Tutorial Week 06

Topics: compact sets, normed spaces, inequalities galore.

1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and let d be any conserving metric on $X \times Y$.
(a) Prove that if X and Y are compact, then $X \times Y$ is compact.
[Hint: If you're not sure where to start, try sequential compactness.]
(b) Does the converse hold?

Solution.

(a) Suppose $\left(x_{n}, y_{n}\right)$ is a sequence in $X \times Y$. Then $\left(x_{n}\right)$ is a sequence in X, and since X is compact, it follows that $\left(x_{n}\right)$ has some converging subsequence $\left(x_{n_{k}}\right) \longrightarrow x \in X$. Now consider the sequence $\left(y_{n_{k}}\right)$ in Y. Since Y is compact, it follows that $\left(y_{n_{k}}\right)$ has some converging subsequence $\left(y_{n_{k_{j}}}\right) \longrightarrow y \in Y$. Then $\left(x_{n_{k_{j}}}\right)$ is a subsequence of the converging sequence $\left(x_{n_{k}}\right) \longrightarrow x \in X$, so that it is itself converging to $x \in X$. We conclude that $\left(x_{n_{k_{j}}}, y_{n_{k_{j}}}\right) \longrightarrow(x, y) \in X \times Y$ and is a subsequence of the original sequence $\left(x_{n}, y_{n}\right)$.
(b) The converse does hold, since the projection maps $\pi_{1}: X \times Y \longrightarrow X, \pi_{1}(x, y)=x$, and $\pi_{2}: X \times Y \longrightarrow Y, \pi_{2}(x, y)=y$, are continuous and surjective.
2. Let C be a nonempty compact subset of a metric space (X, d). Prove that there exist points $a, b \in C$ such that

$$
d(a, b)=\sup \{d(x, y): x, y \in C\}
$$

In other words, the diameter of C is realised as the distance between two points of C.

Solution. As you know from Assignment 1 Question 5, the distance function $d: X \times X \longrightarrow \mathbb{R}$ is continuous. By Q1, $C \times C$ is compact, so by Example 2.73 there exists $\left(a_{\max }, b_{\max }\right) \in C \times C$ such that

$$
d(a, b) \leqslant d\left(a_{\max }, b_{\max }\right) \quad \text { for all }(a, b) \in C \times C
$$

Therefore $a_{\max }, b_{\max } \in C$ realise the diameter of C.
3. A subset S of a vector space V over \mathbb{F} is said to be convex if for all $v, w \in S$ and all $a, b \in \mathbb{R}_{\geqslant 0}$ such that $a+b=1$, we have

$$
a v+b w \in S
$$

(In other words, for any two points in S, the line segment joining the two points is entirely contained in S.)
Show that:
(a) Any subspace W of V is convex.
(b) The intersection of an arbitrary collection of convex sets is convex.
(c) Any interval $I \subseteq \mathbb{R}$ is convex.

Solution.

(a) Suppose $v, w \in W, a, b \in \mathbb{R}_{\geqslant 0}$ such that $a+b=1$. In particular, $a, b \in \mathbb{F}$ so $a v+b w$ is an \mathbb{F}-linear combination of elements of W. Since W is a subspace, $a v+b w \in W$.
(b) Suppose I is an arbitrary set and S_{i} is a convex subset of V for all $i \in I$. Let

$$
S=\bigcap_{i \in I} S_{i}
$$

and let $v, w \in S, a, b \in \mathbb{R}_{\geqslant 0}$ such that $a+b=1$. Then for all $i \in I$ we have $v, w \in S_{i}$, so that $a v+b w \in S_{i}$ since S_{i} is convex. Therefore $a v+b w \in S$.
(c) Let $I \subseteq \mathbb{R}$ be an interval and let $v, w \in I, a, b \in \mathbb{R}_{\geqslant 0}$ such that $a+b=1$.

Without loss of generality, $v \leqslant w$. Then

$$
a v+b w-v=(a-1) v+b w=b(w-v) \geqslant 0 \Rightarrow v \leqslant a v+b w
$$

and

$$
a v+b w-w=a v+(b-1) w=a(v-w) \leqslant 0 \Rightarrow a v+b w \leqslant w
$$

Therefore $v \leqslant a v+b w \leqslant w$, hence $a v+b w \in I$ by the definition of an interval.
4. If V is a vector space over \mathbb{F} and $S \subseteq V$ is a convex set, we say that a function $f: S \longrightarrow \mathbb{R}$ is convex if for all $v, w \in S$ and all $a, b \in \mathbb{R}_{\geqslant 0}$ such that $a+b=1$, we have

$$
f(a v+b w) \leqslant a f(v)+b f(w)
$$

Prove that, if $(V,\|\cdot\|)$ is a normed space, then $f: V \longrightarrow \mathbb{R}$ given by $f(v)=\|v\|$ is a convex function.

Solution. Suppose $v, w \in S$ and $a, b \in \mathbb{R}_{\geqslant 0}$ such that $a+b=1$. Then

$$
f(a v+b w)=\|a v+b w\| \leqslant\|a v\|+\|b w\|=|a|\|v\|+|b|\|w\|=a\|v\|+b\|w\|=a f(v)+b f(w) .
$$

5. (a) Prove that the functions

$$
\begin{aligned}
& \text { (i) } \quad f:(0, \infty) \longrightarrow \mathbb{R}, \quad f(x)=x^{p}, \quad p \geqslant 1 \text { fixed, } \\
& \text { (ii) } \exp : \mathbb{R} \longrightarrow \mathbb{R}, \quad \exp (x)=e^{x}
\end{aligned}
$$

are convex.
[Hint: Use the second-derivative criterion from Q7.]
(b) Conclude that for any $p \geqslant 1$, any $x, y \geqslant 0$ and any $a, b \geqslant 0$ such that $a+b=1$, we have

$$
(a x+b y)^{p} \leqslant a x^{p}+b y^{p} .
$$

(c) Conclude that for any $x, y \geqslant 0$ and any $a, b \geqslant 0$ such that $a+b=1$, we have

$$
x^{a} y^{b} \leqslant a x+b y
$$

[Hint: Set $x=e^{s}, y=e^{t}$.]
(d) Show that for any $p \geqslant 1$ and any $x, y \geqslant 0$, we have

$$
x^{p}+y^{p} \leqslant(x+y)^{p} .
$$

[Hint: Let $t=x / y$ and compare derivatives to show that $t^{p}+1 \leqslant(t+1)^{p}$.]

Solution.

(a) (i) We have $f^{\prime \prime}(x)=p(p-1) x^{p-2} \geqslant 0$ for all $x>0$, as $p \geqslant 1$.
(ii) We have $\exp ^{\prime \prime}(x)=e^{x} \geqslant 0$ for all $x \in \mathbb{R}$.
(b) This is exactly the definition of $x \longmapsto x^{p}$ being a convex function.
(c) If $x=0$ or $y=0$, the inequality is trivial, so we may assume $x, y>0$. Setting $x=e^{s}, y=e^{t}$, we are trying to prove that

$$
e^{a s+b t} \leqslant a e^{s}+b e^{t}
$$

which is the same as e^{x} being a convex function.
(d) If $y=0$, the inequality is obvious, so we may assume $y>0$. Setting $t=x / y$, we are trying to show that

$$
t^{p}+1 \leqslant(t+1)^{p} \quad \text { for all } t \geqslant 0 .
$$

Let $f: \mathbb{R}_{\geqslant 0} \longrightarrow \mathbb{R}$ be given by $f(t)=t^{p}+1$, and $g(t): \mathbb{R}_{\geqslant 0} \longrightarrow \mathbb{R}$ be given by $g(t)=(t+1)^{p}$. We have $f(0)=g(0)=1$. Also

$$
f^{\prime}(t)=p t^{p-1} \leqslant p(t+1)^{p-1}=g^{\prime}(t) \quad \text { for all } t>0
$$

therefore $f(t) \leqslant g(t)$ for all $t \geqslant 0$, as desired. (There's an appeal to the Mean Value Theorem hiding in here, if you want to write out all the details.)
6. Let $p \geqslant 1, q>0, x, y \geqslant 0$, and $a, b \geqslant 0$ such that $a+b=1$.

Prove that

$$
\begin{aligned}
\min \{x, y\} & \leqslant\left(a x^{-q}+b y^{-q}\right)^{-1 / q} \\
& \leqslant x^{a} y^{b} \\
& \leqslant\left(a x^{1 / p}+b y^{1 / p}\right)^{p} \\
& \leqslant a x+b y \\
& \leqslant\left(a x^{p}+b y^{p}\right)^{1 / p} \\
& \leqslant \max \{x, y\}
\end{aligned}
$$

Solution. Without loss of generality $x \leqslant y$ so $\min \{x, y\}=x$ and $\max \{x, y\}=y$.
(a) $x \leqslant y$ so $x^{-1} \geqslant y^{-1}$ so $x^{-q} \geqslant y^{-q}$ so $b x^{-q} \geqslant b y^{-q}$ so $a x^{-q}+b x^{-q} \geqslant a x^{-q}+b y^{-q}$ so

$$
\min \{x, y\}=x=\left(a x^{-q}+b x^{-q}\right)^{-1 / q} \leqslant\left(a x^{-q}+b y^{-q}\right)^{-1 / q}
$$

(b) Let $X=x^{-q}, Y=y^{-q}$, then by Q5 part (c) we have

$$
X^{a} Y^{b} \leqslant a X+b Y \Rightarrow x^{-a q} y^{-b q} \leqslant a x^{-q}+b y^{-q} \Rightarrow x^{a q} y^{b q} \geqslant\left(a x^{-q}+b y^{-q}\right)^{-1} \Rightarrow\left(a x^{-q}+b y^{-q}\right)^{-1 / q} \leqslant x^{a} y^{b}
$$

(c) Similar to (b), use Q5 part (c) with $X=x^{1 / p}, Y=y^{1 / p}$.
(d) Use Q5 part (b) with $X=x^{1 / p}, Y=y^{1 / p}$.
(e) Precisely Q5 part (b).
(f) Similar to (a).
7. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \longrightarrow \mathbb{R}$ be a twice-differentiable function.

The aim of this Exercise is to check the familiar calculus fact: f is convex if and only if $f^{\prime \prime}(x) \geqslant 0$ for all $x \in I$.
It was heavily inspired by Alexander Nagel's Wisconsin notes:

> https://people.math.wisc.edu/~ajnagel/convexity.pdf
(a) For any $s, t \in I$ with $s<t$, define the linear function $L_{s, t}:[s, t] \longrightarrow \mathbb{R}$ by

$$
L_{s, t}(x)=f(s)+\left(\frac{x-s}{t-s}\right)(f(t)-f(s))
$$

Convince yourself that this is the equation of the secant line joining $(s, f(s))$ to $(t, f(t))$. Prove that f is convex on I if any only if

$$
f(x) \leqslant L_{s, t}(x) \quad \text { for all } s, t \in I \text { such that } s<t \text { and all } s \leqslant x \leqslant t
$$

(b) Check that for all $s, t \in I$ such that $s<t$ we have

$$
L_{s, t}(x)-f(x)=\frac{x-s}{t-s}(f(t)-f(x))-\frac{t-x}{t-s}(f(x)-f(s)) .
$$

(c) Use the Mean Value Theorem for f twice to prove that there exist ξ, ζ with $x<\xi<t$ and $s<\zeta<x$ such that

$$
L_{s, t}(x)-f(x)=\frac{(t-x)(x-s)}{t-s}\left(f^{\prime}(\xi)-f^{\prime}(\zeta)\right)
$$

(d) Use the Mean Value Theorem once more to conclude that if $f^{\prime \prime}(x) \geqslant 0$ for all $x \in I$, then f is convex on I.
(e) Now we prove the converse. From this point on, assume that $f: I \longrightarrow \mathbb{R}$ is twice-differentiable and convex, and let $s, t \in I^{\circ}$.

1. Show that if $s<x<t$ then

$$
\frac{f(x)-f(s)}{x-s} \leqslant \frac{f(t)-f(x)}{t-x}
$$

2. Conclude that if $s<x_{1}<x_{2}<t$ then

$$
\frac{f\left(x_{1}\right)-f(s)}{x_{1}-s} \leqslant \frac{f(t)-f\left(x_{2}\right)}{t-x_{2}} .
$$

3. Conclude that if $s<t$ then $f^{\prime}(s) \leqslant f^{\prime}(t)$, and finally that $f^{\prime \prime}(x) \geqslant 0$ on I.

Solution. Parts (b)-(d) are pretty thoroughly discussed in the above reference if you need more guidance, so I'll just do parts (a) and (e).
(a) In the definition of convex function, take $v=s, w=t, a=(t-x) /(t-s), b=(x-s) /(t-s)$, so that $a v+b w=x$. Then we know that

$$
f(x) \leqslant \frac{t-x}{t-s} f(s)+\frac{x-s}{t-s} f(t)=f(s)+\frac{x-s}{t-s}(f(t)-f(s))=L_{s, t}(x) .
$$

The other direction is straightforward.
(e) 1. From part (a) we have

$$
\frac{f(x)-f(s)}{x-s} \leqslant \frac{f(t)-f(s)}{t-s} .
$$

Cross-multiplying, we end up with

$$
x(f(t)-f(s))-s(f(t)-f(x))-t(f(x)-f(s)) \geqslant 0
$$

which is also equivalent to the inequality we are trying to prove.
2. Apply the previous part twice, first with $s<x_{1}<x_{2}$ and then with $x_{1}<x_{2}<t$, to get

$$
\frac{f\left(x_{1}\right)-f(s)}{x_{1}-s} \leqslant \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant \frac{f(t)-f\left(x_{2}\right)}{t-x_{2}} .
$$

3. Following from the previous part, we have

$$
f^{\prime}(s)=\lim _{x_{1} \searrow s} \frac{f\left(x_{1}\right)-f(s)}{x_{1}-s} \leqslant \lim _{x_{2} \nsim t} \frac{f(t)-f\left(x_{2}\right)}{t-x_{2}}=f^{\prime}(t) .
$$

This implies that f^{\prime} is an increasing function on I°, therefore $f^{\prime \prime}(x) \geqslant 0$ on I°.

