Tutorial Week 11

Topics: Self-adjoint maps, uniform norm, pointwise and uniform convergence.

1. Let $f \in B(H, H)$ with H a Hilbert space. Then the maps

$$
p=f^{*} \circ f \quad \text { and } \quad s=f+f^{*}
$$

are self-adjoint.
Solution. Since f is continuous, the adjoint f^{*} is continuous, so the composition $p=f^{*} \circ f$ and the sum $s=f+f^{*}$ are both continuous.
Then

$$
\begin{aligned}
p^{*} & =\left(f^{*} \circ f\right)^{*}=f^{*} \circ\left(f^{*}\right)^{*}=f^{*} \circ f=p \\
s^{*} & =\left(f+f^{*}\right)^{*}=f^{*}+\left(f^{*}\right)^{*}=f^{*}+f=f+f^{*}=s .
\end{aligned}
$$

2. The composition of two self-adjoint maps f, g on a Hilbert space is self-adjoint if and only if the maps commute.

Solution. We have

$$
\langle f(g(x)), y\rangle=\langle g(x), f(y)\rangle=\langle x, g(f(y))\rangle
$$

by the self-adjointness of f and g.
So $f \circ g$ is self-adjoint if and only if $g \circ f=f \circ g$, as claimed.
3. Let $f \in B(H, H)$ with H a Hilbert space. Suppose that f is invertible with continuous inverse. Then the adjoint f^{*} is invertible and

$$
\left(f^{*}\right)^{-1}=\left(f^{-1}\right)^{*} .
$$

Solution. We want to prove that

$$
\left(f^{-1}\right)^{*} \circ f^{*}=\operatorname{id}_{H}=f^{*} \circ\left(f^{-1}\right)^{*} .
$$

We have for all $x, y \in H$:

$$
\left\langle x,\left(f^{-1}\right)^{*}\left(f^{*}(y)\right)\right\rangle=\left\langle f^{-1}(x), f^{*}(y)\right\rangle=\left\langle f\left(f^{-1}(x)\right), y\right\rangle=\langle x, y\rangle
$$

implying that $\left(f^{-1}\right)^{*} \circ f^{*}=\operatorname{id}_{H}$, and similarly for the other composition.
4. Let B be an orthonormal system in a Hilbert space H. Prove that B is an orthonormal basis if and only if:

$$
\text { for every } x \in H \text {, if }\langle x, y\rangle=0 \text { for all } y \in B \text {, then } x=0 \text {. }
$$

Solution. By definition, B is an orthonormal basis if and only if $\overline{\operatorname{Span}(B)}=H$. So given $x \in H$ we have

$$
\begin{aligned}
\langle x, y\rangle=0 \quad \text { for all } y \in B & \Longleftrightarrow x \in B^{\perp} \\
& \Longleftrightarrow x \in \overline{\operatorname{Span}(B)}
\end{aligned}
$$

and

$$
x=0 \quad \Longleftrightarrow \quad x \in H^{\perp},
$$

hence the required statement.
5. For each $n \in \mathbb{N}$ define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{x^{2}}{1+n x} .
$$

Convince yourself that each f_{n} is continuous.
Find the pointwise limit f of the sequence $\left(f_{n}\right)$ and determine whether the sequence converges uniformly to f.

Solution. We know that x^{2} is continuous on $[0,1]$ and $1+n x$ is continuous and nonzero on $[0,1]$, so their quotient f_{n} is continuous on $[0,1]$.
At $x=0$ we have $f_{n}(0)=0$ so $f(0)=0$.
If $x \in(0,1]$ then

$$
\left|f_{n}(x)\right|=\frac{x^{2}}{1+n x} \leqslant \frac{1}{1+n x} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty,
$$

so $f(x)=0$ for all $x \in(0,1]$.
So the pointwise limit is the constant function 0 on $[0,1]$.
To check whether the convergence is uniform we look at

$$
\left\|f_{n}-f\right\|=\left\|f_{n}\right\|=\sup _{x \in[0,1]}\left|f_{n}(x)\right|=\sup _{x \in[0,1]} \frac{x^{2}}{1+n x} .
$$

As $[0,1]$ is compact, f_{n} attains its supremum as a global maximum on $[0,1]$. Since f_{n} is differentiable on $(0,1)$ we can use its derivative to look for local maxima:

$$
f_{n}^{\prime}(x)=\frac{x(n x+2)}{(1+n x)^{2}},
$$

and since $n x+2>0$ on $[0,1]$, the maximum must occur at one of the boundary points:

$$
f_{n}(0)=0 \quad \text { and } \quad f_{n}(1)=\frac{1}{1+n}
$$

so

$$
\left\|f_{n}\right\|=\frac{1}{1+n}
$$

This converges to 0 as $n \longrightarrow \infty$, so $\left(f_{n}\right) \longrightarrow f$ uniformly.
6. For each $n \in \mathbb{N}$ define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{1-x^{n}}{1+x^{n}}
$$

Convince yourself that each f_{n} is continuous.
Find the pointwise limit f of the sequence $\left(f_{n}\right)$ and determine whether the sequence converges uniformly to f.

Solution. Both $1-x^{n}$ and $1+x^{n}$ are continuous, and $1+x^{n}$ is nonzero on $[0,1]$, so their quotient f_{n} is continuous on $[0,1]$.
Note that at $x=1$ we have $f_{n}(1)=\frac{0}{2}=0$, so $f(1)=0$.

But if $x<1$ then $\left(x^{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$, so that

$$
f_{n}(x)=\frac{1-x^{n}}{1+x^{n}} \longrightarrow \frac{1}{1}=1
$$

and so $f(x)=1$. In summary:

$$
f(x)= \begin{cases}1 & \text { if } 0 \leqslant x<1 \\ 0 & \text { if } x=1\end{cases}
$$

As the f_{n} are all continuous, so if $\left(f_{n}\right) \longrightarrow f$ uniformly then f would be continuous. Since that is not the case, the convergence is not uniform.
7. Suppose that the Weierstraß Approximation Theorem holds for $K=[0,1]$.

Prove that the Theorem holds for any closed interval $[a, b]$ with $a<b$.
[Hint: Find a polynomial function of degree one $\varphi:[0,1] \longrightarrow[a, b]$ that is surjective and use it and its inverse to move between functions on $[0,1]$ and functions on $[a, b]$.]

Solution. Consider $\varphi:[0,1] \longrightarrow[a, b]$ given by

$$
\varphi(x)=(1-x) a+x b .
$$

It is clearly continuous and has inverse $\psi:[a, b] \longrightarrow[0,1]$ given by

$$
\psi(y)=\frac{y-a}{b-a},
$$

also clearly continuous.
Now if $f \in \operatorname{Cts}([a, b], \mathbb{R})$, then $f \circ \varphi \in \operatorname{Cts}([0,1], \mathbb{R})$, so there is a sequence of polynomials $\left(p_{n}\right)$ with $p_{n}:[0,1] \longrightarrow \mathbb{R}$ that converges to $f \circ \varphi$ in the uniform norm.
Let $q_{n}=p_{n} \circ \psi$; as the composition of two polynomials, it is a polynomial $q_{n}:[a, b] \longrightarrow \mathbb{R}$. We have

$$
\begin{aligned}
\left\|q_{n}-f\right\| & =\sup _{y \in[a, b]}\left|q_{n}(y)-f(y)\right| \\
& =\sup _{y \in[a, b]}\left|p_{n}(\psi(y))-f(y)\right| \\
& =\sup _{x \in[0,1]}\left|p_{n}(\psi(\varphi(x)))-f(\varphi(x))\right| \\
& =\sup _{x \in[0,1]}\left|p_{n}(x)-f(\varphi(x))\right| \\
& =\left\|p_{n}-f \circ \varphi\right\| \longrightarrow 0 \quad \text { as } n \longrightarrow \infty .
\end{aligned}
$$

8. (${ }^{*}$) Prove that for any $x \in \mathbb{R}$ and for any $n \in \mathbb{Z}_{\geqslant 0}$ we have
(a) $\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}=1$;
(b) $\sum_{k=0}^{n} k\binom{n}{k} x^{k}(1-x)^{n-k}=n x$;
(c) $\sum_{k=0}^{n} k^{2}\binom{n}{k} x^{k}(1-x)^{n-k}=n(n-1) x^{2}+n x$;
(d) $\delta^{2} \sum_{k:|k / n-x| \geqslant \delta}\binom{n}{k} x^{k}(1-x)^{n-k} \leqslant \frac{1}{4 n} \quad$ for all $\delta>0$.
[Hint: For (b), note that $k\binom{n}{k}=n\binom{n-1}{k-1}$.
For (c), start by showing that $\sum_{k=0}^{n} k(k-1)\binom{n}{k} x^{k}(1-x)^{n-k}=n(n-1) x^{2}$.
For (d), use the fact that $\delta^{2} \leqslant(x-k / n)^{2}$ for all k such that $|k / n-x| \geqslant \delta$, so that the sum in question is bounded above by $\sum_{k=0}^{n}(x-k / n)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}$.]

Solution. (a) This follows from the binomial theorem:

$$
1=(x+(1-x))^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} .
$$

(b) As hinted, we have

$$
k\binom{n}{k}=\frac{k n \cdot(n-1)!}{k!(n-k)!}=n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}=n\binom{n-1}{k-1} .
$$

Therefore

$$
\sum_{k=0}^{n} k\binom{n}{k} x^{k}(1-x)^{n-k}=\sum_{k=1}^{n} n\binom{n-1}{k-1} x^{k}(1-x)^{n-k}=n x \sum_{j=0}^{n-1}\binom{n-1}{j} x^{j}(1-x)^{n-1-j}=n x
$$

where we used the substitution $j=k-1$, and at the end the result of the previous part.
(c) Iterating the previous part a second time, we have

$$
k(k-1)\binom{n}{k}=n(n-1)\binom{n-2}{k-2},
$$

after which we evaluate

$$
\sum_{k=0}^{n} k(k-1)\binom{n}{k} x^{k}(1-x)^{n-k}=n(n-1) x^{2} \sum_{j=0}^{n-2}\binom{n-2}{j} x^{j}(1-x)^{n-2-j}=n(n-1) x^{2}
$$

and finally conclude by combining this with the result of the previous part.
(d) Starting with the hint:

$$
\begin{aligned}
\delta^{2} \sum_{k:|k / n-x| \geqslant \delta}\binom{n}{k} x^{k}(1-x)^{n-k} & \leqslant \sum_{k=0}^{n}(x-k / n)^{2}\binom{n}{k} x^{k}(1-x)^{n-k} \\
& =\sum_{k=0}^{n}\left(x^{2}-\frac{2 x}{n} k+\frac{1}{n^{2}} k^{2}\right)\binom{n}{k} x^{k}(1-x)^{n-k} \\
& =x^{2}-\frac{2 x}{n} n x+\frac{1}{n^{2}}\left(n(n-1) x^{2}+n x\right) \\
& =\frac{x(1-x)}{n} \\
& \leqslant \frac{1}{4 n}
\end{aligned}
$$

Along the way we used the results of parts (a), (b), and (c), together with the easy fact that the global maximum of $x(1-x)$ for $x \in[0,1]$ is $1 / 4$.

