Tutorial Week 07

Topics: metric properties of normed spaces

1. Let $(V, \|\cdot\|)$ be a normed space and let $S \subseteq V$ be a subset. Then $\overline{\text{Span}(S)}$ is the smallest closed subspace of V that contains S.

Solution. We know that Span(S) is a subspace of V, and by Example 3.11 that $\overline{\text{Span}(S)}$ is a closed subspace of V.

Let $W \subseteq V$ be some closed subspace of V that contains S. Then $\text{Span}(S) \subseteq W$, and so $\overline{\text{Span}(S)} \subseteq \overline{W} = W$, whence the minimality property.

- 2. Let $(V, \|\cdot\|)$ be a normed space and take $r, s > 0, u, v \in V, \alpha \in \mathbb{F}^{\times}$. Show that
 - (a) $\mathbb{B}_r(u+v) = \mathbb{B}_r(u) + \{v\};$
 - (b) $\alpha \mathbb{B}_1(0) = \mathbb{B}_{|\alpha|}(0);$
 - (c) $\mathbb{B}_r(v) = r\mathbb{B}_1(0) + \{v\};$
 - (d) $r\mathbb{B}_1(0) + s\mathbb{B}_1(0) = (r+s)\mathbb{B}_1(0);$
 - (e) $\mathbb{B}_r(u) + \mathbb{B}_s(v) = \mathbb{B}_{r+s}(u+v);$
 - (f) $\mathbb{B}_1(0)$ is a convex subset of V;
 - (g) any open ball in V is convex.

Solution.

(a)

$$w \in \mathbb{B}_r(u+v) \iff \|(u+v) - w\| < r$$
$$\iff \|u - (w-v)\| < r$$
$$\iff w - v \in \mathbb{B}_r(u)$$
$$\iff w \in \mathbb{B}_r(u) + \{v\}.$$

(b)

$$w \in \alpha \mathbb{B}_{1}(0) \iff \frac{1}{\alpha} w \in \mathbb{B}_{1}(0)$$
$$\iff \left\| \frac{1}{\alpha} w \right\| < 1$$
$$\iff \|w\| < |\alpha|$$
$$\iff w \in \mathbb{B}_{|\alpha|}(0).$$

(c) From (a) and (b):

$$\mathbb{B}_{r}(v) = \mathbb{B}_{r}(0) + \{v\} = r\mathbb{B}_{1}(0) + \{v\}$$

(d) If ||u|| < r and ||v|| < s then ||u+v|| < r+s, so $r\mathbb{B}_1(0) + s\mathbb{B}_1(0) \subseteq (r+s)\mathbb{B}_1(0)$. Conversely, if ||w|| < r+s, then

$$w = \frac{r}{r+s}w + \frac{s}{r+s}w \in r\mathbb{B}_1(0) + s\mathbb{B}_1(0).$$

(e) From (c) and (d):

$$\mathbb{B}_{r}(u) + \mathbb{B}_{s}(v) = r\mathbb{B}_{1}(0) + s\mathbb{B}_{1}(0) + \{u\} + \{v\} = (r+s)\mathbb{B}_{1}(0) + \{u+v\} = \mathbb{B}_{r+s}(u+v).$$

(f) If $u, v \in \mathbb{B}_1(0)$ and $0 \le a \le 1$, then by (d)

$$au + (1-a)v \in a\mathbb{B}_1(0) + (1-a)\mathbb{B}_1(0) = (a+1-a)\mathbb{B}_1(0) = \mathbb{B}_1(0).$$

- (g) $\mathbb{B}_r(u) = r\mathbb{B}_1(0) + \{u\}$ is the translate of a convex set, hence is itself convex.
- 3. Let $(V, \|\cdot\|)$ be a normed space and let S, T be subsets of V and $\alpha \in \mathbb{F}$. Prove that
 - (a) If S and T are bounded, so are S + T and αS .
 - (b) If S and T are totally bounded, so are S + T and αS .
 - (c) If S and T are compact, so are S + T and αS .

Solution.

- (a) A subset S of V is bounded if and only if $S \subseteq \mathbb{B}_s(0) = s\mathbb{B}_1(0)$ for some $s \ge 0$. So $S \subseteq s\mathbb{B}_1(0)$ and $T \subseteq t\mathbb{B}_1(0)$, hence $S + T \subseteq s\mathbb{B}_1(0) + t\mathbb{B}_1(0) = (s+t)\mathbb{B}_1(0)$. Similarly $\alpha S \subseteq s\alpha \mathbb{B}_1(0) = s\mathbb{B}_{|\alpha|}(0) = (s|\alpha|)\mathbb{B}_1(0)$.
- (b) Let $\varepsilon > 0$. Since S and T are totally bounded, they can each be covered by finitely many open balls of radius $\varepsilon/2$:

$$S \subseteq \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon/2}(s_n)$$
$$T \subseteq \bigcup_{m=1}^{M} \mathbb{B}_{\varepsilon/2}(t_m),$$

but then

$$S+T \subseteq \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon/2}(s_n) + \bigcup_{m=1}^{M} \mathbb{B}_{\varepsilon/2}(t_m) = \bigcup_{n=1}^{N} \bigcup_{m=1}^{M} \left(\mathbb{B}_{\varepsilon/2}(s_n) + \mathbb{B}_{\varepsilon/2}(t_m) \right) = \bigcup_{n=1}^{N} \bigcup_{m=1}^{M} \mathbb{B}_{\varepsilon}(s_n + t_m).$$

For αS , note that S can be covered by finitely many open balls of radius $\varepsilon/|\alpha|$:

$$S \subseteq \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon/|\alpha|}(s_n)$$

so that

$$\alpha S \subseteq \bigcup_{n=1}^{N} \alpha \mathbb{B}_{\varepsilon/|\alpha|}(s_n) = \bigcup_{n=1}^{N} \mathbb{B}_{\varepsilon}(s_n).$$

(c) Consider the addition map $a: V \times V \longrightarrow V$, a(v, w) = v + w. We know that it is continuous, so its restriction

$$a|_{S \times T} \colon S \times T \longrightarrow V, \qquad a(s,t) = s + t$$

is also continuous, and its image is S + T. Since S and T are compact, so is $S \times T$, and so is $S + T = a(S \times T)$.

The same argument with scalar multiplication gives compactness of αS .

- 4. Let $f \in B(V, W)$.
 - (a) If U is a subspace of V, then its image f(U) is a subspace of W.
 - (b) If U is a closed subspace of W, then its preimage $f^{-1}(U)$ is a closed subspace of V.
 - (c) If S is a convex subset of V, then its image f(S) is a convex subset of W.
 - (d) If S is a convex subset of W, then its preimage $f^{-1}(S)$ is a convex subset of V.

Solution.

- (a) Clear since f is linear so it takes vector subspaces to vector subspaces.
- (b) Clear since f is linear so the inverse image of a subspace is a subspace; and f is continuous so the inverse image of a closed set is a closed set.
- (c) Let $f(s), f(t) \in f(S)$ and let $a, b \ge 0$ such that a + b = 1. We have

$$af(s) + bf(t) = f(as + bt) \in f(S),$$

where we used the convexity of S to conclude that $as + bt \in S$.

(d) Let $u, v \in f^{-1}(S)$ and let $a, b \ge 0$ such that a + b = 1. Then

$$f(au + bv) = af(u) + bf(v) \in S,$$

where we used the convexity of S. We conclude that $au + bv \in f^{-1}(S)$.

5. Prove that the following subset is a closed subspace of ℓ^1 :

$$S = \left\{ (a_n) \in \ell^1 \colon \sum_{n=1}^{\infty} a_n = 0 \right\}.$$

Solution. Consider the function $f: \ell^1 \longrightarrow \mathbb{F}$ given by

$$f((a_n)) = \sum_{n=1}^{\infty} a_n$$

First note that this is a reasonable definition, because the infinite series on the right hand side converges in \mathbb{F} :

$$\left|\sum_{n=1}^{N} a_n\right| \leq \sum_{n=1}^{N} |a_n|,$$

and the latter converges as $N \longrightarrow \infty$ since $(a_n) \in \ell^1$.

The function f is linear. It is also bounded, because as we have just seen:

$$|f((a_n))| = \left|\sum_{n=1}^{\infty} a_n\right| \leq \sum_{n=1}^{\infty} |a_n| = ||(a_n)||_{\ell^1}.$$

Hence $f \in B(\ell^1, \mathbb{F}) = (\ell^1)^{\vee}$ and its kernel is S, so S is a closed subspace of ℓ^1 .

6. Suppose $1 \leq p \leq q$. Prove that

$$\ell^p \subseteq \ell^q$$
.

Show that if p < q then the inclusion is strict: $\ell^p \subsetneq \ell^q$.

Solution. We prove that

$$\|x\|_{\ell^q} \leq \|x\|_{\ell^p} \qquad \text{for all } x \in \ell^p.$$

If $||x||_{\ell^p} = 0$ then x = 0 so $||x||_{\ell^q} = 0$ and the inequality obviously holds. So suppose $x \neq 0$, then by dividing through by $||x||_{\ell^p}$ we can reduce to proving that

$$||x||_{\ell^q} \leq 1$$
 for all x such that $||x||_{\ell^p} = 1$.

But if $||x||_{\ell^p} = 1$ then

$$\sum_{n=1}^{\infty} |x_n|^p = 1,$$

which means that for all $n \in \mathbb{N}$ we have $|x_n|^p \leq 1$, so $|x_n| \leq 1$. However, $p \leq q$ and $|x_n| \leq 1$ implies that $|x_n|^q \leq |x_n|^p$ for all $n \in \mathbb{N}$, so that

$$\|x\|_{\ell^q}^q = \sum_{n=1}^{\infty} |x_n|^q \le \sum_{n=1}^{\infty} |x_n|^p = 1.$$

If p < q then $\alpha \coloneqq q/p > 1$. For each $n \in \mathbb{N}$, let

$$x_n = \frac{1}{n^{1/p}},$$

so that

$$|x_n|^p = \frac{1}{n}, \qquad |x_n|^q = \frac{1}{n^\alpha}$$

We have

$$\|(x_n)\|_{\ell^p} = \sum_{n=1}^{\infty} \frac{1}{n} = \infty, \qquad \|(x_n)\|_{\ell^q} = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty,$$

so $(x_n) \in \ell^q \smallsetminus \ell^p$.