Tutorial Week 08

Topics: series in normed spaces; sequence spaces.

1. If a series in a normed space $(V,\|\cdot\|)$

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges, and converges absolutely, then

$$
\left\|\sum_{n=1}^{\infty} a_{n}\right\| \leqslant \sum_{n=1}^{\infty}\left\|a_{n}\right\| .
$$

Solution. This follows from the usual triangle inequality.
For any $m \in \mathbb{N}$, we have

$$
\left\|a_{1}+\cdots+a_{m}\right\| \leqslant\left\|a_{1}\right\|+\cdots+\left\|a_{m}\right\| .
$$

Taking limits as $m \longrightarrow \infty$ we get

$$
\left\|\sum_{n=1}^{\infty} a_{n}\right\|=\left\|\lim _{m \rightarrow \infty} \sum_{n=1}^{m} a_{n}\right\|=\lim _{m \rightarrow \infty}\left\|\sum_{n=1}^{m} a_{n}\right\| \leqslant \lim _{m \rightarrow \infty} \sum_{n=1}^{m}\left\|a_{n}\right\|=\sum_{n=1}^{\infty}\left\|a_{n}\right\| .
$$

2. Give an example of a series that converges but does not converge absolutely.

Solution. In \mathbb{R}, consider

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} .
$$

3. If $f \in B(V, W)$ with V, W normed spaces, and the series

$$
\sum_{n=1}^{\infty} \alpha_{n} v_{n}, \quad \alpha_{n} \in \mathbb{F}, v_{n} \in V,
$$

converges in V, then the series

$$
\sum_{n=1}^{\infty} \alpha_{n} f\left(v_{n}\right)
$$

converges in W to the limit

$$
f\left(\sum_{n=1}^{\infty} \alpha_{n} v_{n}\right)
$$

Solution. Let

$$
x_{m}=\sum_{n=1}^{m} \alpha_{n} v_{n}, \quad x=\sum_{n=1}^{\infty} \alpha_{n} v_{n} .
$$

We know that $\left(x_{m}\right) \longrightarrow x$ in V.
Since $f \in B(V, W)$ is continuous, we have that $\left(f\left(x_{m}\right)\right) \longrightarrow f(x)$ in W.
But f is also linear, so

$$
f\left(x_{m}\right)=\sum_{n=1}^{m} \alpha_{n} f\left(v_{n}\right)
$$

Hence

$$
\left(\sum_{n=1}^{m} \alpha_{n} f\left(v_{n}\right)\right) \longrightarrow f(x)
$$

so that the series

$$
\sum_{n=1}^{\infty} \alpha_{n} f\left(v_{n}\right) \quad \text { converges to } f(x) .
$$

4. Prove that if $u=\left(u_{n}\right) \in \ell^{\infty}$ and $v=\left(v_{n}\right) \in \ell^{1}$, then

$$
\sum_{n=1}^{\infty}\left|u_{n} v_{n}\right| \leqslant\|u\|_{\ell^{\infty}}\|v\|_{\ell^{1}} .
$$

Solution. Very straightforward.
By the definition of ℓ^{∞} and the ℓ^{∞}-norm, we have $\left|u_{n}\right| \leqslant\|u\|_{\ell_{\infty}}$ for all $n \in \mathbb{N}$. Therefore for any $m \in \mathbb{N}$ we have

$$
\sum_{n=1}^{m}\left|u_{n} v_{n}\right| \leqslant\|u\|_{\infty} \sum_{n=1}^{m}\left|v_{n}\right|
$$

but the latter series converges because $v \in \ell^{1}$, to $\|v\|_{\ell^{1}}$ and we get

$$
\sum_{n=1}^{\infty}\left|u_{n} v_{n}\right| \leqslant\|u\|_{\ell_{\infty}}\|v\|_{\ell^{1}}
$$

5. Consider the subset $c_{0} \subseteq \mathbb{F}^{\mathbb{N}}$ of all sequences with limit 0 :

$$
c_{0}=\left\{\left(a_{n}\right) \in \mathbb{F}^{\mathbb{N}}:\left(a_{n}\right) \longrightarrow 0\right\} .
$$

Prove that c_{0} is a closed subspace of ℓ^{∞}.
Conclude that c_{0} is a Banach space.
Solution. It's pretty clear that c_{0} is a subspace of $\mathbb{F}^{\mathbb{N}}$, and hence of ℓ^{∞}. To show that c_{0} is closed in ℓ^{∞}, let $\left(x_{n}\right) \longrightarrow x \in \ell^{\infty}$ with $x_{n} \in c_{0}$ for all $n \in \mathbb{N}$. We want to prove that $x \in c_{0}$.
Write $x_{n}=\left(a_{n m}\right)=\left(a_{n 1}, a_{n 2}, a_{n 3}, \ldots\right)$ and $x=\left(a_{m}\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. Let $\varepsilon>0$. There exists $N \in \mathbb{N}$ such that for all $n \geqslant N$ we have

$$
\sup _{m}\left|a_{m}-a_{n m}\right|=\left\|x-x_{n}\right\|_{\ell \infty}<\frac{\varepsilon}{2} .
$$

Consider the sequence $x_{N}=\left(a_{N m}\right) \in c_{0}$. It converges to 0 , so that there exists $M \in \mathbb{N}$ such that for any $m \geqslant M$ we have

$$
\left|a_{N m}\right|<\frac{\varepsilon}{2} .
$$

Therefore, for $m \geqslant M$, we get

$$
\left|a_{m}\right|=\left|a_{m}-a_{N m}+a_{N m}\right| \leqslant\left|a_{m}-a_{N m}\right|+\left|a_{N m}\right|<\varepsilon .
$$

Hence $x=\left(a_{m}\right) \longrightarrow 0$.
Since c_{0} is closed and ℓ^{∞} is Banach, c_{0} is Banach.
6. Prove that the space c_{0} of sequences with limit 0 is separable, by finding a Schauder basis for c_{0}.
[Hint: You needn't look too hard.]
Solution. I claim that c_{0} has the same Schauder basis at the one given in Example 3.21 for $\ell^{p}:\left\{e_{1}, e_{2}, \ldots\right\}$ where $e_{n}=(0, \ldots, 0,1,0 \ldots)$ with the 1 in the n-th spot.
Take $v=\left(v_{n}\right) \in c_{0}$, then $\left(v_{n}\right) \longrightarrow 0$. I claim that the series

$$
\sum_{n=1}^{\infty} v_{n} e_{n}
$$

converges to v with respect to the norm on c_{0}, which is the ℓ^{∞}-norm:

$$
\left\|v-\sum_{n=1}^{m} v_{n} e_{n}\right\|_{\ell_{\infty}}=\left\|\left(0, \ldots, 0, v_{m+1}, v_{m+2}, v_{m+3}, \ldots\right)\right\|_{\ell_{\infty}}=\sup _{n \geqslant m+1}\left|v_{n}\right|,
$$

and the latter converges to 0 as $m \longrightarrow \infty$, since $\left(v_{n}\right) \longrightarrow 0$. The uniqueness of the coefficients follows in precisely the same way as for Example 3.21.
7. Consider the space ℓ^{∞} of bounded sequences.
(a) Let $S \subseteq \ell^{\infty}$ be the subset of sequences $\left(a_{n}\right)$ such that $a_{n} \in\{0,1\}$ for all $n \in \mathbb{N}$. Prove that S is an uncountable set.
[Hint: Mimic Cantor's diagonal argument.]
(b) Use S to construct an uncountable set T of disjoint open balls in ℓ^{∞}.
(c) Conclude that ℓ^{∞} is not separable.

Solution.

(a) Suppose S is countable and enumerate its elements:

$$
\begin{aligned}
a_{1} & =\left(a_{11}, a_{12}, a_{13}, \ldots\right) \\
a_{2} & =\left(a_{21}, a_{22}, a_{23}, \ldots\right) \\
a_{3} & =\left(a_{31}, a_{32}, a_{33}, \ldots\right) \\
& \vdots
\end{aligned}
$$

Go down the diagonal of this infinite grid of 0 's and 1 's, and define $b_{n}=1-a_{n n}$ for all $n \in \mathbb{N}$. Then $b=\left(b_{n}\right) \in S$, but $b \neq a_{m}$ for any $m \in \mathbb{N}$, contradiction.
(b) If $a=\left(a_{n}\right), b=\left(b_{n}\right) \in S$ with $a \neq b$ then

$$
\|a-b\|=\sup _{n}\left|a_{n}-b_{n}\right|=1
$$

so $\mathbb{B}_{1 / 2}(a) \cap \mathbb{B}_{1 / 2}(b)=\varnothing$.
Therefore we can take

$$
T=\left\{\mathbb{B}_{1 / 2}(s): s \in S\right\}
$$

(c) Any dense subset D of ℓ^{∞} must contain at least one point (in fact, must be dense) in each open ball in the set T. Since T is uncountable, D must also be uncountable, so ℓ^{∞} is not separable.

