
MAST30026 Metric and Hilbert Spaces 2023

Tutorial Week 06

Topics: compact sets, normed spaces, inequalities galore.

1. Let (X,dX) and (Y, dY ) be metric spaces, and let d be any conserving metric on X × Y .

(a) Prove that if X and Y are compact, then X × Y is compact.

[Hint : If you’re not sure where to start, try sequential compactness.]

(b) Does the converse hold?

Solution.

(a) Suppose (xn, yn) is a sequence in X × Y . Then (xn) is a sequence in X, and since X is
compact, it follows that (xn) has some converging subsequence (xnk

) Ð→ x ∈ X. Now

consider the sequence (ynk
) in Y . Since Y is compact, it follows that (ynk

) has some

converging subsequence (ynkj
) Ð→ y ∈ Y . Then (xnkj

) is a subsequence of the converging

sequence (xnk
) Ð→ x ∈ X, so that it is itself converging to x ∈ X. We conclude that

(xnkj
, ynkj

) Ð→ (x, y) ∈X × Y and is a subsequence of the original sequence (xn, yn).
(b) The converse does hold, since the projection maps π1 ∶ X × Y Ð→ X, π1(x, y) = x, and

π2 ∶ X × Y Ð→ Y , π2(x, y) = y, are continuous and surjective.

2. Let C be a nonempty compact subset of a metric space (X,d). Prove that there exist points
a, b ∈ C such that

d(a, b) = sup{d(x, y) ∶ x, y ∈ C}.
In other words, the diameter of C is realised as the distance between two points of C.

Solution. As you know from Assignment 1 Question 5, the distance function d ∶ X ×X Ð→ R is
continuous. By Q1, C ×C is compact, so by Example 2.73 there exists (amax, bmax) ∈ C ×C such
that

d(a, b) ⩽ d(amax, bmax) for all (a, b) ∈ C ×C.
Therefore amax, bmax ∈ C realise the diameter of C.

3. A subset S of a vector space V over F is said to be convex if for all v,w ∈ S and all a, b ∈ R⩾0
such that a + b = 1, we have

av + bw ∈ S.
(In other words, for any two points in S, the line segment joining the two points is entirely
contained in S.)

Show that:

(a) Any subspace W of V is convex.

(b) The intersection of an arbitrary collection of convex sets is convex.

(c) Any interval I ⊆ R is convex.

Solution.

(a) Suppose v,w ∈W , a, b ∈ R⩾0 such that a+ b = 1. In particular, a, b ∈ F so av + bw is an F-linear
combination of elements of W . Since W is a subspace, av + bw ∈W .

(b) Suppose I is an arbitrary set and Si is a convex subset of V for all i ∈ I. Let

S = ⋂
i∈I

Si

and let v,w ∈ S, a, b ∈ R⩾0 such that a + b = 1. Then for all i ∈ I we have v,w ∈ Si, so that
av + bw ∈ Si since Si is convex. Therefore av + bw ∈ S.
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(c) Let I ⊆ R be an interval and let v,w ∈ I, a, b ∈ R⩾0 such that a + b = 1.
Without loss of generality, v ⩽ w. Then

av + bw − v = (a − 1)v + bw = b(w − v) ⩾ 0⇒ v ⩽ av + bw

and
av + bw −w = av + (b − 1)w = a(v −w) ⩽ 0⇒ av + bw ⩽ w.

Therefore v ⩽ av + bw ⩽ w, hence av + bw ∈ I by the definition of an interval.

4. If V is a vector space over F and S ⊆ V is a convex set, we say that a function f ∶ S Ð→ R is
convex if for all v,w ∈ S and all a, b ∈ R⩾0 such that a + b = 1, we have

f(av + bw) ⩽ af(v) + bf(w).

Prove that, if (V, ∥ ⋅ ∥) is a normed space, then f ∶ V Ð→ R given by f(v) = ∥v∥ is a convex
function.

Solution. Suppose v,w ∈ S and a, b ∈ R⩾0 such that a + b = 1. Then

f(av + bw) = ∥av + bw∥ ⩽ ∥av∥ + ∥bw∥ = ∣a∣ ∥v∥ + ∣b∣ ∥w∥ = a∥v∥ + b∥w∥ = af(v) + bf(w).

5. (a) Prove that the functions

(i) f ∶ (0,∞) Ð→ R, f(x) = xp, p ⩾ 1 fixed,

(ii) exp ∶ RÐ→ R, exp(x) = ex,

are convex.

[Hint : Use the second-derivative criterion from Q7.]

(b) Conclude that for any p ⩾ 1, any x, y ⩾ 0 and any a, b ⩾ 0 such that a + b = 1, we have

(ax + by)p ⩽ axp + byp.

(c) Conclude that for any x, y ⩾ 0 and any a, b ⩾ 0 such that a + b = 1, we have

xa yb ⩽ ax + by.

[Hint : Set x = es, y = et.]
(d) Show that for any p ⩾ 1 and any x, y ⩾ 0, we have

xp + yp ⩽ (x + y)p.

[Hint : Let t = x/y and compare derivatives to show that tp + 1 ⩽ (t + 1)p.]

Solution.

(a) (i) We have f ′′(x) = p(p − 1)xp−2 ⩾ 0 for all x > 0, as p ⩾ 1.
(ii) We have exp′′(x) = ex ⩾ 0 for all x ∈ R.

(b) This is exactly the definition of xz→ xp being a convex function.

(c) If x = 0 or y = 0, the inequality is trivial, so we may assume x, y > 0. Setting x = es, y = et, we
are trying to prove that

eas+bt ⩽ aes + bet,

which is the same as ex being a convex function.
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(d) If y = 0, the inequality is obvious, so we may assume y > 0. Setting t = x/y, we are trying to
show that

tp + 1 ⩽ (t + 1)p for all t ⩾ 0.
Let f ∶ R⩾0 Ð→ R be given by f(t) = tp + 1, and g(t) ∶ R⩾0 Ð→ R be given by g(t) = (t + 1)p.
We have f(0) = g(0) = 1. Also

f ′(t) = ptp−1 ⩽ p(t + 1)p−1 = g′(t) for all t > 0,

therefore f(t) ⩽ g(t) for all t ⩾ 0, as desired. (There’s an appeal to the Mean Value Theorem
hiding in here, if you want to write out all the details.)

6. Let p ⩾ 1, q > 0, x, y ⩾ 0, and a, b ⩾ 0 such that a + b = 1.
Prove that

min{x, y} ⩽ (ax−q + by−q)−1/q

⩽ xayb

⩽ (ax1/p + by1/p)p

⩽ ax + by

⩽ (axp + byp)1/p

⩽max{x, y}.

Solution. Without loss of generality x ⩽ y so min{x, y} = x and max{x, y} = y.
(a) x ⩽ y so x−1 ⩾ y−1 so x−q ⩾ y−q so bx−q ⩾ by−q so ax−q + bx−q ⩾ ax−q + by−q so

min{x, y} = x = (ax−q + bx−q)−1/q ⩽ (ax−q + by−q)−1/q .

(b) Let X = x−q, Y = y−q, then by Q5 part (c) we have

XaY b ⩽ aX+bY ⇒ x−aqy−bq ⩽ ax−q+by−q ⇒ xaqybq ⩾ (ax−q + by−q)−1 ⇒ (ax−q + by−q)−1/q ⩽ xayb.

(c) Similar to (b), use Q5 part (c) with X = x1/p, Y = y1/p.
(d) Use Q5 part (b) with X = x1/p, Y = y1/p.
(e) Precisely Q5 part (b).

(f) Similar to (a).

7. Let I ⊆ R be an interval and let f ∶ I Ð→ R be a twice-differentiable function.

The aim of this Exercise is to check the familiar calculus fact: f is convex if and only if f ′′(x) ⩾ 0
for all x ∈ I.
It was heavily inspired by Alexander Nagel’s Wisconsin notes:

https://people.math.wisc.edu/~ajnagel/convexity.pdf

(a) For any s, t ∈ I with s < t, define the linear function Ls,t ∶ [s, t] Ð→ R by

Ls,t(x) = f(s) + (
x − s
t − s )

(f(t) − f(s)).

Convince yourself that this is the equation of the secant line joining (s, f(s)) to (t, f(t)).
Prove that f is convex on I if any only if

f(x) ⩽ Ls,t(x) for all s, t ∈ I such that s < t and all s ⩽ x ⩽ t.
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(b) Check that for all s, t ∈ I such that s < t we have

Ls,t(x) − f(x) =
x − s
t − s

(f(t) − f(x)) − t − x
t − s

(f(x) − f(s)).

(c) Use the Mean Value Theorem for f twice to prove that there exist ξ, ζ with x < ξ < t and
s < ζ < x such that

Ls,t(x) − f(x) =
(t − x)(x − s)

t − s
(f ′(ξ) − f ′(ζ)).

(d) Use the Mean Value Theorem once more to conclude that if f ′′(x) ⩾ 0 for all x ∈ I, then f is
convex on I.

(e) Now we prove the converse. From this point on, assume that f ∶ I Ð→ R is twice-differentiable
and convex, and let s, t ∈ I○.
1. Show that if s < x < t then

f(x) − f(s)
x − s ⩽ f(t) − f(x)

t − x .

2. Conclude that if s < x1 < x2 < t then

f(x1) − f(s)
x1 − s

⩽ f(t) − f(x2)
t − x2

.

3. Conclude that if s < t then f ′(s) ⩽ f ′(t), and finally that f ′′(x) ⩾ 0 on I.

Solution. Parts (b)–(d) are pretty thoroughly discussed in the above reference if you need more
guidance, so I’ll just do parts (a) and (e).

(a) In the definition of convex function, take v = s, w = t, a = (t− x)/(t− s), b = (x− s)/(t− s), so
that av + bw = x. Then we know that

f(x) ⩽ t − x
t − s f(s) + x − s

t − s f(t) = f(s) + x − s
t − s

(f(t) − f(s)) = Ls,t(x).

The other direction is straightforward.

(e) 1. From part (a) we have
f(x) − f(s)

x − s ⩽ f(t) − f(s)
t − s .

Cross-multiplying, we end up with

x(f(t) − f(s)) − s(f(t) − f(x)) − t(f(x) − f(s)) ⩾ 0,

which is also equivalent to the inequality we are trying to prove.

2. Apply the previous part twice, first with s < x1 < x2 and then with x1 < x2 < t, to get

f(x1) − f(s)
x1 − s

⩽ f(x2) − f(x1)
x2 − x1

⩽ f(t) − f(x2)
t − x2

.

3. Following from the previous part, we have

f ′(s) = lim
x1↘s

f(x1) − f(s)
x1 − s

⩽ lim
x2↗t

f(t) − f(x2)
t − x2

= f ′(t).

This implies that f ′ is an increasing function on I○, therefore f ′′(x) ⩾ 0 on I○.
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