Tutorial Week 11

Topics: Self-adjoint maps, uniform norm, pointwise and uniform convergence.

1. Let $f \in B(H, H)$ with H a Hilbert space. Then the maps

$$p = f^* \circ f$$
 and $s = f + f^*$

are self-adjoint.

Solution. Since f is continuous, the adjoint f^* is continuous, so the composition $p = f^* \circ f$ and the sum $s = f + f^*$ are both continuous.

Then

$$p^* = (f^* \circ f)^* = f^* \circ (f^*)^* = f^* \circ f = p$$

$$s^* = (f + f^*)^* = f^* + (f^*)^* = f^* + f = f + f^* = s.$$

2. The composition of two self-adjoint maps f, g on a Hilbert space is self-adjoint if and only if the maps commute.

Solution. We have

$$\langle f(g(x)), y \rangle = \langle g(x), f(y) \rangle = \langle x, g(f(y)) \rangle$$

by the self-adjointness of f and g.

So $f \circ g$ is self-adjoint if and only if $g \circ f = f \circ g$, as claimed.

3. Let $f \in B(H, H)$ with H a Hilbert space. Suppose that f is invertible with continuous inverse. Then the adjoint f^* is invertible and

$$\left(f^*\right)^{-1} = \left(f^{-1}\right)^*.$$

Solution. We want to prove that

$$(f^{-1})^* \circ f^* = \mathrm{id}_H = f^* \circ (f^{-1})^*.$$

We have for all $x, y \in H$:

$$\left\langle x, \left(f^{-1}\right)^* \left(f^*(y)\right) \right\rangle = \left\langle f^{-1}(x), f^*(y) \right\rangle = \left\langle f\left(f^{-1}(x)\right), y \right\rangle = \left\langle x, y \right\rangle$$

implying that $(f^{-1})^* \circ f^* = id_H$, and similarly for the other composition.

4. Let B be an orthonormal system in a Hilbert space H. Prove that B is an orthonormal basis if and only if:

for every
$$x \in H$$
, if $\langle x, y \rangle = 0$ for all $y \in B$, then $x = 0$

Solution. By definition, B is an orthonormal basis if and only if $\overline{\text{Span}(B)} = H$. So given $x \in H$ we have

$$\langle x, y \rangle = 0$$
 for all $y \in B \iff x \in B^{\perp}$
 $\iff x \in \overline{\operatorname{Span}(B)}^{\perp}$

and

$$x = 0 \quad \Longleftrightarrow \quad x \in H^{\perp},$$

hence the required statement.

5. For each $n \in \mathbb{N}$ define $f_n \colon [0,1] \longrightarrow \mathbb{R}$ by

$$f_n(x) = \frac{x^2}{1+nx}.$$

Convince yourself that each f_n is continuous.

Find the pointwise limit f of the sequence (f_n) and determine whether the sequence converges uniformly to f.

Solution. We know that x^2 is continuous on [0,1] and 1 + nx is continuous and nonzero on [0,1], so their quotient f_n is continuous on [0,1].

At x = 0 we have $f_n(0) = 0$ so f(0) = 0.

If $x \in (0, 1]$ then

$$|f_n(x)| = \frac{x^2}{1+nx} \leq \frac{1}{1+nx} \longrightarrow 0 \text{ as } n \longrightarrow \infty,$$

so f(x) = 0 for all $x \in (0, 1]$.

So the pointwise limit is the constant function 0 on [0, 1].

To check whether the convergence is uniform we look at

$$||f_n - f|| = ||f_n|| = \sup_{x \in [0,1]} |f_n(x)| = \sup_{x \in [0,1]} \frac{x^2}{1 + nx}.$$

As [0,1] is compact, f_n attains its supremum as a global maximum on [0,1]. Since f_n is differentiable on (0,1) we can use its derivative to look for local maxima:

$$f_n'(x) = \frac{x(nx+2)}{(1+nx)^2},$$

and since nx + 2 > 0 on [0, 1], the maximum must occur at one of the boundary points:

$$f_n(0) = 0$$
 and $f_n(1) = \frac{1}{1+n}$,

 \mathbf{SO}

$$||f_n|| = \frac{1}{1+n}.$$

This converges to 0 as $n \to \infty$, so $(f_n) \to f$ uniformly.

6. For each $n \in \mathbb{N}$ define $f_n \colon [0,1] \longrightarrow \mathbb{R}$ by

$$f_n(x) = \frac{1 - x^n}{1 + x^n}$$

Convince yourself that each f_n is continuous.

Find the pointwise limit f of the sequence (f_n) and determine whether the sequence converges uniformly to f.

Solution. Both $1 - x^n$ and $1 + x^n$ are continuous, and $1 + x^n$ is nonzero on [0, 1], so their quotient f_n is continuous on [0, 1].

Note that at x = 1 we have $f_n(1) = \frac{0}{2} = 0$, so f(1) = 0.

But if x < 1 then $(x^n) \longrightarrow 0$ as $n \longrightarrow \infty$, so that

$$f_n(x) = \frac{1 - x^n}{1 + x^n} \longrightarrow \frac{1}{1} = 1,$$

and so f(x) = 1. In summary:

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ 0 & \text{if } x = 1. \end{cases}$$

As the f_n are all continuous, so if $(f_n) \longrightarrow f$ uniformly then f would be continuous. Since that is not the case, the convergence is not uniform.

7. Suppose that the Weierstraß Approximation Theorem holds for K = [0, 1].

Prove that the Theorem holds for any closed interval [a, b] with a < b.

[*Hint*: Find a polynomial function of degree one $\varphi \colon [0,1] \longrightarrow [a,b]$ that is surjective and use it and its inverse to move between functions on [0,1] and functions on [a,b].]

Solution. Consider $\varphi \colon [0,1] \longrightarrow [a,b]$ given by

$$\varphi(x) = (1 - x)a + xb$$

It is clearly continuous and has inverse $\psi \colon [a, b] \longrightarrow [0, 1]$ given by

$$\psi(y)=\frac{y-a}{b-a},$$

also clearly continuous.

Now if $f \in Cts([a, b], \mathbb{R})$, then $f \circ \varphi \in Cts([0, 1], \mathbb{R})$, so there is a sequence of polynomials (p_n) with $p_n \colon [0, 1] \longrightarrow \mathbb{R}$ that converges to $f \circ \varphi$ in the uniform norm.

Let $q_n = p_n \circ \psi$; as the composition of two polynomials, it is a polynomial $q_n \colon [a, b] \longrightarrow \mathbb{R}$. We have

$$\begin{aligned} \|q_n - f\| &= \sup_{y \in [a,b]} |q_n(y) - f(y)| \\ &= \sup_{y \in [a,b]} |p_n(\psi(y)) - f(y)| \\ &= \sup_{x \in [0,1]} |p_n(\psi(\varphi(x))) - f(\varphi(x))| \\ &= \sup_{x \in [0,1]} |p_n(x) - f(\varphi(x))| \\ &= \|p_n - f \circ \varphi\| \longrightarrow 0 \quad \text{as } n \longrightarrow \infty. \end{aligned}$$

8. (*) Prove that for any $x \in \mathbb{R}$ and for any $n \in \mathbb{Z}_{\geq 0}$ we have

(a)
$$\sum_{k=0}^{n} {n \choose k} x^{k} (1-x)^{n-k} = 1;$$

(b) $\sum_{k=0}^{n} k {n \choose k} x^{k} (1-x)^{n-k} = nx;$
(c) $\sum_{k=0}^{n} k^{2} {n \choose k} x^{k} (1-x)^{n-k} = n(n-1)x^{2} + nx;$
(d) $\delta^{2} \sum_{k: |k/n-x| \ge \delta} {n \choose k} x^{k} (1-x)^{n-k} \le \frac{1}{4n}$ for all $\delta > 0$

[*Hint*: For (b), note that $k \binom{n}{k} = n \binom{n-1}{k-1}$. For (c), start by showing that $\sum_{k=0}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2$. For (d), use the fact that $\delta^2 \leq (x-k/n)^2$ for all k such that $|k/n-x| \geq \delta$, so that the sum in question is bounded above by $\sum_{k=0}^{n} (x-k/n)^2 \binom{n}{k} x^k (1-x)^{n-k}$.]

Solution. (a) This follows from the binomial theorem:

$$1 = (x + (1 - x))^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} (1 - x)^{n-k}.$$

(b) As hinted, we have

$$k\binom{n}{k} = \frac{kn \cdot (n-1)!}{k! (n-k)!} = n \frac{(n-1)!}{(k-1)! ((n-1)-(k-1))!} = n\binom{n-1}{k-1}$$

Therefore

$$\sum_{k=0}^{n} k\binom{n}{k} x^{k} (1-x)^{n-k} = \sum_{k=1}^{n} n\binom{n-1}{k-1} x^{k} (1-x)^{n-k} = nx \sum_{j=0}^{n-1} \binom{n-1}{j} x^{j} (1-x)^{n-1-j} = nx,$$

where we used the substitution j = k - 1, and at the end the result of the previous part. (c) Iterating the previous part a second time, we have

$$k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2},$$

after which we evaluate

$$\sum_{k=0}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2 \sum_{j=0}^{n-2} \binom{n-2}{j} x^j (1-x)^{n-2-j} = n(n-1)x^2,$$

and finally conclude by combining this with the result of the previous part.

(d) Starting with the hint:

$$\delta^{2} \sum_{k: |k/n-x| \ge \delta} \binom{n}{k} x^{k} (1-x)^{n-k} \le \sum_{k=0}^{n} (x-k/n)^{2} \binom{n}{k} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=0}^{n} \left(x^{2} - \frac{2x}{n} k + \frac{1}{n^{2}} k^{2} \right) \binom{n}{k} x^{k} (1-x)^{n-k}$$

$$= x^{2} - \frac{2x}{n} nx + \frac{1}{n^{2}} (n(n-1)x^{2} + nx))$$

$$= \frac{x(1-x)}{n}$$

$$\le \frac{1}{4n}.$$

Along the way we used the results of parts (a), (b), and (c), together with the easy fact that the global maximum of x(1-x) for $x \in [0,1]$ is 1/4.