
MAST30026 Metric and Hilbert Spaces 2023

Tutorial Week 09

Topics: more sequence spaces; inner product spaces.

1. Consider the map π1 ∶ FN Ð→ F given by

π1((an)) = a1.

(a) Show that π1 is linear.

(b) Prove that the restriction of π1 to ℓ∞ or to ℓp for p ⩾ 1 is continuous and surjective.

Solution.

(a) Straightforward.

(b) We have for a ∈ ℓ∞:
∣π1(a)∣ = ∣a1∣ ⩽ sup

n⩾1
{∣an∣} = ∥a∥ℓ∞ ,

so π1 is bounded.

Similarly for a ∈ ℓp:

∣π1(a)∣ = ∣a1∣ = (∣a1∣p)
1/p ⩽ (∑

n⩾1

∣an∣p)
1/p

= ∥a∥ℓp .

For the surjectivity we note that for any a ∈ F we have π1((a,0,0, . . . )) = a and
(a,0,0 . . . ) ∈ ℓ1 ⊆ ℓp for all p ⩾ 1 and for p = ∞.

2. Consider the left shift map L ∶ FN Ð→ FN given by L((an)) = (an+1), that is

L(a1, a2, a3, . . . ) = (a2, a3, . . . ).

(a) Prove that L is a surjective linear map. What is the kernel of L?

(b) Prove that for all p ⩾ 1 and for p = ∞, the restriction of L to ℓp is a surjective continuous
map onto ℓp.

(c) Define the right shift map R ∶ FN Ð→ FN and prove that it is an injective linear map,
the restriction of which is distance-preserving for any ℓp with p ⩾ 1 and p = ∞.

(d) Check that L ○R = idFN ≠ R ○L.

Solution.

(a) It is clear that L is surjective. Linearity is pretty straightforward, and it’s also clear
that ker(L) = Span{e1}.

(b) We have

∥L(a1, a2, a3, . . . )∥ℓp = (
∞

∑
n=2

∣an∣p)
1/p

⩽ (
∞

∑
n=1

∣an∣p)
1/p

= ∥(a1, a2, . . . )∥ℓp ,

so L is bounded, and L((an)) ∈ ℓp if (an) ∈ ℓp.
For the surjectivity note that if b = (b1, b2, . . . ) ∈ ℓp, then

b = L(a) for a = (0, b1, b2, . . . )

and ∥a∥ℓp = ∥b∥ℓp , so a ∈ ℓp.
The case of ℓ∞ is done in a similar way.
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(c) To get a linear map we need to set

R(a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ).

Both injectivity and linearity are straightforward.

We have, for p ⩾ 1 or p = ∞:

∥R(a1, a2, . . . )∥ℓp = ∥(0, a1, a2, . . . )∥ℓp = ∥(a1, a2, . . . )∥ℓp ,

so R is distance-preserving and R(a) ∈ ℓp if a ∈ ℓp.
(d) Clear. For any a = (an) ∈ FN we have

L(R(a)) = L(R(a1, a2, . . . )) = L(0, a1, a2, . . . ) = (a1, a2, . . . ) = a,
R(L(a)) = R(L(a1, a2, . . . )) = R(a2, a3, . . . ) = (0, a2, a3, . . . ) ≠ a unless a1 = 0.

3. Consider the subset c of FN consisting of all convergent sequences (with any limit).

(a) Convince yourself that c is a vector subspace of ℓ∞.

(b) Prove that lim ∶ cÐ→ F given by

(an) z→ lim
nÐ→∞

(an)

is a continuous surjective linear map.

(c) Prove that the formula

J((an)) = R((an)) − ( lim
nÐ→∞

an) (1,1, . . . )

defines a linear homeomorphism J ∶ cÐ→ c0. (Here R denotes the right shift map.)

(d) Show that c is separable and find a Schauder basis for c.

Solution. (a) We know that convergent sequences are bounded, so c ⊆ ℓ∞. We also know
that the sum of two convergent sequences is convergent, and that a scalar multiple
of a convergent sequence is convergent, and that the constant sequence (0,0, . . . ) is
convergent.

(b) We know that lim is linear, as a consequence of the continuity of addition and of scalar
multiplication.

It is certainly surjective, as given any a ∈ F the constant sequence (a, a, . . . ) converges
to a.

Finally, if a = (an) ∈ c then (an) is a bounded sequence and

∣ lim
nÐ→∞

an∣ ⩽ sup
n∈N
∣an∣ = ∥a∥ℓ∞ ,

so lim is a bounded linear map.

(c) It is clear that J is linear and continuous, as R and lim are linear and continuous.

We exhibit an explicit inverse of J : let K ∶ c0 Ð→ c be given by

K((bn)) = L((bn)) − b1(1,1, . . . ).

Note that K is linear and continuous, as L and (bn) z→ b1 are linear and continuous.
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We check that K and J and inverses. If b ∈ c0 and a ∈ c then:

J(K(b)) = J(L(b)) − b1J(1,1, . . . )
= R(L(b)) − 0(1,1, . . . ) − b1(R(1,1, . . . ) − (1,1, . . . ))
= (0, b2, b3, . . . ) − b1(−1,0,0, . . . )
= b,

K(J(a)) =K(R(a)) − ( liman)K(1,1, . . . )
= L(R(a)) − ( liman)(L(1,1, . . . ) − (1,1, . . . ))
= a.

(d) We know that {e1, e2, e3, . . .} is a Schauder basis for c0, so we apply K ∶ c0 Ð→ c to
this to get:

K(e1) = L(e1) − (1,1, . . . ) = −(1,1, . . . )
K(e2) = L(e2) − 0(1,1, . . . ) = e1
K(e3) = L(e3) − 0(1,1, . . . ) = e2

⋮
K(en) = L(en) − 0(1,1, . . . ) = en−1 for n ⩾ 2

⋮

We suspect then that {(1,1, . . . ), e1, e2, e3, . . .} is a Schauder basis for c.

This is of course true whenever we have a linear homeomorphism f ∶ V Ð→W between
normed spaces: If {b1, b2, . . .} is a Schauder basis for V , then {f(b1), f(b2), . . .} is a
Schauder basis for W .

Let w ∈W and let v = f−1(w) ∈ V . Write

v = ∑
j∈N

αjbj,

then
w = f(v) = ∑

j∈N
αjf(bj).

Uniqueness follows from the uniqueness of the expansion for v.

4. For any n ∈ N, give a linear distance-preserving map Fn Ð→ ℓ2. (Take the Euclidean norm
on Fn.)

Solution. Consider f ∶ Fn Ð→ ℓ2 given by

f(a) = f(a1, a2, . . . , an) = (a1, a2, . . . , an,0,0, . . . ).

We have

∥(a1, a2, . . . , an,0,0, . . . )∥ℓ2 = (
n

∑
k=1

∣ak∣2)
1/2

= ∥(a1, a2, . . . , an)∥Fn ,

so f(a) ∈ ℓ2, and f is distance-preserving.

Linearity is straightforward.

5. Let (V, ⟨⋅, ⋅⟩) be an inner product space. Prove that the inner product is a continuous
function.
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Solution. One way is to use the Polarisation Identity and the fact that the norm is
continuous.

But we can also proceed more directly: suppose (xn, yn) Ð→ (x, y), then (xn) Ð→ x and
(yn) Ð→ y. As (yn) converges, it is bounded, so there exists C ⩾ 0 such that ∥yn∥ ⩽ C for
all n ∈ N.
Given ε > 0, let N ∈ N be such that

∥xn − x∥ <
ε

2C
and ∥yn − y∥ <

ε

2∥x∥ for all n ⩾ N.

Then

∣⟨xn, yn⟩ − ⟨x, y⟩∣ = ∣⟨xn, yn⟩ − ⟨x, yn⟩ + ⟨x, yn⟩ − ⟨x, y⟩∣
= ∣⟨xn − x, yn⟩ + ⟨x, yn − y⟩∣
⩽ ∣⟨xn − x, yn⟩∣ + ∣⟨x, yn − y⟩∣
⩽ ∥xn − x∥ ∥yn∥ + ∥x∥ ∥yn − y∥
⩽ C∥xn − x∥ + ∥x∥ ∥yn − y∥
< ε.

We conclude that (⟨xn, yn⟩) Ð→ ⟨x, y⟩.

6. Let (V, ⟨⋅, ⋅⟩) be an inner product space. For any v ∈ V we have

∥v∥ = sup
∥w∥=1

∣⟨v,w⟩∣.

The supremum is in fact achieved by a well-chosen w.

Solution. If v = 0 then the equality is obvious.

So assume now that v ≠ 0. By Cauchy–Schwarz we have for all w ∈ V :

∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

Therefore for all w ∈ V with ∥w∥ = 1 we have

∣⟨v,w⟩∣ ⩽ ∥v∥,

so that
sup
∥w∥=1

∣⟨v,w⟩∣ ⩽ ∥v∥.

To get equality, take w = 1
∥v∥ v and see that the LHS is indeed ∥v∥.

7. Let (V, ⟨⋅, ⋅⟩) be an inner product space and let R,S be subsets of V .

(a) Prove that S ∩ S⊥ = 0.
(b) Prove that if R ⊆ S then S⊥ ⊆ R⊥.
(c) Prove that S ⊆ (S⊥)⊥.

(d) Prove that S⊥ = Span(S)
⊥

.

Solution.
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(a) If x ∈ S⊥ ∩ S then ⟨x, s⟩ = 0 for all s ∈ S, in particular ⟨x,x⟩ = 0 so x = 0.
(b) Suppose R ⊆ S and x ∈ S⊥. For any r ∈ R we have r ∈ S so ⟨x, r⟩ = 0, hence x ∈ R⊥.
(c) Let s ∈ S. For any x ∈ S⊥, we have

⟨s, x⟩ = ⟨x, s⟩ = 0,

so s ∈ (S⊥)⊥.

(d) Since S ⊆ Span(S) ⊆ Span(S), by part (b) we get

Span(S)
⊥

⊆ S⊥.

In the other direction, suppose x ∈ S⊥. For any v ∈ Span(S) we have

⟨x, v⟩ = ⟨x,α1s1 + ⋅ ⋅ ⋅ + αnsn⟩ = α1⟨x, s1⟩ + ⋅ ⋅ ⋅ + αn⟨x, sn⟩ = 0.

Now if (vn) Ð→ w ∈ Span(S) with vn ∈ Span(S), we have

⟨x,w⟩ = ⟨x, lim vn⟩ = lim⟨x, vn⟩ = lim0 = 0.

8. Let (X,d) be a metric space and let S ⊆X. Prove that dS(x) = 0 if and only if x ∈ S.

Solution. Suppose 0 = dS(x) = infs∈S d(s, x), then there exists a sequence (sn) with sn ∈ S
and d(sn, x) Ð→ dS(x) = 0, so (sn) Ð→ x, so x ∈ S.
Conversely, if x ∈ S then there exists a sequence (sn) Ð→ x, so

dS(x) = inf
s∈S

dS(x) ⩽ inf
n∈N

d(sn, x) = 0.
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