Tutorial Week 05

Topics: connected, bounded, compact sets.

1. Let A and C be connected subsets of a metric space (X, d). Prove that if $A \cap C \neq \varnothing$, then $A \cup C$ is connected.

Solution. Suppose $A \cup C$ is disconnected, so that $A \cup C=U \cup V$ with U, V nonempty, disjoint, and open in $A \cup C$.
Then $A=(A \cap U) \cup(A \cap V)$, with $A \cap U, A \cap V$ disjoint and open in A. As A is connected, $A \cap U$ or $A \cap V$ must be empty. Without loss of generality, say $A \cap U=\varnothing$, so that $A \subseteq V$.

We can apply the same argument to C and get that $C \cap U$ or $C \cap V$ is empty. Since $A \cap C \neq \varnothing$, it must be that $C \cap U=\varnothing$ and $C \subseteq V$.

But then $U \cup V=A \cup C \subseteq V$, implying that $U \subseteq V$, contradicting the fact that $U \cap V=\varnothing$ and $U \neq \varnothing$.
2. Let (X, d) be a metric space. Suppose $A \subseteq X$ is a connected subset and $\left\{C_{i}: i \in I\right\}$ is an arbitrary collection of connected subsets of X such that $A \cap C_{i} \neq \varnothing$ for all $i \in I$. Then

$$
A \cup \bigcup_{i \in I} C_{i}
$$

is a connected subset of X.
[Hint: Use the argument from Q1.]
Solution. Suppose

$$
A \cup \bigcup_{i \in I} C_{i}=U \cup V,
$$

with U, V nonempty disjoint open sets. Then $A=(A \cap U) \cup(A \cap V)$, but A is connected so one of these intersections must be empty, say $A \cap U=\varnothing$.

But $U \subseteq A \cup \bigcup_{i \in I} C_{i}$, so there must be some $i \in I$ such that $U \cap C_{i} \neq \varnothing$ (otherwise $U=\varnothing$, contradiction). Since $C_{i}=\left(C_{i} \cap U\right) \cup\left(C_{i} \cap V\right)$ and C_{i} is connected, we must have $C_{i} \cap V=\varnothing$, therefore $C_{i} \subseteq U$.
But this forces $A \cap C_{i} \subseteq A \cap U=\varnothing$, contradicting $A \cap C_{i} \neq \varnothing$ for all $i \in I$.
3. Let (X, d) be a metric space. Suppose $\left\{C_{n}: n \in \mathbb{N}\right\}$ is a countable collection of connected subsets of X such that $C_{n} \cap C_{n+1} \neq \varnothing$ for all $n \in \mathbb{N}$. Then

$$
\bigcup_{n \in \mathbb{N}} C_{n}
$$

is a connected subset of X.
[Hint: Build the union inductively, and use Q1 and Q2.]
Solution. For any $N \in \mathbb{N}$, let

$$
A_{N}=\bigcup_{n=1}^{N} C_{n} .
$$

We use induction to prove that A_{N} is connected for all $N \in \mathbb{N}$.
The base case $N=1$ is clear as $A_{1}=C_{1}$.

For the induction step, fix $N \in \mathbb{N}$ and suppose A_{N} is connected. Then $A_{N+1}=A_{N} \cup C_{N+1}$ is connected by Q1.
So $\left\{A_{N}: N \in \mathbb{N}\right\}$ is a collection of connected sets, and A_{1} is a connected set such that $A_{1} \cap A_{N} \neq \varnothing$ for all $N \in \mathbb{N}$. By Q2,

$$
A_{1} \cup \bigcup_{N \in \mathbb{N}} A_{N}=\bigcup_{N \in \mathbb{N}} A_{N}=\bigcup_{n \in \mathbb{N}} C_{n}
$$

is connected.
4. Let (X, d) be a metric space and define $x \sim x^{\prime}$ if there exists a connected subset $C \subset X$ such that $x, x^{\prime} \in C$.
Prove that this is an equivalence relation on the set X thereby partitioning X into a disjoint union of maximal connected subsets (these are called the connected components of $X)$.
[Hint: Recall that an equivalence relation has three defining axioms: (a) $x \sim x$ for all $x \in X$;
(b) if $x \sim x^{\prime}$ then $x^{\prime} \sim x$; (c) if $x \sim x^{\prime}$ and $x^{\prime} \sim x^{\prime \prime}$ then $x \sim x^{\prime \prime}$.]

Solution.

(a) $x \sim x$: for any $x \in X$, the set $C=\{x\}$ is connected and contains x, so $x \sim x$.
(b) if $x \sim x^{\prime}$ then $x^{\prime} \sim x$: clear from the definition, which does not distinguish x and x^{\prime}.
(c) if $x \sim x^{\prime}$ and $x^{\prime} \sim x^{\prime \prime}$ then $x \sim x^{\prime \prime}$: since $x \sim x^{\prime}$ there exists a connected set C_{1} such that $x, x^{\prime} \in C_{1}$; since $x^{\prime} \sim x^{\prime \prime}$ there exists a connected set C_{2} such that $x^{\prime}, x^{\prime \prime} \in C_{2}$; by Q1, since C_{1} and C_{2} are connected and $x^{\prime} \in C_{1} \cap C_{2}$, the union $C_{1} \cup C_{2}$ is connected, and it contains both x and $x^{\prime \prime}$, so that $x \sim x^{\prime \prime}$.
5. Give explicit continuous surjective functions $f: \mathbb{R} \longrightarrow I$, where I is:
(a) \mathbb{R}
(b) $(0, \infty)$
(c) $(-\infty, 0)$
(d) $(-\infty, 0]$
(e) $[-1,1]$
(f) $(0,1]$
(g) $[0,1)$
(h) $(-\pi / 2, \pi / 2)$
(i) $\{0\}$.
[Hint: Draw some functions you know from calculus and see what their ranges are.]
Solution. These are of course not the only possible answers (well, except for the last one).
(a) $x \longmapsto x$;
(b) $x \longmapsto e^{x}$;
(c) $x \longmapsto-e^{x}$;
(d) $x \longmapsto-x^{2}$;
(e) $x \longmapsto \sin (x)$;
(f) $x \longmapsto \min \left\{e^{x}, 1\right\}$;
(g) $x \longmapsto \max \left\{-e^{x},-1\right\}+1$;
(h) $x \longmapsto \arctan (x)$;
(i) $x \longmapsto 0$.
6. Let (X, d) be a metric space.

If A and B are bounded sets with $A \cap B \neq \varnothing$, then

$$
\operatorname{diam}(A \cup B) \leqslant \operatorname{diam}(A)+\operatorname{diam}(B)
$$

Solution. It suffices to show that for any $x, y \in A \cup B$ we have

$$
d(x, y) \leqslant \operatorname{diam}(A)+\operatorname{diam}(B) .
$$

If $x, y \in A$, this is obvious as $d(x, y) \leqslant \operatorname{diam}(A)$. Similarly if $x, y \in B$.
It remains to see what happens if $x \in A$ and $y \in B$. Let $t \in A \cap B$. We have

$$
d(x, y) \leqslant d(x, t)+d(t, y) \leqslant \operatorname{diam}(A)+\operatorname{diam}(B)
$$

as desired.
7. Let C be a closed subset of a compact subset K of a metric space (X, d). Prove that C is compact.
[Hint: $K \subseteq X=C \cup(X \backslash C)$.]
Solution. Consider an arbitrary open cover of C :

$$
C \subseteq \bigcup_{i \in I} U_{i} .
$$

Then we have

$$
K \subseteq X=C \cup(X \backslash C) \subseteq\left(\bigcup_{i \in I} U_{i}\right) \cup(X \backslash C),
$$

which is an open cover of K. As K is compact, there is a finite subcover, so that

$$
K \subseteq\left(\bigcup_{n=1}^{N} U_{i_{n}}\right) \cup(X \backslash C), \quad i_{n} \in I,
$$

hence

$$
C \subseteq \bigcup_{n=1}^{N} U_{i_{n}} .
$$

8. Let K and L be compact subsets of a metric space (X, d). Prove that $K \cup L$ is compact.

Solution. Consider an arbitrary open cover of $K \cup L$:

$$
K \cup L \subseteq \bigcup_{i \in I} U_{i} .
$$

This is also an open cover of K, so there is a finite subcover that still covers K :

$$
K \subseteq \bigcup_{n=1}^{N} U_{i_{n}}, \quad i_{n} \in I .
$$

Similarly, we get a finite subcover that covers L :

$$
L \subseteq \bigcup_{m=1}^{M} U_{j_{m}}, \quad j_{m} \in I
$$

Letting $S=\left\{i_{1}, \ldots, i_{N}\right\} \cup\left\{j_{1}, \ldots, j_{M}\right\}$, we get a finite subcover that covers $K \cup L$:

$$
K \cup L \subseteq \bigcup_{s \in S} U_{s} .
$$

