Tutorial Week 12

Topics: Convergence in the norm, maps of finite rank, spectrum

1. For $n \in \mathbb{N}$, consider the function $f_n \colon [0,2] \longrightarrow \mathbb{R}$ defined by

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x \le \frac{1}{n} \\ -n^2 \left(x - \frac{2}{n} \right) & \text{if } \frac{1}{n} < x \le \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} < x \le 2 \end{cases}$$

(You might want to graph f_1, f_2, f_3 to get a feel for what the functions look like.) Find the pointwise limit f(x) of $(f_n(x))$ for all $x \in [0, 2]$.

Show that (f_n) does not converge to f with respect to the L^1 norm.

Solution. The pointwise limit is the constant function zero.

We have $||f_n||_{L^1} = 1$ for all $n \in \mathbb{N}$, so (f_n) does not converge to f with respect to the L^1 norm.

2. Given a subset $S \subseteq [0,1]$, let $\mathbf{1}_S \colon [0,1] \longrightarrow \mathbb{R}$ denote the *characteristic function* of S, that is

$$\mathbf{1}_{S}(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$$

Consider the sequence of functions (g_n) defined as follows: write $n \in \mathbb{N}$ in the form

 $n = 2^k + \ell, \qquad k, \ell \in \mathbb{Z}_{\geq 0}, 0 \leq \ell < 2^k,$

then define $g_n \colon [0,1] \longrightarrow \mathbb{R}$ by

$$g_n = \mathbf{1}_{[\ell/2^k, (\ell+1)/2^k]}.$$

(You might want to graph g_1, \ldots, g_5 to get a feel for what the functions look like.) Show that (g_n) converges to the constant function zero with respect to the L^1 norm, but that $(g_n(x))$ does not converge for any $x \in [0, 1]$.

Solution. Note that $2^k \leq n < 2^{k+1}$, so that we have

$$\|g_n\|_{L^1} = \frac{1}{2^k} < \frac{2}{n} \longrightarrow 0 \qquad \text{as } n \longrightarrow \infty,$$

so $(g_n) \longrightarrow 0$ with respect to the L^1 norm.

However, for any $x \in [0,1]$ there are infinitely many values of n for which $g_n(x) = 0$ and infinitely many values of n for which $g_n(x) = 1$, which means that $(g_n(x))$ does not converge.

3. Let R(H) denote the set of all maps $f \in B(H)$ of finite rank on a complex Hilbert space H.

Prove that R(H) is a vector subspace of B(H).

Solution. The constant zero map is certainly of finite rank.

If $f, g \in R(H)$ then $\operatorname{im}(f)$ and $\operatorname{im}(g)$ are finite-dimensional subspaces of H. Therefore $\operatorname{im}(f) + \operatorname{im}(g)$ is a finite-dimensional subspace of H, and certainly $\operatorname{im}(f+g) \subseteq \operatorname{im}(f) + \operatorname{im}(g)$. If $f \in R(H)$ and $\alpha \in \mathbb{C}$ then $\operatorname{im}(\alpha f) \subseteq \operatorname{im}(f)$ is finite-dimensional. \Box 4. Prove that if $f \in R(H)$ and $g_1, g_2 \in B(H)$ then $g_2 \circ f \circ g_1 \in R(H)$.

Solution. Clearly $\operatorname{im}(f \circ g_1) \subseteq \operatorname{im}(f)$ is finite-dimensional. On the other hand, $g_2 \circ f$ has a finite-dimensional domain, hence a finite-dimensional image.

5. Prove that if $f \in R(H)$ then $f^* \in R(H)$. [*Hint*: Use Proposition 4.35.]

Solution. By Proposition 4.35 we have, for all $x, y \in H$:

$$\langle f(x), y \rangle = \left\langle \sum_{i,j=1}^{m} c_{ij} \langle x, u_j \rangle u_i, y \right\rangle$$

$$= \sum_{i,j=1}^{m} c_{ij} \langle x, u_j \rangle \langle u_i, y \rangle$$

$$= \sum_{i,j=1}^{m} \langle x, \overline{c}_{ij} \langle y, u_i \rangle u_j \rangle$$

$$= \left\langle x, \sum_{i,j=1}^{m} \overline{c}_{ij} \langle y, u_i \rangle u_j \right\rangle,$$

from which we conclude that

$$f^*(y) = \sum_{i,j=1}^m \overline{c}_{ij} \langle y, u_i \rangle u_j$$
 for all $y \in H$,

so f^* has finite rank.

6. Recall the right shift operator $R: \ell^2 \longrightarrow \ell^2$

$$R(a_1, a_2, \dots) = (0, a_1, a_2, \dots).$$

- (a) Prove that R has no complex eigenvalues.
- (b) Prove that $0 \in \sigma(R)$.
- (c) Is R a compact map?

Solution. (a) Suppose

$$(0, a_1, a_2, \dots) = R(a_1, a_2, \dots) = \lambda(a_1, a_2, \dots),$$

then $\lambda a_1 = 0$, so either $\lambda = 0$ implying that $a_1 = a_2 = \cdots = 0$; or $a_1 = 0$ which implies that $a_2 = 0$, and so on. In both cases the alleged eigenvector is actually the zero vector.

- (b) It is clear that R is not surjective, hence not invertible, so $0 \in \sigma(R)$.
- (c) No, for the same reason that id_{ℓ^2} is not compact: $R(\mathbb{D}_1(0))$ contains $\{e_2, e_3, e_4, \ldots\}$, hence a sequence that has no convergent subsequences.

7. Let H be a complex Hilbert space and let

$$GL(H) = \{ f \in B(H) \colon f \text{ is invertible} \}.$$

For $f \in GL(H)$, prove that

$$\mathbb{B}_r(f) \subseteq \mathrm{GL}(H) \qquad \text{where } r = \left\| f^{-1} \right\|^{-1}.$$

[*Hint*: Given $g \in \mathbb{B}_r(f)$, consider $i \coloneqq -f^{-1} \circ (g - f)$ and use Proposition 4.40 to show that $\mathrm{id}_H - i$ is invertible.]

Conclude that GL(H) is an open subset of B(H).

Solution. Take $g \in \mathbb{B}_r(f)$, then ||g - f|| < r. Let $i = -f^{-1} \circ (g - f)$, then

$$||i|| = ||f^{-1} \circ (g - f)|| \le ||f^{-1}|| ||g - f|| < ||f^{-1}||r = 1,$$

so by Proposition 4.40 we get that $id_H - i$ is invertible. But then

$$f \circ (\operatorname{id}_H - i) = f \circ (\operatorname{id}_H + f^{-1} \circ (g - f)) = f + g - f = g,$$

so g is the composition of two invertible maps, hence is itself invertible.

8. Prove that the spectrum of any $f \in B(H)$ is a compact set.

[*Hint*: Use Question 7 to show that the resolvent $\rho(f)$ is an open subset of \mathbb{C} , then use Corollary 4.41.]

Solution. Consider the map $F_f \colon \mathbb{C} \longrightarrow B(H)$ given by

$$F_f(\lambda) = f - \lambda \operatorname{id}_H .$$

This is a continuous function (check this!), and $\rho(f) = F_f^{-1}(\operatorname{GL}(H))$ is an open subset of \mathbb{C} , hence $\sigma(f)$ is a closed subset of \mathbb{C} . But by Corollary 4.41 $\sigma(f)$ is a subset of the compact disc (sic) $\mathbb{D}_{\|f\|}(0)$, so it is compact.

9. Let V, W be normed spaces, with V Banach, and let $f \in B(V, W)$. Suppose that there exists a constant c > 0 such that

$$||f(v)||_W \ge c ||v||_V \quad \text{for all } v \in V.$$

Then im(f) is a closed subspace of W.

Solution. Let $w \in W$ and let (v_n) be a sequence in V such that $(f(v_n)) \longrightarrow w$ in W. We need to prove that $w \in im(f)$.

For all $n, m \in \mathbb{N}$ we have

$$||f(v_n) - f(v_m)||_W = ||f(v_n - v_m)||_W \ge c ||v_n - v_m||_V.$$

But the sequence $(f(v_n))$ converges, hence is Cauchy in W. Therefore the above inequality says that the sequence (v_n) is Cauchy in V. As V is Banach, we have $(v_n) \rightarrow v \in V$. Since f is continuous, we have $w = \lim f(v_n) = f(v)$ and $w \in \operatorname{im}(f)$.

10. Let $f \in B(H)$ be a self-adjoint map on a complex Hilbert space H and let $a + ib \in \mathbb{C}$. Prove that

$$\left\| \left(f - (a + ib) \operatorname{id}_H \right)(x) \right\| \ge |b| \, \|x\| \quad \text{for all } x \in H.$$

[*Hint*: Expand $||(f - (a + ib) id_H)(x)||^2$ using the inner product, take advantage of $f^* = f$, and manipulate until you get a sum of two squares, one of which is $b^2 ||x||^2$.]

Solution. We follow the hint:

$$\begin{split} \left\| \left(f - (a + ib) \operatorname{id}_{H} \right) \right\|^{2} &= \left\langle \left(f - (a + ib) \operatorname{id}_{H} \right) (x), \left(f - (a + ib) \operatorname{id}_{H} \right) (x) \right\rangle \\ &= \left\langle \left(f - (a + ib) \operatorname{id}_{H} \right) (x), \left(f - (a - ib) \operatorname{id}_{H} \right)^{*} (x) \right\rangle \\ &= \left\langle \left((f - (a - ib) \operatorname{id}_{H} \right) \left(f - (a + ib) \operatorname{id}_{H} \right) (x), x \right\rangle \\ &= \left\langle \left((f - a \operatorname{id}_{H})^{2} + b^{2} \operatorname{id}_{H} \right) (x), x \right\rangle \\ &= \left\langle \left((f - a \operatorname{id}_{H})^{2} (x), x \right\rangle + b^{2} \|x\|^{2} \\ &= \left\| (f - a \operatorname{id}_{H})^{2} (x) \right\|^{2} + b^{2} \|x\|^{2} \\ &\ge b^{2} \|x\|^{2}. \end{split}$$