Tutorial Week 10

Topics: Projections; adjoint maps

1. Let V be a normed space and φ, ψ be commuting projections: $\varphi \circ \psi = \psi \circ \varphi$. Prove that $\varphi \circ \psi$ is a projection with image im $\varphi \cap \operatorname{im} \psi$.

Solution. We know that the composition of continuous linear maps is continuous linear, so this is true for $\varphi \circ \psi$. To conclude that it is a projection, we need to compute its square:

$$(\varphi \circ \psi) \circ (\varphi \circ \psi) = (\varphi \circ \varphi) \circ (\psi \circ \psi) = \varphi \circ \psi$$

where it was crucial that φ and ψ commute.

For the statement about the image, note that $w \in \operatorname{im}(\varphi \circ \psi)$ if and only if there exists $v \in V$ such that

$$w = \varphi(\psi(v)) = \psi(\varphi(v))$$

which implies that $w \in \operatorname{im} \varphi \cap \operatorname{im} \psi$. So $\operatorname{im} (\varphi \circ \psi) \subseteq \operatorname{im} \varphi \cap \operatorname{im} \psi$.

Conversely, suppose $w \in \operatorname{im} \varphi \cap \operatorname{im} \psi$, then there exists $v \in V$ such that $w = \psi(v)$. But $w \in \operatorname{im} \varphi$ and φ is a projection, so that

$$w = \varphi(w) = \varphi(\psi(v)) \in \operatorname{im}(\varphi \circ \psi). \qquad \Box$$

2. Let φ be a nonzero orthogonal projection (that is, φ is not the constant function 0) on an inner product space V. Prove that $\|\varphi\| = 1$.

Solution. We know that $(\operatorname{im} \varphi)^{\perp} = \ker \varphi$. For any x we have

$$\varphi(x-\varphi(x))=\varphi(x)-\varphi^2(x)=\varphi(x)-\varphi(x)=0,$$

so $x - \varphi(x) \in \ker \varphi$. Therefore

$$\langle x, \varphi(x) \rangle - \|\varphi(x)\|^2 = \langle x - \varphi(x), \varphi(x) \rangle = 0,$$

 \mathbf{SO}

$$\|\varphi(x)\|^{2} = \langle x, \varphi(x) \rangle \leq \|x\| \|\varphi(x)\|$$

by the Cauchy–Schwarz Inequality. Hence $\|\varphi(x)\| \leq \|x\|$ for all x, hence $\|\varphi\| \leq 1$. However for $x \in \operatorname{im} \varphi$ we have $\varphi(x) = x$ so $\|\varphi(x)\| = \|x\|$ and we conclude that $\|\varphi\| = 1$.

3. Let S be a subset of a Hilbert space H. Prove that Span(S) is dense in H if and only if $S^{\perp} = 0$.

Solution. If $S^{\perp} = 0$ then

$$\overline{\operatorname{Span}(S)} = \left(S^{\perp}\right)^{\perp} = 0^{\perp} = H.$$

Conversely, if S is dense in H then

$$S^{\perp} = \overline{\operatorname{Span}(S)}^{\perp} = H^{\perp} = 0.$$

4. Let V, W be inner product spaces and let $f \in B(V, W)$. Prove that

$$||f|| = \sup_{||v||_V = ||w||_W = 1} |\langle f(v), w \rangle_W|.$$

[*Hint*: Use Exercise 4.2 which says that $||v|| = \sup_{||w||=1} |\langle v, w \rangle|$.]

Solution. Recall from Exercise 4.2 that

$$||u||_W = \sup_{||w||_W=1} |\langle u, w \rangle_W | \quad \text{for all } u \in W.$$

Setting u = f(v) for some $v \in V$, we get

$$|f(v)||_W = \sup_{\|w\|_W=1} |\langle f(v), w \rangle_W| \quad \text{for all } v \in V.$$

Therefore

$$\|f\| = \sup_{\|v\|_{V}=1} \|f(v)\|_{W} = \sup_{\|v\|_{V}=\|w\|_{W}=1} |\langle f(v), w \rangle_{W}|.$$

5. Recall that the adjoint $f^* \colon Y \longrightarrow X$ of a continuous linear map $f \colon X \longrightarrow Y$ of Hilbert spaces satisfies the property

$$\langle f(x), y \rangle_Y = \langle x, f^*(y) \rangle_X$$
 for all $x \in X, y \in Y$.

Prove that for all $\alpha \in \mathbb{F}$ we have

$$\left(\alpha f\right)^* = \overline{\alpha} f^*.$$

Solution. We have

$$\langle x, (\alpha f)^*(y) \rangle = \langle (\alpha f)(x), y \rangle$$

= $\alpha \langle f(x), y \rangle$
= $\alpha \langle x, f^*(y) \rangle$
= $\langle x, \overline{\alpha} f^*(y) \rangle.$

6. Given continuous linear maps $g: X \longrightarrow Y$ and $f: Y \longrightarrow Z$ of Hilbert spaces, prove that

$$\left(f\circ g\right)^*=g^*\circ f^*.$$

Solution. We have

$$\langle x, (f \circ g)^*(y) \rangle = \langle (f \circ g)(x), y \rangle$$

= $\langle f(g(x)), y \rangle$
= $\langle g(x), f^*(y) \rangle$
= $\langle x, g^*(f^*(y)) \rangle$
= $\langle x, (g^* \circ f^*)(y) \rangle.$

7. Prove that for any Hilbert space X we have

$$\operatorname{id}_X^* = \operatorname{id}_X$$

Solution. Tautological:

$$\langle \operatorname{id}_X(x), y \rangle = \langle x, y \rangle = \langle x, \operatorname{id}_X(y) \rangle.$$

8. Prove that for any continuous linear map $f: X \longrightarrow Y$ of Hilbert spaces, we have

$$\left(f^*\right)^* = f.$$

Solution. We have

$$\langle x, (f^*)^*(y) \rangle = \langle f^*(x), y \rangle$$

= $\overline{\langle y, f^*(x) \rangle}$
= $\overline{\langle f(y), x \rangle}$
= $\langle x, f(y) \rangle.$

9. Let $f: X \longrightarrow Y$ be a continuous linear map of Hilbert spaces. Prove that

$$\operatorname{ker}(f^*) = (\operatorname{im} f)^{\perp}$$
 and $\overline{\operatorname{im}(f^*)} = (\operatorname{ker} f)^{\perp}$.

Solution. We have

$$y \in (\operatorname{im} f)^{\perp} \iff y \perp f(x) \quad \text{for all } x \in X$$
$$\iff \langle f(x), y \rangle = 0 \quad \text{for all } x \in X$$
$$\iff \langle x, f^{*}(y) \rangle = 0 \quad \text{for all } x \in X$$
$$\iff f^{*}(y) = 0$$
$$\iff y \in \ker f^{*}.$$

From this and Exercise 4.12 we have

$$\ker f = \ker \left(f^*\right)^* = \left(\operatorname{im} f^*\right)^{\perp},$$

so that

$$\left(\ker f\right)^{\perp} = \left(\left(\operatorname{im} f^{*}\right)^{\perp}\right)^{\perp} = \overline{\operatorname{im} f^{*}},$$

where the last equality comes from Corollary 4.13.

10. Consider the function $g \colon \ell^2 \longrightarrow \mathbb{F}$ given by

$$g(x) = \sum_{n=1}^{\infty} \frac{x_n}{n^2}$$

(a) Find $y \in \ell^2$ such that

$$g(x) = \langle x, y \rangle$$
 for all $x \in \ell^2$.

(b) Deduce that g is linear and bounded and find its norm ||g||. [*Hint*: You may use without proof the fact that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.]

Solution. (a) Setting $y = (y_n)$ with

$$y_n = \frac{1}{n^2},$$

we certainly have for all $x = (x_n) \in \ell^2$:

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y}_n = \sum_{n=1}^{\infty} \frac{x_n}{n^2} = g(x).$$

We should check that $y \in \ell^2$:

$$\|y\|_{\ell^2}^2 = \sum_{n=1}^{\infty} y_n^2 = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

(b) From the previous part we know that $g = y^{\vee}$, so certainly g is linear and bounded. We also have

$$\|g\| = \|y^{\vee}\| = \|y\|_{\ell^2} = \frac{\pi^2}{3\sqrt{10}},$$

as we have seen in the previous part.