Exercises on metric and Hilbert SPACES

An invitation to functional analysis

Alexandru Ghitza*
School of Mathematics and Statistics
University of Melbourne
Version of Sat $27^{\text {th }}$ Jul, 2024 at 08:38

Contents

1 Introduction 5

2 Metric and topological spaces 9

1 Introduction

The next few exercises are about countability/uncountability. See Section 1.2 for clarification on our use of the term "countable". You may assume without proof that any subset of a countable set is finite or countable.

Exercise 1.1. Let $f: X \longrightarrow Y$ be a function, with X a countable set. Then $\operatorname{im}(f)$ is finite or countable.
[Hint: Reduce to the case $f: \mathbf{N} \longrightarrow Y$ is surjective; construct a right inverse $g: Y \longrightarrow \mathbf{N}$, which has to be injective, of f.]

Solution. Without loss of generality, we may assume that f is surjective and we want to show that Y is finite or countable.

Also without loss of generality (by pre-composing f with any bijection $\mathbf{N} \longrightarrow X$), we may assume that $f: \mathbf{N} \longrightarrow Y$ is surjective.

As $f: \mathbf{N} \longrightarrow Y$ is surjective, there exists a right inverse $g: Y \longrightarrow \mathbf{N}$, in other words $f \circ g: Y \longrightarrow Y$ is the identity function id_{Y} : given $y \in Y$, the pre-image $f^{-1}(y) \subseteq \mathbf{N}$ is nonempty, so it has a smallest element n_{y}; we let $g(y)=n_{y}$. For any $y \in Y$, we have $f(g(y))=f\left(n_{y}\right)=y$ as $n_{y} \in f^{-1}(y)$. So $f \circ g=\operatorname{id}_{Y}$.

In particular, this forces $g: Y \longrightarrow \mathbf{N}$ to be injective, hence realising Y as a subset of the countable set \mathbf{N}. We conclude that Y is finite or countable.

Exercise 1.2. Show that the union S of any countable collection of countable sets is a countable set.
[Hint: Construct a surjective function $\mathbf{N} \times \mathbf{N} \longrightarrow S$.]
Solution. Write

$$
S=\bigcup_{n \in \mathbf{N}} S_{n},
$$

with each S_{n} a countable set. It is clear that S is infinite (as, say, S_{1} is, and $S_{1} \subseteq S$).
For each $n \in \mathbf{N}$, fix a bijection $\varphi_{n}: \mathbf{N} \longrightarrow S_{n}$. (As Chengjing rightfully points out to me, this uses the Axiom of Countable Choice.) Define a function $\psi: \mathbf{N} \times \mathbf{N} \longrightarrow S$ by:

$$
\psi((n, m))=\varphi_{n}(m) \in S_{n} \subseteq S
$$

This is surjective, and $\mathbf{N} \times \mathbf{N}$ is countable, so S is finite or countable, and we ruled out finite above.

Exercise 1.3. Let \mathbf{R}^{∞} be the set of arbitrary sequences $\left(x_{1}, x_{2}, \ldots\right)$ of elements of \mathbf{R}.
This is a vector space under the naturally-defined addition of sequences and multiplication by a scalar.

Let $e_{j} \in \mathbf{R}^{\infty}$ be the sequence whose j-th entry is 1 , and all the others are 0 . Describe the subspace $\operatorname{Span}\left\{e_{1}, e_{2}, \ldots\right\}$ of \mathbf{R}^{∞}. Is the set $\left\{e_{1}, e_{2}, \ldots\right\}$ a basis of \mathbf{R}^{∞} ?

Solution. Let $S=\left\{e_{1}, e_{2}, \ldots\right\}$ and $W=\operatorname{Span}(S)$.
For each $n \in \mathbf{N}$, define

$$
W_{n}=\operatorname{Span}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subseteq W
$$

I claim that

$$
W=\bigcup_{n \in \mathbf{N}} W_{n} .
$$

One inclusion is clear, as $W_{n} \subseteq W$ for all $n \in \mathbf{N}$.
For the other inclusion, let $w \in W$. Then there exist $m \in \mathbf{N}, a_{1}, \ldots, a_{m} \in \mathbf{R}$ and $k_{1}, \ldots, k_{m} \in \mathbf{N}$ such that

$$
w=a_{1} e_{k_{1}}+\cdots+a_{m} e_{k_{m}}
$$

Set $n=\max \left\{k_{1}, \ldots, k_{m}\right\}$, then $w \in W_{n}$.
Is $W=\mathbf{R}^{\infty}$? No. Any $w \in W$ appears in a W_{n} for some $n \in \mathbf{N}$, therefore only the first n entries of w can be nonzero. This means, for instance, that $v=(1,1,1, \ldots) \notin W$. So S does not span \mathbf{R}^{∞}.

Exercise 1.4. Let $V=\mathbf{R}$ viewed as a vector space over \mathbf{Q}.
Let $\alpha \in \mathbf{R}$. Show that the set $T=\left\{\alpha^{n}: n \in \mathbf{N}\right\}$ is \mathbf{Q}-linearly independent if and only if α is transcendental.
(Note: An element $\alpha \in \mathbf{R}$ is called algebraic if there exists a monic polynomial $f \in \mathbf{Q}[x]$ such that $f(\alpha)=0$. An element $\alpha \in \mathbf{R}$ is called transcendental if it is not algebraic.)

Solution. This is a straightforward rewriting of the definition of algebraic: α is algebraic if and only if it satisfies a polynomial equation with coefficients in \mathbf{Q}, which is equivalent to a nontrivial linear relation between the powers of α, which exists if and only if T is linearly dependent.

Exercise 1.5. Let W be a Q-vector space with a countable basis B. Show that W is a countable set.
[Hint: Use Exercise 1.2.]
Conclude that \mathbf{R} does not have a countable basis as a vector space over \mathbf{Q}.
Solution. Since B is countable we can enumerate it as $B=\left\{b_{n}: n \in \mathbf{N}\right\}$. For each $n \in \mathbf{N}$, let $W_{n}=\operatorname{Span}\left\{b_{1}, \ldots, b_{n}\right\}$. Then for each $n \in \mathbf{N}, W_{n}$ is isomorphic (as a \mathbf{Q}-vector space) to \mathbf{Q}^{n}, hence W_{n} is countable. I claim that

$$
W=\bigcup_{n \in \mathbf{N}} W_{n} .
$$

One inclusion is obvious, as $W_{n} \subseteq W$ for all $n \in \mathbf{N}$. For the other direction, let $w \in W=$ $\operatorname{Span}(B)$, so there exist $n \in \mathbf{N}, a_{1}, \ldots, a_{n} \in \mathbf{Q}$ and $k_{1}, \ldots, k_{n} \in \mathbf{N}$ such that

$$
w=a_{1} b_{k_{1}}+\cdots+a_{n} b_{k_{n}} .
$$

Let $k=\max \left\{k_{1}, \ldots, k_{n}\right\}$, then $w \in W_{k}$.
So W is a countable union of countable sets, hence countable by Exercise 1.2.
The last claim follows directly from the fact that \mathbf{R} is an uncountable set.
We now turn to posets, Zorn's Lemma, and the existence of bases.

A partially ordered set (poset for short) is a set X together with a partial order \leqslant, that is a relation satisfying

- $x \leqslant x$ for all $x \in X$;
- if $x \leqslant y$ and $y \leqslant x$ then $x=y$;
- if $x \leqslant y$ and $y \leqslant z$ then $x \leqslant z$.

A poset X such that for any $x, y \in X$ we have $x \leqslant y$ or $y \leqslant x$ is called a totally ordered set, and \leqslant is called a total order.

Exercise 1.6. Fix a set Ω and let X be the set of all subsets of Ω. Check that \subseteq is a partial order on X. It is not a total order if Ω has at least two distinct elements.

Solution. The fact that \subseteq is a partial order follows directly from known properties of set inclusion.

If Ω has at least two distinct elements x_{1} and x_{2}, then $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$ are not comparable under \subseteq, so the latter is not a total order.

A chain in a poset (X, \leqslant) is a subset $C \subseteq X$ that is totally ordered with respect to \leqslant. If $S \subseteq X$ is a subset of a poset, then an upper bound for S is an element $u \in X$ such that $s \leqslant u$ for all $s \in S$.

A maximal element of a poset X is an element m of X such that there does not exist any $x \in X$ such that $x \neq m$ and $m \leqslant x$. In other words, for any $x \in X$, either $x=m$, or $x \leqslant m$, or x and m are not comparable with respect to the partial order \leqslant.

Exercise 1.7. Let (X, \leqslant) be a nonempty finite poset. (This just means that X is a nonempty finite set with a partial order \leqslant.) Prove that X has a maximal element.
[Hint: You could, for instance, use induction on the number of elements of X.]
Solution. We proceed by induction on n, the cardinality of X.
Base case: if $n=1$ then $X=\{x\}$ for a single element x. Then trivially x is a maximal element of X.

For the induction step, fix $n \in \mathbf{N}$ and suppose that any poset of cardinality n has a maximal element. Let X be a poset of cardinality $n+1$ and choose an arbitrary element $x \in X$. Let $Y=X \backslash\{x\}$, then Y is a poset of cardinality n so by the induction hypothesis has a maximal element m_{Y}, and clearly $m_{Y} \neq x$.

We have two possibilities now:

- If $m_{Y} \leqslant x$, then x is a maximal element of X. Why? Suppose that x is not maximal in X, so that there exists $z \in X$ such that $z \neq x$ and $x \leqslant z$. Since $z \neq x$, we must have $z \in Y$. If $z=m_{Y}$, then $z \leqslant x$ and $x \leqslant z$ so $z=x$, contradiction. So $z \neq m_{Y}$, and $m_{Y} \leqslant x$ and $x \leqslant z$, so $m_{Y} \leqslant z$, contradicting the maximality of m_{Y} in Y.
- Otherwise, (if it is not true that $m_{Y} \leqslant x$), m_{Y} is a maximal element of X. Why? Suppose there exists $z \in X$ such that $z \neq m_{Y}$ and $m_{Y} \leqslant z$. Since $m_{Y} \leqslant x$ is not true, we have $z \neq x$, so $z \in Y$, contradicting the maximality of m_{Y} in Y.

In either case we found a maximal element for X.

An alternative approach is to proceed by contradiction: suppose (X, \leqslant) is a nonempty finite poset that does not have a maximal element. Use this to construct an unbounded chain of elements of X, contradicting finiteness.

Zorn's Lemma (Lemma 1.3) is used to deduce the existence of maximal elements in infnite posets.

Exercise 1.8. Prove Theorem 1.2: any vector space V has a basis.
[Hint: Let X be the set of all linearly independent subsets of V, partially ordered by inclusion. Prove that X has a maximal element B, and prove that this must also span V.]

Solution. If $V=\{0\}$, then \varnothing is vacuously a (in fact, the only) basis of V.
Suppose $V \neq\{0\}$. If $v \in V \backslash\{0\}$, then $\{v\}$ is a linearly independent subset of V. Let X be the set of all linearly independent subsets of V, then X is nonempty. We consider the partial order \subseteq on X given by inclusion of subsets.

Let C be a nonempty chain in X and define

$$
U=\bigcup_{S \in C} S,
$$

then clearly $S \subseteq U$ for all $S \in C$, so we'll know that U is an upper bound for C as soon as we can show that it is linearly independent (so that $U \in X$).

Suppose there exist $n \in \mathbf{N}, a_{1}, \ldots, a_{n} \in \mathbf{F}$, and $u_{1}, \ldots, u_{n} \in U$ such that

$$
\begin{equation*}
a_{1} u_{1}+\cdots+a_{n} u_{n}=0 . \tag{1.1}
\end{equation*}
$$

Let $J=\{1, \ldots, n\}$. For each $j \in J$, there exists $S_{j} \in C$ such that $u_{j} \in S_{j}$. As C is totally ordered, there exists $i \in J$ such that $S_{j} \subseteq S_{i}$ for all $j \in J$. But this means that $u_{1}, \ldots, u_{n} \in S_{i}$, so that the linear relation of Equation (1.1) takes place in the linearly independent set S_{i}. Therefore $a_{1}=\cdots=a_{n}=0$.

We conclude that X satisfies the conditions of Zorn's Lemma, hence it has a maximal element B. I claim that B spans V, so that it is a basis of V.

We prove this last claim by contradiction: if $v \in V \backslash \operatorname{Span}(B)$, then $B^{\prime}:=B \cup\{v\}$ is linearly independent, hence an element of X. But $B \subseteq B^{\prime}$ and $B \neq B^{\prime}$, contradicting the maximality of B.

2 Metric and topological spaces

Exercise 2.1. Let (X, d) be a metric space. Show that

$$
|d(x, y)-d(t, y)| \leqslant d(x, t)
$$

for all $x, y, t \in X$.
Solution. We need to show that

$$
-d(x, t) \leqslant d(x, y)-d(t, y) \leqslant d(x, t) .
$$

One application of the triangle inequality gives

$$
d(x, y) \leqslant d(x, t)+d(t, y) \quad \Rightarrow \quad d(x, y)-d(t, y) \leqslant d(x, t) .
$$

Another application gives

$$
d(t, y) \leqslant d(t, x)+d(x, y) \quad \Rightarrow \quad-d(x, t) \leqslant d(x, y)-d(t, y) .
$$

Exercise 2.2. Let (X, d) be a metric space. Show that

$$
|d(x, y)-d(s, t)| \leqslant d(x, s)+d(y, t)
$$

for all $x, s, y, t \in X$.
Solution. We have

$$
\begin{aligned}
|d(x, y)-d(s, t)| & =|d(x, y)-d(y, s)+d(y, s)-d(s, t)| \\
& \leqslant|d(x, y)-d(y, s)|+|d(y, s)-d(s, t)| \\
& \leqslant d(x, s)+d(y, t)
\end{aligned}
$$

after one application of the triangle inequality and two applications of Exercise 2.1.

Exercise 2.3. Fix a prime p and consider the metric space (\mathbf{Q}, d_{p}) where d_{p} is the p-adic metric from Example 2.1.
(a) Let $p=3$ and write down 4 elements of $\mathbf{B}_{1}(2)$ and 4 elements of $\mathbf{B}_{1 / 9}(3)$.
(b) Back to general prime p now: show that every triangle is isosceles. In other words, given three points in \mathbf{Q}, at least two of the three resulting (p-adic) distances are equal.
(c) Show that every point of an open ball is a centre. In other words, take an open ball $\mathbf{B}_{r}(c)$ with $r \in \mathbf{R}_{\geqslant 0}$ and $c \in \mathbf{Q}$ and suppose $x \in \mathbf{B}_{r}(c)$; prove that $\mathbf{B}_{r}(c)=\mathbf{B}_{r}(x)$.
(d) Show that given any two open balls, either one of them is contained in the other, or they are completely disjoint.

Solution. (a) We have

$$
\begin{aligned}
\left\{2,5,-7, \frac{4}{5}\right\} & \subseteq \mathbf{B}_{1}(2) \\
\left\{3,30,-24, \frac{39}{4}\right\} & \subseteq \mathbf{B}_{1 / 9}(3) .
\end{aligned}
$$

(b) Recall that in the proof of the triangle inequality for the p-adic metric in Example 2.1, the following stronger result was shown:

$$
d_{p}(x, y) \leqslant \max \left\{d_{p}(x, t), d_{p}(t, y)\right\} .
$$

with equality holding if $d_{p}(x, t) \neq d_{p}(t, y)$. But this precisely says that if $d_{p}(x, t) \neq$ $d_{p}(t, y)$, then $d_{p}(x, y)$ has to be equal to the largest of $d_{p}(x, t)$ and $d_{p}(t, y)$.
(c) First $x \in \mathbf{B}_{r}(c)$ iff $c \in \mathbf{B}_{r}(x)$ (this is true for any metric space). So it suffices to show that $x \in \mathbf{B}_{r}(c)$ implies $\mathbf{B}_{r}(x) \subseteq \mathbf{B}_{r}(c)$. Let $y \in \mathbf{B}_{r}(x)$, then $d_{p}(y, x)<r$, so that

$$
d_{p}(y, c) \leqslant \max \left\{d_{p}(y, x), d_{p}(x, c)\right\}<r,
$$

in other words $y \in \mathbf{B}_{r}(c)$.
(d) Consider two open balls $\mathbf{B}_{r}(x)$ and $\mathbf{B}_{t}(y)$. Without loss of generality $r \leqslant t$. Suppose that the balls are not disjoint and let $z \in \mathbf{B}_{r}(x) \cap \mathbf{B}_{t}(y)$. By part (c) this implies that $\mathbf{B}_{r}(z)=\mathbf{B}_{r}(x)$ and $\mathbf{B}_{t}(z)=\mathbf{B}_{t}(y)$, so that

$$
\mathbf{B}_{r}(x)=\mathbf{B}_{r}(z) \subseteq \mathbf{B}_{t}(z)=\mathbf{B}_{t}(y) .
$$

Exercise 2.4. Let $n \in \mathbf{N}, X=\mathbf{R}^{n}$ with the dot product $\cdot,\|x\|=\sqrt{x \cdot x}$ for $x \in X$, and $d(x, y)=\|x-y\|$ for $x, y \in X$. Then (X, d) is a metric space. (The function d is called the Euclidean metric or ℓ^{2} metric on \mathbf{R}^{n}.)
[Hint: The Cauchy-Schwarz inequality can be useful for checking the triangle inequality.] Solution. We have
(a) $d(x, y)=\|x-y\|=\sqrt{(x-y) \cdot(x-y)}=\sqrt{(-1)^{2}(y-x) \cdot(y-x)}=\|y-x\|=d(y, x) ;$
(b) Let $u=x-t$ and $v=t-y$, then we are looking to show that $\|u+v\| \leqslant\|u\|+\|v\|$. But:

$$
\begin{aligned}
\|u+v\|^{2} & =(u+v) \cdot(u+v)=\|u\|^{2}+2 u \cdot v+\|v\|^{2} \leqslant\|u\|^{2}+2|u \cdot v|+\|v\|^{2} \\
& \leqslant\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}=(\|u\|+\|v\|)^{2}
\end{aligned}
$$

where the last inequality sign comes from the Cauchy-Schwarz inequality.
(c) $d(x, y)=0$ iff $(x-y) \cdot(x-y)=0$ iff $x-y=0$ iff $x=y$.

Exercise 2.5. Draw the unit open balls in the metric spaces (\mathbf{R}^{2}, d_{1}) (Example 2.4), $\left(\mathbf{R}^{2}, d_{2}\right)$ (Exercise 2.4), and ($\left.\mathbf{R}^{2}, d_{\infty}\right)$ (Example 2.5).

Solution. The Manhattan unit open ball is the interior of the square with vertices $(1,0)$, $(0,-1),(-1,0)$, and $(0,1)$.

The Euclidean unit open ball is the interior of the unit circle centred at $(0,0)$.
The sup metric unit open ball is the interior of the square with vertices $(1,1),(1,-1)$, $(-1,-1)$, and $(-1,1)$.

Exercise 2.6. Let X be a nonempty set and define

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { otherwise }\end{cases}
$$

Prove that (X, d) is a metric space. (The function d is called the discrete metric on X.) Solution. It is clear from the definition that $d(y, x)=d(x, y)$ and that $d(x, y)=0$ iff $x=y$.

For the triangle inequality, take $x, y, t \in X$ and consider the different cases:

$x=y$	$x=t$	$t=y$	$d(x, y)$	$d(x, t)+d(t, y)$
True	True	True	0	$0+0=0$
True	False	False	0	$1+1=2$
False	True	False	1	$1+0=1$
False	False	True	1	$0+1=1$
False	False	False	1	$1+1=2$

In all cases we see that $d(x, y) \leqslant d(x, t)+d(t, y)$.

Exercise 2.7. Let $n \in \mathbf{N}, X=\mathbf{F}_{2}^{n}$, and let $d(x, y)$ be the number of indices $i \in\{1, \ldots, n\}$ such that $x_{i} \neq y_{i}$. Prove that (X, d) is a metric space. (The function d is called the Hamming metric.)

Solution. Do this from scratch if you want to, but I prefer to deduce it from other examples we have seen.

First look at the case $n=1, X=\mathbf{F}_{2}$. Then $d(x, y)$ is precisely the discrete metric on \mathbf{F}_{2} (see Exercise 2.6), in particular it is a metric. I'll denote it $d_{\mathbf{F}_{2}}$ for a moment to minimise confusion.

Back in the arbitrary $n \in \mathbf{N}$ case, note that $d(x, y)$ defined above can be expressed as

$$
d(x, y)=d_{\mathbf{F}_{2}}\left(x_{1}, y_{1}\right)+\cdots+d_{\mathbf{F}_{2}}\left(x_{n}, y_{n}\right),
$$

which is a special case of Example 2.4, therefore also a metric.

Exercise 2.8. Let (X, d) be a metric space and let $A \subseteq X$.
(a) Prove that the set A is open if and only if it is the union of a collection of open balls.
(b) Conclude that the set of all open balls in X generates the metric topology of X.

Solution. (a) In one direction, if A is a union of a collection of open balls, then A is open by Example 2.10 and Proposition 2.11.

In the other direction, suppose A is open. Let $a \in A$, then there exists an open ball $\mathbf{B}_{r(a)}(a) \subseteq A$. Then

$$
A=\bigcup_{a \in A} \mathbf{B}_{r(a)}(a) .
$$

(b) Follows immediately from the definition of the topology generated by a set.

Exercise 2.9. Let Y be a subset of a metric space (X, d) and consider the induced metric on Y.
(a) Prove that for any $y \in Y$ and any $r \in \mathbf{R}_{\geqslant 0}$ we have

$$
\mathbf{B}_{r}^{Y}(y)=\mathbf{B}_{r}^{X}(y) \cap Y
$$

where $\mathbf{B}_{r}^{X}(y)$ is the open ball of radius r centred at y in X, and $\mathbf{B}_{r}^{Y}(y)$ is the open ball of radius r centred at y in Y.
(b) Let $A \subseteq Y$. Prove that A is an open set in Y if and only if there exists an open set U in X such that $A=U \cap Y$.

Solution. (a) We have

$$
\begin{aligned}
& \mathbf{B}_{r}^{X}(y)=\{x \in X: d(x, y)<r\} \\
& \mathbf{B}_{r}^{Y}(y)=\{x \in Y: d(x, y)<r\},
\end{aligned}
$$

so that

$$
\mathbf{B}_{r}^{X}(y) \cap Y=\{x \in X: d(x, y)<r\} \cap Y=\{x \in Y: d(x, y)<r\}=\mathbf{B}_{r}^{Y}(y) .
$$

(b) In one direction, suppose A is open in Y; by Exercise 2.8 we have some indexing set I such that

$$
A=\bigcup_{i \in I} \mathbf{B}_{r_{i}}^{Y}\left(a_{i}\right)
$$

with $r_{i}>0$ and $a_{i} \in A$ for all $i \in I$. We can then let

$$
U=\bigcup_{i \in I} \mathbf{B}_{r_{i}}^{X}\left(a_{i}\right)
$$

which by Exercise 2.8 is an open in X. It is clear that $A=U \cap Y$ by part (a).
Conversely, suppose $A=U \cap Y$ with U open in X. Let $a \in A$, then $a \in U$ so there exists an open (in X) ball $\mathbf{B}_{r}^{X}(a)$ such that $\mathbf{B}_{r}^{X}(a) \subseteq U$. Consider $\mathbf{B}_{r}^{Y}(a)=$ $\mathbf{B}_{r}^{X}(a) \cap Y \subseteq U \cap Y=A$. So every point $a \in A$ is contained in an open (in Y) ball, hence A is open in Y.

Exercise 2.10. Prove that any closed ball is a closed set.
Solution. This is a variation on Example 2.10 and a generalisation of Example 2.9 (which is the case $r=0$).

Consider $C=\mathbf{D}_{r}(x)$ with $x \in X, r \in \mathbf{R}_{\geqslant 0}$. Let $y \in X \backslash C$, then $d(x, y)>r$. Set $t=d(x, y)-r$ and consider the open ball $\mathbf{B}_{t}(y)$.

I claim that $\mathbf{B}_{t}(y) \subseteq(X \backslash C)$: if $w \in \mathbf{B}_{t}(y)$ then $d(w, y)<t$ so

$$
d(x, y) \leqslant d(x, w)+d(w, y) \leqslant d(x, w)+t \quad \Rightarrow \quad d(x, w) \geqslant d(x, y)-t=r
$$

hence $w \notin C$.

Exercise 2.11. Show that any p-adic open ball in \mathbf{Q} is both an open set and a closed set.

Solution. Any open ball in any metric space is an open set (Example 2.10). Let's show that an arbitrary p-adic open ball $\mathbf{B}_{r}(c)$ is closed.

Let $U=\mathbf{Q} \backslash \mathbf{B}_{r}(c)$. Given $u \in U$, we have $|u-c|_{p} \geqslant r$.
I claim that $\mathbf{B}_{r}(u) \subseteq U$, which would imply that U is open, so that $\mathbf{B}_{r}(c)$ is closed.
Suppose, on the contrary, that there exists $t \in \mathbf{B}_{r}(u) \cap \mathbf{B}_{r}(c)$. Then $|u-t|_{p}<r$ and $|t-c|_{p}<r$, so that

$$
|u-c|_{p}=|(u-t)+(t-c)|_{p} \leqslant \max \left\{|u-t|_{p},|t-c|_{p}\right\}<r,
$$

contradicting the fact that $|u-c|_{p} \geqslant r$.

Exercise 2.12. Let (X, d) be a metric space and define

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

Prove that $\left(X, d^{\prime}\right)$ is a metric space.
[Hint: Before tackling the triangle inequality, show that if $a, b, c \in \mathbf{R}_{\geqslant 0}$ satisfy $c \leqslant a+b$, then $\frac{c}{1+c} \leqslant \frac{a}{1+a}+\frac{b}{1+b}$.]

Solution. It is clear from the definition that $d^{\prime}(x, y)=d^{\prime}(y, x)$ and that $d^{\prime}(x, y)=0$ iff $d(x, y)=0$ iff $x=y$.

For the triangle inequality, apply the inequality in the hint with $c=d(x, y), a=d(x, t)$, $b=d(t, y)$.

Exercise 2.13.

(a) Let $f: X \longrightarrow Y$ be a function between two sets X and Y, and let $S \subseteq Y$. Prove that

$$
f^{-1}(S)=X \backslash f^{-1}(Y \backslash S)
$$

(b) Let $f: X \longrightarrow Y$ be a function between topological spaces. Prove that f is continuous if and only if: for any closed subset $C \subseteq Y$, the inverse image $f^{-1}(C) \subseteq X$ is a closed subset.

Solution.

(a) We have $x \in f^{-1}(S)$ iff $f(x) \in S$ iff $f(x) \notin(Y \backslash S)$ iff $x \notin f^{-1}(Y \backslash S)$.
(b) Suppose f is continuous and $C \subseteq Y$ is closed. By part (a) we have

$$
f^{-1}(C)=X \backslash f^{-1}(Y \backslash C)
$$

Then $(Y \backslash C) \subseteq Y$ is open and f is continuous, so $f^{-1}(Y \backslash C) \subseteq X$ is open, therefore $f^{-1}(C)$ is closed.
Conversely, suppose the inverse image of any closed subset is closed. Let $V \subseteq Y$ be open, then by part (a) we have

$$
f^{-1}(V)=X \backslash f^{-1}(Y \backslash V)
$$

So $(Y \backslash V) \subseteq Y$ is closed, so $f^{-1}(Y \backslash V) \subseteq X$ is closed, hence $f^{-1}(V)$ is open. We conclude that f is continuous.

Exercise 2.14. This is a variation on Tutorial Question 2.7.
Let $f: X \longrightarrow Y$ be a function and \mathcal{T}_{X} a topology on X. Define

$$
\mathcal{T}_{Y}=\left\{U \in \mathcal{P}(Y): f^{-1}(U) \in \mathcal{T}_{X}\right\}
$$

(a) Prove that \mathcal{T}_{Y} is the finest topology on Y such that f is continuous. (This topology is called the final topology induced by f.)
(b) Let \mathcal{T} be another topology on Y. Prove that $f:\left(X, \mathcal{T}_{X}\right) \longrightarrow(Y, \mathcal{T})$ is continuous if and only if \mathcal{T} is coarser than \mathcal{T}_{Y}.
(c) Use an example to prove that \mathcal{T}_{Y} need not be metrisable even when \mathcal{T}_{X} is a metric topology.
(d) Give an example in which \mathcal{T}_{Y} is metrisable but \mathcal{T}_{X} is not.
[Hint: For (c) and (d), consider using Tutorial Question 2.3.]

Solution.

(a) We start with proving that \mathcal{T}_{Y} is a topology:

- Since $\varnothing=f^{-1}(\varnothing)$ and $X=f^{-1}(Y)$, it follows that \mathcal{T}_{Y} contains \varnothing and Y.
- If $\left\{U_{i}: i \in I\right\}$ is a collection of members of \mathcal{T}_{Y}, then

$$
\bigcup_{i \in I} f^{-1}\left(U_{i}\right)=f^{-1}\left(\bigcup_{i \in I} U_{i}\right) \in \mathcal{T}_{X} .
$$

- If U_{1}, \ldots, U_{n} are members of \mathcal{T}_{Y}, then

$$
\bigcap_{i=1}^{n} f^{-1}\left(U_{i}\right)=f^{-1}\left(\bigcap_{i=1}^{n} U_{i}\right) \in \mathcal{T}_{X} .
$$

If \mathcal{T} is a topology on Y such that f is continuous, then $f^{-1}(U) \in \mathcal{T}_{X}$ for every member U of \mathcal{T}, so $\mathcal{T} \subseteq \mathcal{T}_{Y}$. Therefore, \mathcal{T}_{Y} is the finest topology such that f is continuous.
(b) The 'only if' part has been proven in part (a), so it suffices to prove the 'if' part.

Suppose \mathcal{T} is coarser than \mathcal{T}_{Y}. If U is a member of \mathcal{T}, then $U \in \mathcal{T}_{Y}$, which implies that $f^{-1}(U)$ is open in X. It follows that f is continuous when the topology on Y is \mathcal{T}.
(c) Let $\left(X, \mathcal{T}_{X}\right)$ be the set of real numbers equipped with the Euclidean topology. Put $Y=\{0,1\}$. If $f: X \longrightarrow Y$ is defined by

$$
f(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

then $\mathcal{T}_{Y}=\{\varnothing,\{1\},\{0,1\}\}$. The topology \mathcal{T}_{X} is defined by the Euclidean metric, but \mathcal{T}_{Y} is not metrisable (see Tutorial Question 2.3).
(d) Put $X=\{0,1\}, Y=\{1\}, \mathcal{T}_{X}=\{\varnothing,\{1\},\{0,1\}\}$. Let $f: X \longrightarrow Y$ be the function sending both 0 and 1 to 1 . It follows that $\mathcal{T}_{Y}=\{\varnothing,\{0,1\}\}$. The topology \mathcal{T}_{Y} is defined by the discrete metric (see Tutorial Question 2.1), but \mathcal{T}_{X} is not metrisable (see Tutorial Question 2.3).

Bibliography

Index

algebraic, 6
chain, 7
maximal element, 7
metric
$\ell^{2}, 10$
discrete, 11
Euclidean, 10
Hamming, 11
poset, 7
set
partially ordered, 7
totally ordered, 7
total order, 7
transcendental, 6
upper bound, 7

