Tutorial Week 12

Topics: Convergence in the norm, maps of finite rank, spectrum

1. For $n \in \mathbb{N}$, consider the function $f_{n}:[0,2] \longrightarrow \mathbb{R}$ defined by

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leqslant x \leqslant \frac{1}{n} \\ -n^{2}\left(x-\frac{2}{n}\right) & \text { if } \frac{1}{n}<x \leqslant \frac{2}{n} \\ 0 & \text { if } \frac{2}{n}<x \leqslant 2\end{cases}
$$

(You might want to graph f_{1}, f_{2}, f_{3} to get a feel for what the functions look like.)
Find the pointwise limit $f(x)$ of $\left(f_{n}(x)\right)$ for all $x \in[0,2]$.
Show that $\left(f_{n}\right)$ does not converge to f with respect to the L^{1} norm.
Solution. The pointwise limit is the constant function zero.
We have $\left\|f_{n}\right\|_{L^{1}}=1$ for all $n \in \mathbb{N}$, so $\left(f_{n}\right)$ does not converge to f with respect to the L^{1} norm.
2. Given a subset $S \subseteq[0,1]$, let $\mathbf{1}_{S}:[0,1] \longrightarrow \mathbb{R}$ denote the characteristic function of S, that is

$$
\mathbf{1}_{S}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}
$$

Consider the sequence of functions $\left(g_{n}\right)$ defined as follows: write $n \in \mathbb{N}$ in the form

$$
n=2^{k}+\ell, \quad k, \ell \in \mathbb{Z}_{\geqslant 0}, 0 \leqslant \ell<2^{k}
$$

then define $g_{n}:[0,1] \longrightarrow \mathbb{R}$ by

$$
g_{n}=\mathbf{1}_{\left[\ell / 2^{k},(\ell+1) / 2^{k}\right]} .
$$

(You might want to graph g_{1}, \ldots, g_{5} to get a feel for what the functions look like.)
Show that $\left(g_{n}\right)$ converges to the constant function zero with respect to the L^{1} norm, but that $\left(g_{n}(x)\right)$ does not converge for any $x \in[0,1]$.

Solution. Note that $2^{k} \leqslant n<2^{k+1}$, so that we have

$$
\left\|g_{n}\right\|_{L^{1}}=\frac{1}{2^{k}}<\frac{2}{n} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so $\left(g_{n}\right) \longrightarrow 0$ with respect to the L^{1} norm.
However, for any $x \in[0,1]$ there are infinitely many values of n for which $g_{n}(x)=0$ and infinitely many values of n for which $g_{n}(x)=1$, which means that $\left(g_{n}(x)\right)$ does not converge.
3. Let $R(H)$ denote the set of all maps $f \in B(H)$ of finite rank on a complex Hilbert space H.

Prove that $R(H)$ is a vector subspace of $B(H)$.
Solution. The constant zero map is certainly of finite rank.
If $f, g \in R(H)$ then $\operatorname{im}(f)$ and $\operatorname{im}(g)$ are finite-dimensional subspaces of H. Therefore $\operatorname{im}(f)+\operatorname{im}(g)$ is a finite-dimensional subspace of H, and certainly $\operatorname{im}(f+g) \subseteq \operatorname{im}(f)+\operatorname{im}(g)$. If $f \in R(H)$ and $\alpha \in \mathbb{C}$ then $\operatorname{im}(\alpha f) \subseteq \operatorname{im}(f)$ is finite-dimensional.
4. Prove that if $f \in R(H)$ and $g_{1}, g_{2} \in B(H)$ then $g_{2} \circ f \circ g_{1} \in R(H)$.

Solution. Clearly $\operatorname{im}\left(f \circ g_{1}\right) \subseteq \operatorname{im}(f)$ is finite-dimensional.
On the other hand, $g_{2} \circ f$ has a finite-dimensional domain, hence a finite-dimensional image.
5. Prove that if $f \in R(H)$ then $f^{*} \in R(H)$.
[Hint: Use Proposition 4.35.]
Solution. By Proposition 4.35 we have, for all $x, y \in H$:

$$
\begin{aligned}
\langle f(x), y\rangle & =\left\langle\sum_{i, j=1}^{m} c_{i j}\left\langle x, u_{j}\right\rangle u_{i}, y\right\rangle \\
& =\sum_{i, j=1}^{m} c_{i j}\left\langle x, u_{j}\right\rangle\left\langle u_{i}, y\right\rangle \\
& =\sum_{i, j=1}^{m}\left\langle x, \bar{c}_{i j}\left\langle y, u_{i}\right\rangle u_{j}\right\rangle \\
& =\left\langle x, \sum_{i, j=1}^{m} \bar{c}_{i j}\left\langle y, u_{i}\right\rangle u_{j}\right\rangle,
\end{aligned}
$$

from which we conclude that

$$
f^{*}(y)=\sum_{i, j=1}^{m} \bar{c}_{i j}\left\langle y, u_{i}\right\rangle u_{j} \quad \text { for all } y \in H,
$$

so f^{*} has finite rank.
6. Recall the right shift operator $R: \ell^{2} \longrightarrow \ell^{2}$

$$
R\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

(a) Prove that R has no complex eigenvalues.
(b) Prove that $0 \in \sigma(R)$.
(c) Is R a compact map?

Solution. (a) Suppose

$$
\left(0, a_{1}, a_{2}, \ldots\right)=R\left(a_{1}, a_{2}, \ldots\right)=\lambda\left(a_{1}, a_{2}, \ldots\right),
$$

then $\lambda a_{1}=0$, so either $\lambda=0$ implying that $a_{1}=a_{2}=\cdots=0$; or $a_{1}=0$ which implies that $a_{2}=0$, and so on. In both cases the alleged eigenvector is actually the zero vector.
(b) It is clear that R is not surjective, hence not invertible, so $0 \in \sigma(R)$.
(c) No, for the same reason that $\mathrm{id}_{\ell^{2}}$ is not compact: $R\left(\mathbb{D}_{1}(0)\right)$ contains $\left\{e_{2}, e_{3}, e_{4}, \ldots\right\}$, hence a sequence that has no convergent subsequences.
7. Let H be a complex Hilbert space and let

$$
\operatorname{GL}(H)=\{f \in B(H): f \text { is invertible }\} .
$$

For $f \in \mathrm{GL}(H)$, prove that

$$
\mathbb{B}_{r}(f) \subseteq \mathrm{GL}(H) \quad \text { where } r=\left\|f^{-1}\right\|^{-1}
$$

[Hint: Given $g \in \mathbb{B}_{r}(f)$, consider $i:=-f^{-1} \circ(g-f)$ and use Proposition 4.40 to show that $\mathrm{id}_{H}-i$ is invertible.]
Conclude that GL (H) is an open subset of $B(H)$.
Solution. Take $g \in \mathbb{B}_{r}(f)$, then $\|g-f\|<r$. Let $i=-f^{-1} \circ(g-f)$, then

$$
\|i\|=\left\|f^{-1} \circ(g-f)\right\| \leqslant\left\|f^{-1}\right\|\|g-f\|<\left\|f^{-1}\right\| r=1,
$$

so by Proposition 4.40 we get that $\operatorname{id}_{H}-i$ is invertible. But then

$$
f \circ\left(\operatorname{id}_{H}-i\right)=f \circ\left(\operatorname{id}_{H}+f^{-1} \circ(g-f)\right)=f+g-f=g,
$$

so g is the composition of two invertible maps, hence is itself invertible.
8. Prove that the spectrum of any $f \in B(H)$ is a compact set.
[Hint: Use Question 7 to show that the resolvent $\rho(f)$ is an open subset of \mathbb{C}, then use Corollary 4.41.]

Solution. Consider the map $F_{f}: \mathbb{C} \longrightarrow B(H)$ given by

$$
F_{f}(\lambda)=f-\lambda \operatorname{id}_{H} .
$$

This is a continuous function (check this!), and $\rho(f)=F_{f}^{-1}(\mathrm{GL}(H))$ is an open subset of \mathbb{C}, hence $\sigma(f)$ is a closed subset of \mathbb{C}. But by Corollary $4.41 \sigma(f)$ is a subset of the compact disc (sic) $\mathbb{D}_{\|f\|}(0)$, so it is compact.
9. Let V, W be normed spaces, with V Banach, and let $f \in B(V, W)$. Suppose that there exists a constant $c>0$ such that

$$
\|f(v)\|_{W} \geqslant c\|v\|_{V} \quad \text { for all } v \in V
$$

Then $\operatorname{im}(f)$ is a closed subspace of W.
Solution. Let $w \in W$ and let $\left(v_{n}\right)$ be a sequence in V such that $\left(f\left(v_{n}\right)\right) \longrightarrow w$ in W. We need to prove that $w \in \operatorname{im}(f)$.
For all $n, m \in \mathbb{N}$ we have

$$
\left\|f\left(v_{n}\right)-f\left(v_{m}\right)\right\|_{W}=\left\|f\left(v_{n}-v_{m}\right)\right\|_{W} \geqslant c\left\|v_{n}-v_{m}\right\|_{V} .
$$

But the sequence $\left(f\left(v_{n}\right)\right)$ converges, hence is Cauchy in W. Therefore the above inequality says that the sequence $\left(v_{n}\right)$ is Cauchy in V. As V is Banach, we have $\left(v_{n}\right) \longrightarrow v \in V$. Since f is continuous, we have $w=\lim f\left(v_{n}\right)=f(v)$ and $w \in \operatorname{im}(f)$.
10. Let $f \in B(H)$ be a self-adjoint map on a complex Hilbert space H and let $a+i b \in \mathbb{C}$. Prove that

$$
\left\|\left(f-(a+i b) \operatorname{id}_{H}\right)(x)\right\| \geqslant|b|\|x\| \quad \text { for all } x \in H .
$$

[Hint: Expand $\left\|\left(f-(a+i b) \operatorname{id}_{H}\right)(x)\right\|^{2}$ using the inner product, take advantage of $f^{*}=f$, and manipulate until you get a sum of two squares, one of which is $b^{2}\|x\|^{2}$.]

Solution. We follow the hint:

$$
\begin{aligned}
\left\|\left(f-(a+i b) \operatorname{id}_{H}\right)\right\|^{2} & =\left\langle\left(f-(a+i b) \operatorname{id}_{H}\right)(x),\left(f-(a+i b) \operatorname{id}_{H}\right)(x)\right\rangle \\
& =\left\langle\left(f-(a+i b) \operatorname{id}_{H}\right)(x),\left(f-(a-i b) \operatorname{id}_{H}\right)^{*}(x)\right\rangle \\
& =\left\langle\left(f-(a-i b) \operatorname{id}_{H}\right)\left(f-(a+i b) \operatorname{id}_{H}\right)(x), x\right\rangle \\
& =\left\langle\left(\left(f-a \operatorname{id}_{H}\right)^{2}+b^{2} \operatorname{id}_{H}\right)(x), x\right\rangle \\
& =\left\langle\left(f-a \operatorname{id}_{H}\right)^{2}(x), x\right\rangle+b^{2}\|x\|^{2} \\
& =\left\|\left(f-a \operatorname{id}_{H}\right)^{2}(x)\right\|^{2}+b^{2}\|x\|^{2} \\
& \geqslant b^{2}\|x\|^{2} .
\end{aligned}
$$

