Tutorial Week 09

Topics: more sequence spaces; inner product spaces.

1. Consider the map $\pi_1 : \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}$ given by

$$
\pi_1((a_n)) = a_1.
$$

- (a) Show that π_1 is linear.
- (b) Prove that the restriction of π_1 to ℓ^{∞} or to ℓ^p for $p \ge 1$ is continuous and surjective.

Solution.

- (a) Straightforward.
- (b) We have for $a \in \ell^{\infty}$:

$$
|\pi_1(a)| = |a_1| \le \sup_{n \ge 1} \{|a_n|\} = ||a||_{\ell^{\infty}},
$$

so π_1 is bounded.

Similarly for $a \in \ell^p$:

$$
|\pi_1(a)| = |a_1| = (|a_1|^p)^{1/p} \leq (\sum_{n\geq 1} |a_n|^p)^{1/p} = ||a||_{\ell^p}.
$$

For the surjectivity we note that for any $a \in \mathbb{F}$ we have $\pi_1((a, 0, 0, \dots)) = a$ and $(a, 0, 0...) \in \ell^1 \subseteq \ell^p$ for all $p \ge 1$ and for $p = \infty$. \Box

2. Consider the left shift map $L: \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ given by $L((a_n)) = (a_{n+1})$, that is

$$
L(a_1, a_2, a_3, \dots) = (a_2, a_3, \dots).
$$

- (a) Prove that L is a surjective linear map. What is the kernel of L ?
- (b) Prove that for all $p \ge 1$ and for $p = \infty$, the restriction of L to ℓ^p is a surjective continuous map onto ℓ^p .
- (c) Define the right shift map $R: \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ and prove that it is an injective linear map, the restriction of which is distance-preserving for any ℓ^p with $p \ge 1$ and $p = \infty$.
- (d) Check that $L \circ R = \mathrm{id}_{\mathbb{R}^N} \neq R \circ L$.

Solution.

- (a) It is clear that L is surjective. Linearity is pretty straightforward, and it's also clear that $\ker(L) = \text{Span}\{e_1\}.$
- (b) We have

$$
||L(a_1, a_2, a_3, \dots)||_{\ell^p} = \left(\sum_{n=2}^{\infty} |a_n|^p\right)^{1/p} \leqslant \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p} = ||(a_1, a_2, \dots)||_{\ell^p},
$$

so L is bounded, and $L((a_n)) \in \ell^p$ if $(a_n) \in \ell^p$.

For the surjectivity note that if $b = (b_1, b_2, \dots) \in \ell^p$, then

$$
b = L(a)
$$
 for $a = (0, b_1, b_2,...)$

and $||a||_{\ell^p} = ||b||_{\ell^p}$, so $a \in \ell^p$.

The case of ℓ^{∞} is done in a similar way.

(c) To get a linear map we need to set

$$
R(a_1, a_2, a_3, \dots) = (0, a_1, a_2, a_3, \dots).
$$

Both injectivity and linearity are straightforward.

We have, for $p \geq 1$ or $p = \infty$:

$$
||R(a_1, a_2,...)]||_{\ell^p} = ||(0, a_1, a_2,...)]||_{\ell^p} = ||(a_1, a_2,...)]||_{\ell^p},
$$

so R is distance-preserving and $R(a) \in \ell^p$ if $a \in \ell^p$.

(d) Clear. For any $a = (a_n) \in \mathbb{F}^{\mathbb{N}}$ we have

$$
L(R(a)) = L(R(a_1, a_2,...)) = L(0, a_1, a_2,...) = (a_1, a_2,...) = a,
$$

\n
$$
R(L(a)) = R(L(a_1, a_2,...)) = R(a_2, a_3,...) = (0, a_2, a_3,...) \neq a \text{ unless } a_1 = 0.
$$

3. Consider the subset c of $\mathbb{F}^{\mathbb{N}}$ consisting of all convergent sequences (with any limit).

- (a) Convince yourself that c is a vector subspace of ℓ^{∞} .
- (b) Prove that $\lim: c \longrightarrow \mathbb{F}$ given by

$$
(a_n)\mapsto \lim_{n\to\infty}(a_n)
$$

is a continuous surjective linear map.

(c) Prove that the formula

$$
J((a_n)) = R((a_n)) - \left(\lim_{n \to \infty} a_n\right)(1,1,\dots)
$$

defines a linear homeomorphism $J: c \longrightarrow c_0$. (Here R denotes the right shift map.)

- (d) Show that c is separable and find a Schauder basis for c .
- Solution. (a) We know that convergent sequences are bounded, so $c \in \ell^{\infty}$. We also know that the sum of two convergent sequences is convergent, and that a scalar multiple of a convergent sequence is convergent, and that the constant sequence $(0, 0, \dots)$ is convergent.
- (b) We know that lim is linear, as a consequence of the continuity of addition and of scalar multiplication.

It is certainly surjective, as given any $a \in \mathbb{F}$ the constant sequence (a, a, \dots) converges to a.

Finally, if $a = (a_n) \in c$ then (a_n) is a bounded sequence and

$$
\left|\lim_{n\longrightarrow\infty}a_n\right|\leqslant \sup_{n\in\mathbb{N}}|a_n|=\|a\|_{\ell^{\infty}},
$$

so lim is a bounded linear map.

(c) It is clear that J is linear and continuous, as R and lim are linear and continuous. We exhibit an explicit inverse of J: let $K: c_0 \longrightarrow c$ be given by

$$
K((b_n)) = L((b_n)) - b_1(1,1,...).
$$

Note that K is linear and continuous, as L and $(b_n) \mapsto b_1$ are linear and continuous.

We check that K and J and inverses. If $b \in c_0$ and $a \in c$ then:

$$
J(K(b)) = J(L(b)) - b_1 J(1, 1, ...)
$$

= $R(L(b)) - 0(1, 1, ...) - b_1 (R(1, 1, ...) - (1, 1, ...))$
= $(0, b_2, b_3, ...) - b_1(-1, 0, 0, ...)$
= b ,
 $K(J(a)) = K(R(a)) - (\lim a_n) K(1, 1, ...)$
= $L(R(a)) - (\lim a_n) (L(1, 1, ...) - (1, 1, ...))$
= a .

(d) We know that $\{e_1, e_2, e_3, \dots\}$ is a Schauder basis for c_0 , so we apply $K: c_0 \longrightarrow c$ to this to get:

$$
K(e_1) = L(e_1) - (1, 1, \dots) = -(1, 1, \dots)
$$

\n
$$
K(e_2) = L(e_2) - 0(1, 1, \dots) = e_1
$$

\n
$$
K(e_3) = L(e_3) - 0(1, 1, \dots) = e_2
$$

\n:
\n:
\n
$$
K(e_n) = L(e_n) - 0(1, 1, \dots) = e_{n-1} \quad \text{for } n \ge 2
$$

\n:
\n:

We suspect then that $\{(1, 1, \ldots), e_1, e_2, e_3, \ldots\}$ is a Schauder basis for c.

This is of course true whenever we have a linear homeomorphism $f: V \longrightarrow W$ between normed spaces: If $\{b_1, b_2, \ldots\}$ is a Schauder basis for V, then $\{f(b_1), f(b_2), \ldots\}$ is a Schauder basis for W.

Let $w \in W$ and let $v = f^{-1}(w) \in V$. Write

$$
v=\sum_{j\in\mathbb{N}}\alpha_jb_j,
$$

then

$$
w = f(v) = \sum_{j \in \mathbb{N}} \alpha_j f(b_j).
$$

Uniqueness follows from the uniqueness of the expansion for v .

 \Box

 \Box

4. For any $n \in \mathbb{N}$, give a linear distance-preserving map $\mathbb{F}^n \longrightarrow \ell^2$. (Take the Euclidean norm on \mathbb{F}^n .)

Solution. Consider $f: \mathbb{F}^n \longrightarrow \ell^2$ given by

$$
f(a) = f(a_1, a_2, \ldots, a_n) = (a_1, a_2, \ldots, a_n, 0, 0, \ldots).
$$

We have

$$
\|(a_1, a_2, \ldots, a_n, 0, 0, \ldots)\|_{\ell^2} = \left(\sum_{k=1}^n |a_k|^2\right)^{1/2} = \|(a_1, a_2, \ldots, a_n)\|_{\mathbb{F}^n},
$$

1/2

so $f(a) \in \ell^2$, and f is distance-preserving. Linearity is straightforward.

5. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Prove that the inner product is a continuous function.

Solution. One way is to use the Polarisation Identity and the fact that the norm is continuous.

But we can also proceed more directly: suppose $(x_n, y_n) \rightarrow (x, y)$, then $(x_n) \rightarrow x$ and $(y_n) \longrightarrow y$. As (y_n) converges, it is bounded, so there exists $C \geq 0$ such that $||y_n|| \leq C$ for all $n \in \mathbb{N}$.

Given $\varepsilon > 0$, let $N \in \mathbb{N}$ be such that

$$
||x_n - x|| < \frac{\varepsilon}{2C}
$$
 and $||y_n - y|| < \frac{\varepsilon}{2||x||}$ for all $n \ge N$.

Then

$$
\left| \langle x_n, y_n \rangle - \langle x, y \rangle \right| = \left| \langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle \right|
$$

\n
$$
= \left| \langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle \right|
$$

\n
$$
\leq \left| \langle x_n - x, y_n \rangle \right| + \left| \langle x, y_n - y \rangle \right|
$$

\n
$$
\leq \|x_n - x\| \|y_n\| + \|x\| \|y_n - y\|
$$

\n
$$
\leq C \|x_n - x\| + \|x\| \|y_n - y\|
$$

\n
$$
< \varepsilon.
$$

We conclude that $((x_n, y_n)) \longrightarrow (x, y)$.

6. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For any $v \in V$ we have

$$
||v|| = \sup_{||w||=1} | \langle v, w \rangle |.
$$

The supremum is in fact achieved by a well-chosen w .

Solution. If $v = 0$ then the equality is obvious. So assume now that $v \neq 0$. By Cauchy–Schwarz we have for all $w \in V$:

$$
|\langle v, w \rangle| \leqslant ||v|| \, ||w||.
$$

Therefore for all $w \in V$ with $||w|| = 1$ we have

$$
|\langle v, w \rangle| \leqslant ||v||,
$$

so that

$$
\sup_{\|w\|=1} |\langle v, w \rangle| \leq \|v\|.
$$

To get equality, take $w = \frac{1}{|v|}$ $\frac{1}{\|v\|}v$ and see that the LHS is indeed $||v||$.

- 7. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let R, S be subsets of V.
	- (a) Prove that $S \cap S^{\perp} = 0$.
	- (b) Prove that if $R \subseteq S$ then $S^{\perp} \subseteq R^{\perp}$.
	- (c) Prove that $S \subseteq (S^{\perp})^{\perp}$.
	- (d) Prove that $S^{\perp} = \overline{\text{Span}(S)}^{\perp}$.

Solution.

 \Box

 \Box

- (a) If $x \in S^{\perp} \cap S$ then $\langle x, s \rangle = 0$ for all $s \in S$, in particular $\langle x, x \rangle = 0$ so $x = 0$.
- (b) Suppose $R \subseteq S$ and $x \in S^{\perp}$. For any $r \in R$ we have $r \in S$ so $\langle x, r \rangle = 0$, hence $x \in R^{\perp}$.
- (c) Let $s \in S$. For any $x \in S^{\perp}$, we have

$$
\langle s, x \rangle = \overline{\langle x, s \rangle} = 0,
$$

so $s \in (S^{\perp})^{\perp}$.

(d) Since $S \subseteq \text{Span}(S) \subseteq \overline{\text{Span}(S)}$, by part (b) we get

$$
\overline{\mathrm{Span}(S)}^{\perp} \subseteq S^{\perp}.
$$

In the other direction, suppose $x \in S^{\perp}$. For any $v \in \text{Span}(S)$ we have

$$
\langle x, v \rangle = \langle x, \alpha_1 s_1 + \dots + \alpha_n s_n \rangle = \overline{\alpha}_1 \langle x, s_1 \rangle + \dots + \overline{\alpha}_n \langle x, s_n \rangle = 0.
$$

Now if $(v_n) \longrightarrow w \in \overline{\text{Span}(S)}$ with $v_n \in \text{Span}(S)$, we have

$$
\langle x, w \rangle = \langle x, \lim v_n \rangle = \lim \langle x, v_n \rangle = \lim 0 = 0.
$$

8. Let (X, d) be a metric space and let $S \subseteq X$. Prove that $d_S(x) = 0$ if and only if $x \in \overline{S}$.

Solution. Suppose $0 = d_S(x) = \inf_{s \in S} d(s, x)$, then there exists a sequence (s_n) with $s_n \in S$ and $d(s_n, x) \longrightarrow d_S(x) = 0$, so $(s_n) \longrightarrow x$, so $x \in \overline{S}$.

Conversely, if $x \in \overline{S}$ then there exists a sequence $(s_n) \longrightarrow x$, so

$$
d_S(x) = \inf_{s \in S} d_S(x) \le \inf_{n \in \mathbb{N}} d(s_n, x) = 0.
$$