Tutorial Week 05

Topics: connected, bounded, compact sets.

1. Let A and C be connected subsets of a metric space (X, d). Prove that if $A \cap C \neq \emptyset$, then $A \cup C$ is connected.

Solution. Suppose $A \cup C$ is disconnected, so that $A \cup C = U \cup V$ with U, V nonempty, disjoint, and open in $A \cup C$.

Then $A = (A \cap U) \cup (A \cap V)$, with $A \cap U, A \cap V$ disjoint and open in A. As A is connected, $A \cap U$ or $A \cap V$ must be empty. Without loss of generality, say $A \cap U = \emptyset$, so that $A \subseteq V$.

We can apply the same argument to C and get that $C \cap U$ or $C \cap V$ is empty. Since $A \cap C \neq \emptyset$, it must be that $C \cap U = \emptyset$ and $C \subseteq V$.

But then $U \cup V = A \cup C \subseteq V$, implying that $U \subseteq V$, contradicting the fact that $U \cap V = \emptyset$ and $U \neq \emptyset$.

2. Let (X,d) be a metric space. Suppose $A \subseteq X$ is a connected subset and $\{C_i : i \in I\}$ is an arbitrary collection of connected subsets of X such that $A \cap C_i \neq \emptyset$ for all $i \in I$. Then

$$A \cup \bigcup_{i \in I} C_i$$

is a connected subset of X.

[*Hint*: Use the argument from Q1.]

Solution. Suppose

$$A \cup \bigcup_{i \in I} C_i = U \cup V,$$

with U, V nonempty disjoint open sets. Then $A = (A \cap U) \cup (A \cap V)$, but A is connected so one of these intersections must be empty, say $A \cap U = \emptyset$.

But $U \subseteq A \cup \bigcup_{i \in I} C_i$, so there must be some $i \in I$ such that $U \cap C_i \neq \emptyset$ (otherwise $U = \emptyset$, contradiction). Since $C_i = (C_i \cap U) \cup (C_i \cap V)$ and C_i is connected, we must have $C_i \cap V = \emptyset$, therefore $C_i \subseteq U$.

But this forces $A \cap C_i \subseteq A \cap U = \emptyset$, contradicting $A \cap C_i \neq \emptyset$ for all $i \in I$.

3. Let (X, d) be a metric space. Suppose $\{C_n \colon n \in \mathbb{N}\}$ is a countable collection of connected subsets of X such that $C_n \cap C_{n+1} \neq \emptyset$ for all $n \in \mathbb{N}$. Then

$$\bigcup_{n\in\mathbb{N}}C_n$$

is a connected subset of X.

[*Hint*: Build the union inductively, and use Q1 and Q2.]

Solution. For any $N \in \mathbb{N}$, let

$$A_N = \bigcup_{n=1}^N C_n.$$

We use induction to prove that A_N is connected for all $N \in \mathbb{N}$.

The base case N = 1 is clear as $A_1 = C_1$.

For the induction step, fix $N \in \mathbb{N}$ and suppose A_N is connected. Then $A_{N+1} = A_N \cup C_{N+1}$ is connected by Q1.

So $\{A_N \colon N \in \mathbb{N}\}$ is a collection of connected sets, and A_1 is a connected set such that $A_1 \cap A_N \neq \emptyset$ for all $N \in \mathbb{N}$. By Q2,

$$A_1 \cup \bigcup_{N \in \mathbb{N}} A_N = \bigcup_{N \in \mathbb{N}} A_N = \bigcup_{n \in \mathbb{N}} C_n$$

is connected.

4. Let (X, d) be a metric space and define $x \sim x'$ if there exists a connected subset $C \subset X$ such that $x, x' \in C$.

Prove that this is an equivalence relation on the set X thereby partitioning X into a disjoint union of maximal connected subsets (these are called the *connected components* of X).

[*Hint*: Recall that an equivalence relation has three defining axioms: (a) $x \sim x$ for all $x \in X$; (b) if $x \sim x'$ then $x' \sim x$; (c) if $x \sim x'$ and $x' \sim x''$ then $x \sim x''$.]

Solution.

- (a) $x \sim x$: for any $x \in X$, the set $C = \{x\}$ is connected and contains x, so $x \sim x$.
- (b) if $x \sim x'$ then $x' \sim x$: clear from the definition, which does not distinguish x and x'.
- (c) if $x \sim x'$ and $x' \sim x''$ then $x \sim x''$: since $x \sim x'$ there exists a connected set C_1 such that $x, x' \in C_1$; since $x' \sim x''$ there exists a connected set C_2 such that $x', x'' \in C_2$; by Q1, since C_1 and C_2 are connected and $x' \in C_1 \cap C_2$, the union $C_1 \cup C_2$ is connected, and it contains both x and x'', so that $x \sim x''$.
- 5. Give explicit continuous surjective functions $f : \mathbb{R} \longrightarrow I$, where I is:

(a)
$$\mathbb{R}$$
 (b) $(0,\infty)$ (c) $(-\infty,0)$ (d) $(-\infty,0]$ (e) $[-1,1]$
(f) $(0,1]$ (g) $[0,1)$ (h) $(-\pi/2,\pi/2)$ (i) $\{0\}$.

[*Hint*: Draw some functions you know from calculus and see what their ranges are.]

Solution. These are of course not the only possible answers (well, except for the last one).

(a)
$$x \mapsto x;$$

(b) $x \mapsto e^{x};$
(c) $x \mapsto -e^{x};$
(d) $x \mapsto -x^{2};$
(e) $x \mapsto \sin(x);$
(f) $x \mapsto \min\{e^{x}, 1\};$
(g) $x \mapsto \max\{-e^{x}, -1\};$
(h) $x \mapsto \arctan(x);$
(i) $x \mapsto 0.$

 $\} + 1;$

6. Let (X, d) be a metric space.

If A and B are bounded sets with $A \cap B \neq \emptyset$, then

$$\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B).$$

Solution. It suffices to show that for any $x, y \in A \cup B$ we have

$$d(x,y) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$$

If $x, y \in A$, this is obvious as $d(x, y) \leq \text{diam}(A)$. Similarly if $x, y \in B$.

It remains to see what happens if $x \in A$ and $y \in B$. Let $t \in A \cap B$. We have

$$d(x,y) \leq d(x,t) + d(t,y) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$$

as desired.

7. Let C be a closed subset of a compact subset K of a metric space (X, d). Prove that C is compact.

 $[Hint: K \subseteq X = C \cup (X \smallsetminus C).]$

Solution. Consider an arbitrary open cover of C:

$$C \subseteq \bigcup_{i \in I} U_i$$

Then we have

$$K \subseteq X = C \cup (X \setminus C) \subseteq \left(\bigcup_{i \in I} U_i\right) \cup (X \setminus C),$$

which is an open cover of K. As K is compact, there is a finite subcover, so that

$$K \subseteq \left(\bigcup_{n=1}^{N} U_{i_n}\right) \cup \left(X \smallsetminus C\right), \qquad i_n \in I,$$
$$C \subseteq \bigcup_{n=1}^{N} U_{i_n}.$$

hence

8. Let K and L be compact subsets of a metric space (X, d). Prove that $K \cup L$ is compact. Solution. Consider an arbitrary open cover of $K \cup L$:

$$K \cup L \subseteq \bigcup_{i \in I} U_i.$$

This is also an open cover of K, so there is a finite subcover that still covers K:

$$K \subseteq \bigcup_{n=1}^{N} U_{i_n}, \qquad i_n \in I$$

Similarly, we get a finite subcover that covers L:

$$L \subseteq \bigcup_{m=1}^{M} U_{j_m}, \qquad j_m \in I.$$

Letting $S = \{i_1, \ldots, i_N\} \cup \{j_1, \ldots, j_M\}$, we get a finite subcover that covers $K \cup L$:

$$K \cup L \subseteq \bigcup_{s \in S} U_s.$$

L		
L		
L		
L		J