exercise 2.8 is an open in X. It is clear that A = U ∩ Y by part (a).
Conversely, suppose A = U ∩ Y with U open in X. Let a ∈ A, then a ∈ U so
there exists an open (in X) ball BX

r (a) such that BX
r (a) ⊆ U . Consider BY

r (a) =
BX

r (a) ∩ Y ⊆ U ∩ Y = A. So every point a ∈ A is contained in an open (in Y ) ball,
hence A is open in Y .

Exercise 2.10. Prove that any closed ball is a closed set.

Solution. This is a variation on Example 2.10 and a generalisation of Example 2.9 (which
is the case r = 0).
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Consider C = Dr(x) with x ∈ X, r ∈ R⩾0. Let y ∈ X ∖ C, then d(x, y) > r. Set
t = d(x, y) − r and consider the open ball Bt(y).

I claim that Bt(y) ⊆ (X ∖C): if w ∈ Bt(y) then d(w, y) < t so

d(x, y) ⩽ d(x,w) + d(w, y) ⩽ d(x,w) + t ⇒ d(x,w) ⩾ d(x, y) − t = r,

hence w ∉ C.

Exercise 2.11. Show that any p-adic open ball in Q is both an open set and a closed
set.

Solution. Any open ball in any metric space is an open set (Example 2.10). Let’s show
that an arbitrary p-adic open ball Br(c) is closed.

Let U =Q ∖Br(c). Given u ∈ U , we have ∣u − c∣p ⩾ r.
I claim that Br(u) ⊆ U , which would imply that U is open, so that Br(c) is closed.
Suppose, on the contrary, that there exists t ∈ Br(u) ∩Br(c). Then ∣u − t∣p < r and
∣t − c∣p < r, so that

∣u − c∣p = ∣(u − t) + (t − c)∣p ⩽max{∣u − t∣p, ∣t − c∣p} < r,

contradicting the fact that ∣u − c∣p ⩾ r.

Exercise 2.12. Let (X,d) be a metric space and define

d′(x, y) = d(x, y)
1 + d(x, y)

.

Prove that (X,d′) is a metric space.
[Hint: Before tackling the triangle inequality, show that if a, b, c ∈R⩾0 satisfy c ⩽ a + b,

then c
1+c ⩽

a
1+a +

b
1+b .]

Solution. It is clear from the definition that d′(x, y) = d′(y, x) and that d′(x, y) = 0 iff
d(x, y) = 0 iff x = y.

For the triangle inequality, apply the inequality in the hint with c = d(x, y), a = d(x, t),
b = d(t, y).

Exercise 2.13.

(a) Let f ∶ X Ð→ Y be a function between two sets X and Y , and let S ⊆ Y . Prove
that

f−1(S) =X ∖ f−1(Y ∖ S).

(b) Let f ∶ X Ð→ Y be a function between topological spaces. Prove that f is continuous
if and only if: for any closed subset C ⊆ Y , the inverse image f−1(C) ⊆ X is a
closed subset.

Solution.

(a) We have x ∈ f−1(S) iff f(x) ∈ S iff f(x) ∉ (Y ∖ S) iff x ∉ f−1(Y ∖ S).

13



2 Metric and topological spaces

(b) Suppose f is continuous and C ⊆ Y is closed. By part (a) we have

f−1(C) =X ∖ f−1(Y ∖C).

Then (Y ∖C) ⊆ Y is open and f is continuous, so f−1(Y ∖C) ⊆X is open, therefore
f−1(C) is closed.
Conversely, suppose the inverse image of any closed subset is closed. Let V ⊆ Y be
open, then by part (a) we have

f−1(V ) =X ∖ f−1(Y ∖ V ).

So (Y ∖ V ) ⊆ Y is closed, so f−1(Y ∖ V ) ⊆X is closed, hence f−1(V ) is open. We
conclude that f is continuous.

Exercise 2.14. This is a variation on Tutorial Question 2.7.
Let f ∶X Ð→ Y be a function and TX a topology on X. Define

TY = {U ∈ P(Y ) ∶ f−1(U) ∈ TX}.

(a) Prove that TY is the finest topology on Y such that f is continuous. (This topology
is called the final topology induced by f .)

(b) Let T be another topology on Y . Prove that f ∶ (X,TX) Ð→ (Y,T ) is continuous if
and only if T is coarser than TY .

(c) Use an example to prove that TY need not be metrisable even when TX is a metric
topology.

(d) Give an example in which TY is metrisable but TX is not.

[Hint: For (c) and (d), consider using Tutorial Question 2.3.]

Solution.

(a) We start with proving that TY is a topology:
• Since ∅ = f−1(∅) and X = f−1(Y ), it follows that TY contains ∅ and Y .
• If {Ui ∶ i ∈ I} is a collection of members of TY , then

⋃
i∈I
f−1(Ui) = f−1(⋃

i∈I
Ui) ∈ TX .

• If U1, . . . , Un are members of TY , then
n

⋂
i=1
f−1(Ui) = f−1(

n

⋂
i=1
Ui) ∈ TX .

If T is a topology on Y such that f is continuous, then f−1(U) ∈ TX for every
member U of T , so T ⊆ TY . Therefore, TY is the finest topology such that f is
continuous.

14
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(b) The ‘only if’ part has been proven in part (a), so it suffices to prove the ‘if’ part.
Suppose T is coarser than TY . If U is a member of T , then U ∈ TY , which implies
that f−1(U) is open in X. It follows that f is continuous when the topology on Y
is T .

(c) Let (X,TX) be the set of real numbers equipped with the Euclidean topology. Put
Y = {0,1}. If f ∶X Ð→ Y is defined by

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x > 0,
0 otherwise,

then TY = {∅,{1},{0,1}}. The topology TX is defined by the Euclidean metric, but
TY is not metrisable (see Tutorial Question 2.3).

(d) Put X = {0,1}, Y = {1}, TX = {∅,{1},{0,1}}. Let f ∶X Ð→ Y be the function
sending both 0 and 1 to 1. It follows that TY = {∅,{0,1}}. The topology TY is
defined by the discrete metric (see Tutorial Question 2.1), but TX is not metrisable
(see Tutorial Question 2.3).
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