Tutorial Week 10

Topics: Projections; adjoint maps

1. Let V be a normed space and φ, ψ be commuting projections: $\varphi \circ \psi=\psi \circ \varphi$. Prove that $\varphi \circ \psi$ is a projection with image $\operatorname{im} \varphi \cap \operatorname{im} \psi$.

Solution. We know that the composition of continuous linear maps is continuous linear, so this is true for $\varphi \circ \psi$. To conclude that it is a projection, we need to compute its square:

$$
(\varphi \circ \psi) \circ(\varphi \circ \psi)=(\varphi \circ \varphi) \circ(\psi \circ \psi)=\varphi \circ \psi,
$$

where it was crucial that φ and ψ commute.
For the statement about the image, note that $w \in \operatorname{im}(\varphi \circ \psi)$ if and only if there exists $v \in V$ such that

$$
w=\varphi(\psi(v))=\psi(\varphi(v))
$$

which implies that $w \in \operatorname{im} \varphi \cap \operatorname{im} \psi$. So $\operatorname{im}(\varphi \circ \psi) \subseteq \operatorname{im} \varphi \cap \operatorname{im} \psi$.
Conversely, suppose $w \in \operatorname{im} \varphi \cap \operatorname{im} \psi$, then there exists $v \in V$ such that $w=\psi(v)$. But $w \in \operatorname{im} \varphi$ and φ is a projection, so that

$$
w=\varphi(w)=\varphi(\psi(v)) \in \operatorname{im}(\varphi \circ \psi) .
$$

2. Let φ be a nonzero orthogonal projection (that is, φ is not the constant function 0) on an inner product space V. Prove that $\|\varphi\|=1$.

Solution. We know that $(\operatorname{im} \varphi)^{\perp}=\operatorname{ker} \varphi$. For any x we have

$$
\varphi(x-\varphi(x))=\varphi(x)-\varphi^{2}(x)=\varphi(x)-\varphi(x)=0
$$

so $x-\varphi(x) \in \operatorname{ker} \varphi$. Therefore

$$
\langle x, \varphi(x)\rangle-\|\varphi(x)\|^{2}=\langle x-\varphi(x), \varphi(x)\rangle=0
$$

so

$$
\|\varphi(x)\|^{2}=\langle x, \varphi(x)\rangle \leqslant\|x\|\|\varphi(x)\|
$$

by the Cauchy-Schwarz Inequality. Hence $\|\varphi(x)\| \leqslant\|x\|$ for all x, hence $\|\varphi\| \leqslant 1$. However for $x \in \operatorname{im} \varphi$ we have $\varphi(x)=x$ so $\|\varphi(x)\|=\|x\|$ and we conclude that $\|\varphi\|=1$.
3. Let S be a subset of a Hilbert space H. Prove that $\operatorname{Span}(S)$ is dense in H if and only if $S^{\perp}=0$.

Solution. If $S^{\perp}=0$ then

$$
\overline{\operatorname{Span}(S)}=\left(S^{\perp}\right)^{\perp}=0^{\perp}=H .
$$

Conversely, if S is dense in H then

$$
S^{\perp}=\overline{\operatorname{Span}(S)}^{\perp}=H^{\perp}=0 .
$$

4. Let V, W be inner product spaces and let $f \in B(V, W)$. Prove that

$$
\|f\|=\sup _{\|v\|_{V}=\|w\|_{W}=1}\left|\langle f(v), w\rangle_{W}\right| .
$$

[Hint: Use Exercise 4.2 which says that $\|v\|=\sup _{\|w\|=1}|\langle v, w\rangle|$.]

Solution. Recall from Exercise 4.2 that

$$
\|u\|_{W}=\sup _{\|w\|_{W}=1}\left|\langle u, w\rangle_{W}\right| \quad \text { for all } u \in W .
$$

Setting $u=f(v)$ for some $v \in V$, we get

$$
\|f(v)\|_{W}=\sup _{\|w\|_{W}=1}\left|\langle f(v), w\rangle_{W}\right| \quad \text { for all } v \in V .
$$

Therefore

$$
\|f\|=\sup _{\|v\|_{V}=1}\|f(v)\|_{W}=\sup _{\|v\|_{V}=\|w\|_{W}=1}\left|\langle f(v), w\rangle_{W}\right| .
$$

5. Recall that the adjoint $f^{*}: Y \longrightarrow X$ of a continuous linear map $f: X \longrightarrow Y$ of Hilbert spaces satisfies the property

$$
\langle f(x), y\rangle_{Y}=\left\langle x, f^{*}(y)\right\rangle_{X} \quad \text { for all } x \in X, y \in Y
$$

Prove that for all $\alpha \in \mathbb{F}$ we have

$$
(\alpha f)^{*}=\bar{\alpha} f^{*} .
$$

Solution. We have

$$
\begin{aligned}
\left\langle x,(\alpha f)^{*}(y)\right\rangle & =\langle(\alpha f)(x), y\rangle \\
& =\alpha\langle f(x), y\rangle \\
& =\alpha\left\langle x, f^{*}(y)\right\rangle \\
& =\left\langle x, \bar{\alpha} f^{*}(y)\right\rangle .
\end{aligned}
$$

6. Given continuous linear maps $g: X \longrightarrow Y$ and $f: Y \longrightarrow Z$ of Hilbert spaces, prove that

$$
(f \circ g)^{*}=g^{*} \circ f^{*} .
$$

Solution. We have

$$
\begin{aligned}
\left\langle x,(f \circ g)^{*}(y)\right\rangle & =\langle(f \circ g)(x), y\rangle \\
& =\langle f(g(x)), y\rangle \\
& =\left\langle g(x), f^{*}(y)\right\rangle \\
& =\left\langle x, g^{*}\left(f^{*}(y)\right)\right\rangle \\
& =\left\langle x,\left(g^{*} \circ f^{*}\right)(y)\right\rangle .
\end{aligned}
$$

7. Prove that for any Hilbert space X we have

$$
\operatorname{id}_{X}^{*}=\operatorname{id}_{X} .
$$

Solution. Tautological:

$$
\left\langle\operatorname{id}_{X}(x), y\right\rangle=\langle x, y\rangle=\left\langle x, \operatorname{id}_{X}(y)\right\rangle .
$$

8. Prove that for any continuous linear map $f: X \longrightarrow Y$ of Hilbert spaces, we have

$$
\left(f^{*}\right)^{*}=f .
$$

Solution. We have

$$
\begin{aligned}
\left\langle x,\left(f^{*}\right)^{*}(y)\right\rangle & =\left\langle f^{*}(x), y\right\rangle \\
& =\overline{\left\langle y, f^{*}(x)\right\rangle} \\
& =\overline{\langle f(y), x\rangle} \\
& =\langle x, f(y)\rangle .
\end{aligned}
$$

9. Let $f: X \longrightarrow Y$ be a continuous linear map of Hilbert spaces. Prove that

$$
\operatorname{ker}\left(f^{*}\right)=(\operatorname{im} f)^{\perp} \quad \text { and } \quad \overline{\operatorname{im}\left(f^{*}\right)}=(\operatorname{ker} f)^{\perp} .
$$

Solution. We have

$$
\begin{aligned}
y \in(\operatorname{im} f)^{\perp} & \Longleftrightarrow y \perp f(x) \quad \text { for all } x \in X \\
& \Longleftrightarrow\langle f(x), y\rangle=0 \quad \text { for all } x \in X \\
& \Longleftrightarrow\left\langle x, f^{*}(y)\right\rangle=0 \quad \text { for all } x \in X \\
& \Longleftrightarrow f^{*}(y)=0 \\
& \Longleftrightarrow y \in \operatorname{ker} f^{*} .
\end{aligned}
$$

From this and Exercise 4.12 we have

$$
\operatorname{ker} f=\operatorname{ker}\left(f^{*}\right)^{*}=\left(\operatorname{im} f^{*}\right)^{\perp},
$$

so that

$$
(\operatorname{ker} f)^{\perp}=\left(\left(\operatorname{im} f^{*}\right)^{\perp}\right)^{\perp}=\overline{\operatorname{im} f^{*}},
$$

where the last equality comes from Corollary 4.13 .
10. Consider the function $g: \ell^{2} \longrightarrow \mathbb{F}$ given by

$$
g(x)=\sum_{n=1}^{\infty} \frac{x_{n}}{n^{2}} .
$$

(a) Find $y \in \ell^{2}$ such that

$$
g(x)=\langle x, y\rangle \quad \text { for all } x \in \ell^{2} .
$$

(b) Deduce that g is linear and bounded and find its norm $\|g\|$.
[Hint: You may use without proof the fact that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.]
Solution. (a) Setting $y=\left(y_{n}\right)$ with

$$
y_{n}=\frac{1}{n^{2}},
$$

we certainly have for all $x=\left(x_{n}\right) \in \ell^{2}$:

$$
\langle x, y\rangle=\sum_{n=1}^{\infty} x_{n} \bar{y}_{n}=\sum_{n=1}^{\infty} \frac{x_{n}}{n^{2}}=g(x) .
$$

We should check that $y \in \ell^{2}$:

$$
\|y\|_{\ell^{2}}^{2}=\sum_{n=1}^{\infty} y_{n}^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} .
$$

(b) From the previous part we know that $g=y^{\vee}$, so certainly g is linear and bounded. We also have

$$
\|g\|=\left\|y^{\vee}\right\|=\|y\|_{\ell^{2}}=\frac{\pi^{2}}{3 \sqrt{10}},
$$

as we have seen in the previous part.

