MAST30026 Metric and Hilbert Spaces 2023

Tutorial Week 09

Topics: more sequence spaces; inner product spaces.

1. Consider the map m: FN — T given by

Wl((an)) =q,.

(a) Show that m; is linear.

(b) Prove that the restriction of m; to £* or to ¢¢ for p > 1 is continuous and surjective.

Solution.
(a) Straightforward.

(b) We have for a € ¢*:

m1(a)] = |aa| < sup{an|} = [afe~,
nz1

so 7 is bounded.

Similarly for a € ¢P:

1/p
1/p
m1(a)] = las| = (Jas[?) ™ < (Z |an|p) = ||al e

n>1

For the surjectivity we note that for any a € F we have Wl((a,O,O, . )) = a and
(a,0,0...) et c¢r for all p>1 and for p = . O

2. Consider the left shift map L: FN — FN given by L((ay)) = (ans1), that is

L(al,ag,ag, e ) = (ag,ag, e )
(a) Prove that L is a surjective linear map. What is the kernel of L?

(b) Prove that for all p > 1 and for p = oo, the restriction of L to ¢ is a surjective continuous
map onto /7.

(c) Define the right shift map R: FN — FN and prove that it is an injective linear map,
the restriction of which is distance-preserving for any ¢ with p > 1 and p = 0.

(d) Check that Lo R=1idg # Ro L.

Solution.

(a) It is clear that L is surjective. Linearity is pretty straightforward, and it’s also clear
that ker(L) = Span{e; }.

(b) We have

00 1/p o 1/p
|L(CL1,CL2,CL3,...)H4;7=(Zg|an|p) <(Z:l|a’n|p) = H(aha??“')”ép’

so L is bounded, and L((a,)) € ¢ if (ay) € (7.
For the surjectivity note that if b = (by,bs,...) € £P, then

b=L(a) for a = (0,b1,b9,...)

and |ale = ||b]er, s0 a € (7.

The case of /> is done in a similar way.
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(c¢) To get a linear map we need to set

R((Ll,ag,ag, I ) = (0,(11,@2,@3, e )

Both injectivity and linearity are straightforward.

We have, for p> 1 or p = oco:

||R(a1,a2, Ce )”gp = ”(0,@1,@2,. . .)ng = H(Cll,az, Ce )”gp,

so R is distance-preserving and R(a) € (P if a € (7.

d) Clear. For any a = (a,,) € FN we have
(d) y

L(R(a)) = L(R(a1,as,...)) = L(0,a1,as,...) = (ar,as,...) = a,
R(L(a)) = R(L(ay,as,...)) = R(as,as,...) =(0,as2,as,...) #a unless a; =0. [

3. Consider the subset ¢ of FN consisting of all convergent sequences (with any limit).

(a) Convince yourself that ¢ is a vector subspace of £°°.

(b) Prove that lim: ¢ — F given by

(c)

(d)

(an) — nh_r)noo(an)

is a continuous surjective linear map.

Prove that the formula

J((an)) = R((an)) - ( lim_a,)(1,1,...)

defines a linear homeomorphism J: ¢ — ¢y. (Here R denotes the right shift map.)

Show that c is separable and find a Schauder basis for c.

Solution. (a) We know that convergent sequences are bounded, so ¢ ¢ °. We also know

(b)

(c)

that the sum of two convergent sequences is convergent, and that a scalar multiple
of a convergent sequence is convergent, and that the constant sequence (0,0,...) is
convergent.

We know that lim is linear, as a consequence of the continuity of addition and of scalar
multiplication.

It is certainly surjective, as given any a € F the constant sequence (a,a,...) converges
to a.

Finally, if a = (a,) € ¢ then (a,) is a bounded sequence and

<sup lay| = [afe,

lim a,
> neN

n

so lim is a bounded linear map.
It is clear that J is linear and continuous, as R and lim are linear and continuous.

We exhibit an explicit inverse of J: let K: ¢g —> ¢ be given by

K((by)) =L((by)) - b1(1,1,...).

Note that K is linear and continuous, as L and (b,) — b; are linear and continuous.
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We check that K and J and inverses. If b € ¢y and a € ¢ then:

J(K (b)) =J(L(b))-b1J(1,1,...)
=R(L())-0(1,1,...) - b (R(1,1,...) - (1,1,...))
= (O,bg,bg,...)—bl(—l,0,0,...)
=D,

K(J(a)) = K(R(a)) - (lima,)K(1,1,...)
= L(R(a)) - (lima,)(L(1,1,...) = (1,1,...))

=a.

(d) We know that {eg,es,e3,...} is a Schauder basis for ¢y, so we apply K: ¢g — ¢ to
this to get:

K(er)=L(e) - (1,1,...)=~(1,1,...)

K(es) =L(ea)-0(1,1,...)=e1
K(es)=L(e3)-0(1,1,...) =ey

K(e,)=L(e,)-0(1,1,...) =ep forn>2

We suspect then that {(1,1,...),e1,e9,€3,...} is a Schauder basis for c.

This is of course true whenever we have a linear homeomorphism f: V' — W between
normed spaces: If {by, b, ...} is a Schauder basis for V, then {f(b1), f(b2),...} is a
Schauder basis for W.

Let we W and let v = f~!(w) e V. Write

v = Zozjbj,

jeN
then
w=f(v) =3 a;f(b;).
jeN
Uniqueness follows from the uniqueness of the expansion for v. ]

4. For any n € N, give a linear distance-preserving map F? — ¢2. (Take the Euclidean norm
on ")

Solution. Consider f: F? — (2 given by

fla) = f(ay,as,...,a,) = (a1,az,...,a,,0,0,...).

We have

n

1/2
H(al,az,...,an,o,o,--JHp=(Z|ak12) = [ (a1, az....,a) |,

so f(a) € ¢? and f is distance-preserving.

Linearity is straightforward. [

5. Let (V, (- )) be an inner product space. Prove that the inner product is a continuous
function.
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Solution. One way is to use the Polarisation Identity and the fact that the norm is
continuous.

But we can also proceed more directly: suppose (2,,y,) — (z,y), then (z,) — z and
(yn) — y. As (y,) converges, it is bounded, so there exists C' > 0 such that ||y,|| < C for
all n e N.

Given € > 0, let N € N be such that

|, — || <% and lyn -y < 2’2” for all n > N.
Then
‘(xn’yn) - (xmy)‘ = |<xn7yn> - <xayn> + (xayn> - (ZL’,y>|
= |<l'n - xa?/n) + (‘Tayn - y>|
<z =2, y0)| + [(2, 90 - 9)]
<awn =] ynl + 2] yn -yl
<Cllan = 2|+ ] lyn -yl
<e.
We conclude that ({2, yn)) — (2,9). O

6. Let (V, (-, )) be an inner product space. For any v € V we have

[o] = sup (v, w)
Jwf=1

The supremum is in fact achieved by a well-chosen w.

Solution. If v =0 then the equality is obvious.

So assume now that v # 0. By Cauchy—Schwarz we have for all w e V:
(v, w)] < o] ]

Therefore for all w e V' with |w| =1 we have

(v, w)| < o],
so that
sup [{v,w)| < Jo].
lwl=1
To get equality, take w = 1= v and see that the LHS is indeed |v]. O

o]

7. Let (V, (- )) be an inner product space and let R, S be subsets of V.
(a) Prove that Sn St =0.

(b) Prove that if R < S then St c R*.

(

)
c) Prove that S c (Si)l.
d) Prove that St = Span(S)l.

Solution.
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If z € St NS then (x,s) =0 for all s€ .S, in particular (z,z) =0 so z =0.
Suppose R < S and x € St. For any r € R we have r € S so (x,r) =0, hence = € R*.

Let s € S. For any x € S*, we have

SO S € (Sl)l.
Since S ¢ Span(S) ¢ Span(S), by part (b) we get
Span(S) ¢ S-.
In the other direction, suppose z € S*. For any v € Span(S) we have
(r,v) =(x,0181 + -+ aps,) = ar{x,s1) + -+ + @2, 8,) = 0.
Now if (v,) —> w € Span(S) with v, € Span(S), we have

(x,w) = (z,limv,) = lim(z,v,) = lim0 = 0. O

8. Let (X, d) be a metric space and let S ¢ X. Prove that dg(z) =0 if and only if x € S.

Solution. Suppose 0 = ds(x) = infesd(s,r), then there exists a sequence (s,) with s, € S
and d(s,,r) — dgs(x) =0, so (s,) — z,s0 x € S.

Conversely, if z € S then there exists a sequence (s,) — z, so

ds(z) = ingdg(m) < inéd(sn,x) =0. O



