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Tutorial Week 07

Topics: metric properties of normed spaces

1. Let (V, ∥ ⋅ ∥) be a normed space and let S ⊆ V be a subset. Then Span(S) is the smallest
closed subspace of V that contains S.

Solution. We know that Span(S) is a subspace of V , and by Example 3.11 that Span(S)
is a closed subspace of V .

Let W ⊆ V be some closed subspace of V that contains S. Then Span(S) ⊆ W , and so

Span(S) ⊆W =W , whence the minimality property.

2. Let (V, ∥ ⋅ ∥) be a normed space and take r, s > 0, u, v ∈ V , α ∈ F×. Show that

(a) Br(u + v) = Br(u) + {v};
(b) αB1(0) = B∣α∣(0);
(c) Br(v) = rB1(0) + {v};
(d) rB1(0) + sB1(0) = (r + s)B1(0);
(e) Br(u) +Bs(v) = Br+s(u + v);
(f) B1(0) is a convex subset of V ;

(g) any open ball in V is convex.

Solution.

(a)

w ∈ Br(u + v) ⇐⇒ ∥(u + v) −w∥ < r
⇐⇒ ∥u − (w − v)∥ < r
⇐⇒ w − v ∈ Br(u)
⇐⇒ w ∈ Br(u) + {v}.

(b)

w ∈ αB1(0) ⇐⇒
1

α
w ∈ B1(0)

⇐⇒ ∥ 1
α
w∥ < 1

⇐⇒ ∥w∥ < ∣α∣
⇐⇒ w ∈ B∣α∣(0).

(c) From (a) and (b):
Br(v) = Br(0) + {v} = rB1(0) + {v}.

(d) If ∥u∥ < r and ∥v∥ < s then ∥u + v∥ < r + s, so rB1(0) + sB1(0) ⊆ (r + s)B1(0).
Conversely, if ∥w∥ < r + s, then

w = r

r + s w +
s

r + s w ∈ rB1(0) + sB1(0).
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(e) From (c) and (d):

Br(u) +Bs(v) = rB1(0) + sB1(0) + {u} + {v} = (r + s)B1(0) + {u + v} = Br+s(u + v).

(f) If u, v ∈ B1(0) and 0 ⩽ a ⩽ 1, then by (d)

au + (1 − a)v ∈ aB1(0) + (1 − a)B1(0) = (a + 1 − a)B1(0) = B1(0).

(g) Br(u) = rB1(0) + {u} is the translate of a convex set, hence is itself convex.

3. Let (V, ∥ ⋅ ∥) be a normed space and let S,T be subsets of V and α ∈ F. Prove that

(a) If S and T are bounded, so are S + T and αS.

(b) If S and T are totally bounded, so are S + T and αS.

(c) If S and T are compact, so are S + T and αS.

Solution.

(a) A subset S of V is bounded if and only if S ⊆ Bs(0) = sB1(0) for some s ⩾ 0. So
S ⊆ sB1(0) and T ⊆ tB1(0), hence S + T ⊆ sB1(0) + tB1(0) = (s + t)B1(0).
Similarly αS ⊆ sαB1(0) = sB∣α∣(0) = (s∣α∣)B1(0).

(b) Let ε > 0. Since S and T are totally bounded, they can each be covered by finitely
many open balls of radius ε/2:

S ⊆
N

⋃
n=1

Bε/2(sn)

T ⊆
M

⋃
m=1

Bε/2(tm),

but then

S + T ⊆
N

⋃
n=1

Bε/2(sn) +
M

⋃
m=1

Bε/2(tm) =
N

⋃
n=1

M

⋃
m=1

(Bε/2(sn) +Bε/2(tm)) =
N

⋃
n=1

M

⋃
m=1

Bε(sn + tm).

For αS, note that S can be covered by finitely many open balls of radius ε/∣α∣:

S ⊆
N

⋃
n=1

Bε/∣α∣(sn),

so that

αS ⊆
N

⋃
n=1

αBε/∣α∣(sn) =
N

⋃
n=1

Bε(sn).

(c) Consider the addition map a ∶ V × V Ð→ V , a(v,w) = v + w. We know that it is
continuous, so its restriction

a∣S×T ∶ S × T Ð→ V, a(s, t) = s + t

is also continuous, and its image is S +T . Since S and T are compact, so is S ×T , and
so is S + T = a(S × T ).
The same argument with scalar multiplication gives compactness of αS.
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4. Let f ∈ B(V,W ).
(a) If U is a subspace of V , then its image f(U) is a subspace of W .

(b) If U is a closed subspace of W , then its preimage f−1(U) is a closed subspace of V .

(c) If S is a convex subset of V , then its image f(S) is a convex subset of W .

(d) If S is a convex subset of W , then its preimage f−1(S) is a convex subset of V .

Solution.

(a) Clear since f is linear so it takes vector subspaces to vector subspaces.

(b) Clear since f is linear so the inverse image of a subspace is a subspace; and f is
continuous so the inverse image of a closed set is a closed set.

(c) Let f(s), f(t) ∈ f(S) and let a, b ⩾ 0 such that a + b = 1. We have

af(s) + bf(t) = f(as + bt) ∈ f(S),

where we used the convexity of S to conclude that as + bt ∈ S.
(d) Let u, v ∈ f−1(S) and let a, b ⩾ 0 such that a + b = 1. Then

f(au + bv) = af(u) + bf(v) ∈ S,

where we used the convexity of S. We conclude that au + bv ∈ f−1(S).

5. Prove that the following subset is a closed subspace of ℓ1:

S = {(an) ∈ ℓ1 ∶
∞

∑
n=1

an = 0} .

Solution. Consider the function f ∶ ℓ1 Ð→ F given by

f((an)) =
∞

∑
n=1

an.

First note that this is a reasonable definition, because the infinite series on the right hand
side converges in F:

∣
N

∑
n=1

an∣ ⩽
N

∑
n=1

∣an∣,

and the latter converges as N Ð→∞ since (an) ∈ ℓ1.
The function f is linear. It is also bounded, because as we have just seen:

∣f((an))∣ = ∣
∞

∑
n=1

an∣ ⩽
∞

∑
n=1

∣an∣ = ∥(an)∥ℓ1 .

Hence f ∈ B(ℓ1,F) = (ℓ1)∨ and its kernel is S, so S is a closed subspace of ℓ1.

6. Suppose 1 ⩽ p ⩽ q. Prove that
ℓp ⊆ ℓq.

Show that if p < q then the inclusion is strict: ℓp ⊊ ℓq.
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Solution. We prove that
∥x∥ℓq ⩽ ∥x∥ℓp for all x ∈ ℓp.

If ∥x∥ℓp = 0 then x = 0 so ∥x∥ℓq = 0 and the inequality obviously holds. So suppose x ≠ 0,
then by dividing through by ∥x∥ℓp we can reduce to proving that

∥x∥ℓq ⩽ 1 for all x such that ∥x∥ℓp = 1.

But if ∥x∥ℓp = 1 then
∞

∑
n=1

∣xn∣p = 1,

which means that for all n ∈ N we have ∣xn∣p ⩽ 1, so ∣xn∣ ⩽ 1. However, p ⩽ q and ∣xn∣ ⩽ 1
implies that ∣xn∣q ⩽ ∣xn∣p for all n ∈ N, so that

∥x∥qℓq =
∞

∑
n=1

∣xn∣q ⩽
∞

∑
n=1

∣xn∣p = 1.

If p < q then α ∶= q/p > 1. For each n ∈ N, let

xn =
1

n1/p
,

so that

∣xn∣p =
1

n
, ∣xn∣q =

1

nα
.

We have

∥(xn)∥ℓp =
∞

∑
n=1

1

n
= ∞, ∥(xn)∥ℓq =

∞

∑
n=1

1

nα
< ∞,

so (xn) ∈ ℓq ∖ ℓp.
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