Tutorial Week 07

Topics: metric properties of normed spaces

1. Let $(V,\|\cdot\|)$ be a normed space and let $S \subseteq V$ be a subset. Then $\overline{\operatorname{Span}(S)}$ is the smallest closed subspace of V that contains S.

Solution. We know that $\operatorname{Span}(S)$ is a subspace of V, and by Example 3.11 that $\overline{\operatorname{Span}(S)}$ is a closed subspace of V.
Let $W \subseteq V$ be some closed subspace of V that contains S. Then $\operatorname{Span}(S) \subseteq W$, and so $\overline{\operatorname{Span}(S)} \subseteq \bar{W}=W$, whence the minimality property.
2. Let $(V,\|\cdot\|)$ be a normed space and take $r, s>0, u, v \in V, \alpha \in \mathbb{F}^{\times}$. Show that
(a) $\mathbb{B}_{r}(u+v)=\mathbb{B}_{r}(u)+\{v\}$;
(b) $\alpha \mathbb{B}_{1}(0)=\mathbb{B}_{|\alpha|}(0)$;
(c) $\mathbb{B}_{r}(v)=r \mathbb{B}_{1}(0)+\{v\}$;
(d) $r \mathbb{B}_{1}(0)+s \mathbb{B}_{1}(0)=(r+s) \mathbb{B}_{1}(0)$;
(e) $\mathbb{B}_{r}(u)+\mathbb{B}_{s}(v)=\mathbb{B}_{r+s}(u+v)$;
(f) $\mathbb{B}_{1}(0)$ is a convex subset of V;
(g) any open ball in V is convex.

Solution.

(a)

$$
\begin{aligned}
w \in \mathbb{B}_{r}(u+v) & \Longleftrightarrow\|(u+v)-w\|<r \\
& \Longleftrightarrow\|u-(w-v)\|<r \\
& \Longleftrightarrow w-v \in \mathbb{B}_{r}(u) \\
& \Longleftrightarrow w \in \mathbb{B}_{r}(u)+\{v\} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
w \in \alpha \mathbb{B}_{1}(0) & \Longleftrightarrow \frac{1}{\alpha} w \in \mathbb{B}_{1}(0) \\
& \Longleftrightarrow\left\|\frac{1}{\alpha} w\right\|<1 \\
& \Longleftrightarrow\|w\|<|\alpha| \\
& \Longleftrightarrow w \in \mathbb{B}_{|\alpha|}(0) .
\end{aligned}
$$

(c) From (a) and (b):

$$
\mathbb{B}_{r}(v)=\mathbb{B}_{r}(0)+\{v\}=r \mathbb{B}_{1}(0)+\{v\} .
$$

(d) If $\|u\|<r$ and $\|v\|<s$ then $\|u+v\|<r+s$, so $r \mathbb{B}_{1}(0)+s \mathbb{B}_{1}(0) \subseteq(r+s) \mathbb{B}_{1}(0)$.

Conversely, if $\|w\|<r+s$, then

$$
w=\frac{r}{r+s} w+\frac{s}{r+s} w \in r \mathbb{B}_{1}(0)+s \mathbb{B}_{1}(0) .
$$

(e) From (c) and (d):

$$
\mathbb{B}_{r}(u)+\mathbb{B}_{s}(v)=r \mathbb{B}_{1}(0)+s \mathbb{B}_{1}(0)+\{u\}+\{v\}=(r+s) \mathbb{B}_{1}(0)+\{u+v\}=\mathbb{B}_{r+s}(u+v) .
$$

(f) If $u, v \in \mathbb{B}_{1}(0)$ and $0 \leqslant a \leqslant 1$, then by (d)

$$
a u+(1-a) v \in a \mathbb{B}_{1}(0)+(1-a) \mathbb{B}_{1}(0)=(a+1-a) \mathbb{B}_{1}(0)=\mathbb{B}_{1}(0)
$$

$(\mathrm{g}) \mathbb{B}_{r}(u)=r \mathbb{B}_{1}(0)+\{u\}$ is the translate of a convex set, hence is itself convex.
3. Let $(V,\|\cdot\|)$ be a normed space and let S, T be subsets of V and $\alpha \in \mathbb{F}$. Prove that
(a) If S and T are bounded, so are $S+T$ and αS.
(b) If S and T are totally bounded, so are $S+T$ and αS.
(c) If S and T are compact, so are $S+T$ and αS.

Solution.

(a) A subset S of V is bounded if and only if $S \subseteq \mathbb{B}_{s}(0)=s \mathbb{B}_{1}(0)$ for some $s \geqslant 0$. So $S \subseteq s \mathbb{B}_{1}(0)$ and $T \subseteq t \mathbb{B}_{1}(0)$, hence $S+T \subseteq s \mathbb{B}_{1}(0)+t \mathbb{B}_{1}(0)=(s+t) \mathbb{B}_{1}(0)$.
Similarly $\alpha S \subseteq s \alpha \mathbb{B}_{1}(0)=s \mathbb{B}_{|\alpha|}(0)=(s|\alpha|) \mathbb{B}_{1}(0)$.
(b) Let $\varepsilon>0$. Since S and T are totally bounded, they can each be covered by finitely many open balls of radius $\varepsilon / 2$:

$$
\begin{aligned}
& S \subseteq \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon / 2}\left(s_{n}\right) \\
& T \subseteq \bigcup_{m=1}^{M} \mathbb{B}_{\varepsilon / 2}\left(t_{m}\right),
\end{aligned}
$$

but then

$$
S+T \subseteq \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon / 2}\left(s_{n}\right)+\bigcup_{m=1}^{M} \mathbb{B}_{\varepsilon / 2}\left(t_{m}\right)=\bigcup_{n=1}^{N} \bigcup_{m=1}^{M}\left(\mathbb{B}_{\varepsilon / 2}\left(s_{n}\right)+\mathbb{B}_{\varepsilon / 2}\left(t_{m}\right)\right)=\bigcup_{n=1}^{N} \bigcup_{m=1}^{M} \mathbb{B}_{\varepsilon}\left(s_{n}+t_{m}\right) .
$$

For αS, note that S can be covered by finitely many open balls of radius $\varepsilon /|\alpha|$:

$$
S \subseteq \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon /|\alpha|}\left(s_{n}\right),
$$

so that

$$
\alpha S \subseteq \bigcup_{n=1}^{N} \alpha \mathbb{B}_{\varepsilon /|\alpha|}\left(s_{n}\right)=\bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon}\left(s_{n}\right) .
$$

(c) Consider the addition map $a: V \times V \longrightarrow V, a(v, w)=v+w$. We know that it is continuous, so its restriction

$$
\left.a\right|_{S \times T}: S \times T \longrightarrow V, \quad a(s, t)=s+t
$$

is also continuous, and its image is $S+T$. Since S and T are compact, so is $S \times T$, and so is $S+T=a(S \times T)$.
The same argument with scalar multiplication gives compactness of αS.
4. Let $f \in B(V, W)$.
(a) If U is a subspace of V, then its image $f(U)$ is a subspace of W.
(b) If U is a closed subspace of W, then its preimage $f^{-1}(U)$ is a closed subspace of V.
(c) If S is a convex subset of V, then its image $f(S)$ is a convex subset of W.
(d) If S is a convex subset of W, then its preimage $f^{-1}(S)$ is a convex subset of V.

Solution.

(a) Clear since f is linear so it takes vector subspaces to vector subspaces.
(b) Clear since f is linear so the inverse image of a subspace is a subspace; and f is continuous so the inverse image of a closed set is a closed set.
(c) Let $f(s), f(t) \in f(S)$ and let $a, b \geqslant 0$ such that $a+b=1$. We have

$$
a f(s)+b f(t)=f(a s+b t) \in f(S)
$$

where we used the convexity of S to conclude that $a s+b t \in S$.
(d) Let $u, v \in f^{-1}(S)$ and let $a, b \geqslant 0$ such that $a+b=1$. Then

$$
f(a u+b v)=a f(u)+b f(v) \in S,
$$

where we used the convexity of S. We conclude that $a u+b v \in f^{-1}(S)$.
5. Prove that the following subset is a closed subspace of ℓ^{1} :

$$
S=\left\{\left(a_{n}\right) \in \ell^{1}: \sum_{n=1}^{\infty} a_{n}=0\right\} .
$$

Solution. Consider the function $f: \ell^{1} \longrightarrow \mathbb{F}$ given by

$$
f\left(\left(a_{n}\right)\right)=\sum_{n=1}^{\infty} a_{n} .
$$

First note that this is a reasonable definition, because the infinite series on the right hand side converges in \mathbb{F} :

$$
\left|\sum_{n=1}^{N} a_{n}\right| \leqslant \sum_{n=1}^{N}\left|a_{n}\right|,
$$

and the latter converges as $N \longrightarrow \infty$ since $\left(a_{n}\right) \in \ell^{1}$.
The function f is linear. It is also bounded, because as we have just seen:

$$
\left|f\left(\left(a_{n}\right)\right)\right|=\left|\sum_{n=1}^{\infty} a_{n}\right| \leqslant \sum_{n=1}^{\infty}\left|a_{n}\right|=\left\|\left(a_{n}\right)\right\|_{\ell^{1}} .
$$

Hence $f \in B\left(\ell^{1}, \mathbb{F}\right)=\left(\ell^{1}\right)^{\vee}$ and its kernel is S, so S is a closed subspace of ℓ^{1}.
6. Suppose $1 \leqslant p \leqslant q$. Prove that

$$
\ell^{p} \subseteq \ell^{q} .
$$

Show that if $p<q$ then the inclusion is strict: $\ell^{p} \mp \ell^{q}$.

Solution. We prove that

$$
\|x\|_{\ell^{q}} \leqslant\|x\|_{\ell^{p}} \quad \text { for all } x \in \ell^{p} .
$$

If $\|x\|_{\ell^{p}}=0$ then $x=0$ so $\|x\|_{\ell^{q}}=0$ and the inequality obviously holds. So suppose $x \neq 0$, then by dividing through by $\|x\|_{\ell^{p}}$ we can reduce to proving that

$$
\|x\|_{\ell^{q}} \leqslant 1 \quad \text { for all } x \text { such that }\|x\|_{\ell^{p}}=1 .
$$

But if $\|x\|_{\ell^{p}}=1$ then

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}=1,
$$

which means that for all $n \in \mathbb{N}$ we have $\left|x_{n}\right|^{p} \leqslant 1$, so $\left|x_{n}\right| \leqslant 1$. However, $p \leqslant q$ and $\left|x_{n}\right| \leqslant 1$ implies that $\left|x_{n}\right|^{q} \leqslant\left|x_{n}\right|^{p}$ for all $n \in \mathbb{N}$, so that

$$
\|x\|_{\ell^{q}}^{q}=\sum_{n=1}^{\infty}\left|x_{n}\right|^{q} \leqslant \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}=1 .
$$

If $p<q$ then $\alpha:=q / p>1$. For each $n \in \mathbb{N}$, let

$$
x_{n}=\frac{1}{n^{1 / p}},
$$

so that

$$
\left|x_{n}\right|^{p}=\frac{1}{n}, \quad\left|x_{n}\right|^{q}=\frac{1}{n^{\alpha}} .
$$

We have

$$
\left\|\left(x_{n}\right)\right\|_{\ell^{p}}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty, \quad\left\|\left(x_{n}\right)\right\|_{\ell q}=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}<\infty,
$$

so $\left(x_{n}\right) \in \ell^{q} \backslash \ell^{p}$.

