MAST30026 Metric and Hilbert Spaces 2023

Tutorial Week 04

Topics: completeness, uniform continuity.

1. Let (X,dx) and (Y, dy) be metric spaces and let d be a conserving metric on X x Y.

(a) Prove that the sequence ((xn,¥,)) is Cauchy in X x Y if and only if (z,,) is Cauchy in
X and (y,) is Cauchy in Y.

(b) Prove that if X and Y are complete then X x Y is complete. Is the converse true?

Solution.
(a) Suppose ((a:n,yn)) is a Cauchy sequence in (X xY,d). Fix € > 0. There exists N € N
such that for all m,n > N we have
dX(xma xn) < max {dX(xma zn); dY(ym7 yn)} < d((l‘m, ym)7 (Ina yn)) <g,
so (z,) is Cauchy in X. Similarly, (y,) is Cauchy in Y.

Conversely, suppose (z,) is Cauchy in X and (y,) is Cauchy in Y. Fix ¢ > 0. Let
N, €N be such that for all m,n > N, we have dx(x,,,z,) < /2. Let N, ¢ N be such
that for all m,n > N, we have dy (ym,yn) < €/2. Let N = max{N,, N,}, then for all
m,n > N we have

A((@m, Ym), (Tn, Yn)) < dx (T, ) + dy (Y, Yn) <&,
SO ((a?n,yn)) is Cauchy in X x Y.

(b) Let ((xn,yn)) be a Cauchy sequence in X xY. By part (a), (z,) is Cauchy in X
and (y,) is Cauchy in Y. Since X and Y are complete, we have (x,) — x € X and
(yn) — y € Y. By Exercise 2.22, ((zn,yn)) — (2,y) e X x Y.

The converse also holds: suppose X x Y is complete. Let (x,) be a Cauchy sequence
in X, and fix some y € Y. Then by (a) we have that ((mn,y)) is Cauchy in X x Y, so

((:Un,y)) —> (z,y) € X x Y, which by Exercise 2.22 implies that (z,) — z € X. The
same proof gives us that Y is complete.

O
2. Any distance-preserving function is uniformly continuous.
Solution. This is immediate from the definitions (can take § = ¢). [

3. Check (directly from the definition of uniform continuity) that f: R.q — R, given by
f(z) = 2 is not uniformly continuous.

Solution. First make sure that you negate the condition in the definition correctly: there

exists € > 0 such that for all § > 0 there exists 2/ € Bs(x) such that f(z') ¢ B.(f(z)).

And now, to work: let ¢ = 1. Take an arbitrary 6 > 0. Set = min{d,1}. I claim that
x' := x/2 satisfies the desired condition. Let’s check:

)
|x—x|=§<§<5,
so indeed x' € Bs(z).
Also 111 o2 1
f@) - f@I= |5 -S| -2 =52 1-e
X s xr a xr
so indeed f(z') ¢ B.(f(z)). O
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4. Let f: X — Y be a uniformly continuous function between two metric spaces and suppose
(z,,) ~ (27,) are equivalent sequences in X. Prove that (f(2,)) ~ (f(z},)) as sequences in
Y.

Does the conclusion hold if f is only assumed to be continuous?

Solution. Let € > 0. As f is uniformly continuous, there exists § > 0 such that for all
z,x' € X if dx(x,2") < then dy (f(x), f(x')) <e. As (z,) ~ (), there exists N € N such
that dx(x,,z!) < for all n > N. Hence for all n > N we have dy (f(x,), f(z])) <e.

The result does not hold in general for continuous functions; for instance one can take
f: Rog — Ryg given by f () = 1, and (1/n) ~ (1/n?) but (f(1/n)) = (n), (f(1/n?)) = (n?)
and (n) ¢ (n?). O

5. Let (X,dx) and (Y, dy) be metric spaces and f: X — Y a surjective continuous function.
Suppose that X is complete and for all xq, 25 € X we have

dX($1, $2) < dY(f(ml)v f($2))

(a) Prove that Y is complete.
In particular, distance-preserving maps preserve completeness.

(b) Do you feel strongly that uniformly continuous functions ought to preserve complete-
ness? (After all, they preserve Cauchy sequences, and completeness is defined in terms
of Cauchy sequences.)

Prove that f: R — (-m/2,7/2) given by f(x) = arctan(x) is uniformly continuous,
but. ..

Solution.

(a) Let (y,) be a Cauchy sequence in Y. For each n € N, let z,, € f~1(y,). I claim that
(z,,) is a Cauchy sequence in X. Fix € >0. Let N € N be such that for all m,n> N
we have dy (Ym,yn) < €. Then for all m,n > N we have

dx (Tm, Tn) < dY(f(xm)af(ﬁn)) = dy (Ym, Yn) <&,

so (z,,) is indeed Cauchy in X.

Since X is complete, we have (x,,) — x € X, so that by the continuity of f we conclude
that (g) = (f(20)) — f(z) € Y.

(b) Given x; < x5, apply the Mean Value Theorem to f(x) = arctan(x) on [z1,z2] to get
some & € (x1,x2) such that

(@)= F@0l =17 ©)lfea =1 = g bra =l <loa .

So for any € > 0 we can take § = ¢ and conclude that f is uniformly continuous.
It is also surjective onto (—7/2,7/2), but the latter is of course not complete.
O

6. Any Cauchy sequence (z,,) is bounded, that is there exists C' > 0 such that d(z,,z,,) <C
for all n,m e N.
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Solution. Let N € N be such that for all m,n > N we have d(z,,z,) < 1.
Let B = max{d(zmy,zn): 1<m<N}. Let C' =2B+1, then we have

1<C ifm,nzN
d(@m,xn) S d(Tp,zn) +d(zy,2,) < B+1<C ifm<N,nzN
d(zp,xy) +d(zy,x,) <2B<C if m,n < N.

]

7. Suppose A and B are abelian groups. A function f: A — B is called additive if
fla+b)=f(a)+ f(b).
(a) Prove that every additive function f: A — B satisfies

f(0)=0 and  f(-a)=-f(a).

(b) Let V' be a Q-vector space. Prove that every additive function f: Q — V' is Q-linear.
(c) What can you say (and prove) about continuous additive functions R — R?

(d) Suppose that f: R — R is additive and continuous at 0. Prove that f is continuous
on R, and conclude that f is R-linear.

(e) Let B be a basis for R as a Q-vector space. (Recall from Exercise 1.5 that B is
uncountable.) Use two distinct irrational elements of B to construct a Q-linear
transformation f: R — R that is not R-linear.

If you would (and why wouldn’t you?), follow the rabbit:

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation

Solution.

(a) f(0)=f(0+0)=f(0)+f(0)so f(0)=0.
f(=a)+ f(a) = f(-a+a)=f(0) =0.

(b) Let v=f(1)eV.

For n e N we have
F) = f(L+1+-+1)= f(1)+-+ f(1) = no.
For m e N we have
st s{Ee ) ()
so f(1/m) = (1/m)v.

Therefore, for any n,m € N we have

n 1 n
6 R G e
Combining this with f(-a) =-f(a) and f(0) =0, we conclude that f(z) =zv=2xzf(1)
for all z € Q.


https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation
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(c)

Let f: R — R be additive. Let g: Q — R be the restriction of f to Q ¢ R. Let
a=g(1)=f(1).

By part (b), g(¢) = qg(1) = qa for all ¢ € Q. Let 2 € R. As Q is dense in R, there is
some sequence (g,) — = with ¢, € Q; since f is continuous we have

f(@)=f( Jim_g,)= lim f(ga) = lim g(gn) = lim (gna) =za=xf(1).

Hence f is R-linear.
Let z e R. Fix € >0. Let 6 >0 be such that if |t| <, then |f(t)| <e.
Suppose x’ € R is such that |z — 2/| < §, then

1f(x) - f(@)] =|f(x-2")| <e.

So f is continuous at every = € R, so by part (c¢) f is R-linear.

Let B be a Q-basis for R. Exactly one element of B is a nonzero rational, and without
loss of generality we may assume it is 1. Since B is uncountable, it also contains
uncountably many irrationals. Let b,c € Bn (]R N Q). Consider the bijective function
o0: B — B given by

o(b) =c, o(c) =0, o(z)=x for all x € B~ {b,c}.

Since B is a Q-basis of R, ¢ extends by Q-linearity to a Q-linear transformation
f: R— R. In particular, f is additive.

Suppose that f is R-linear, then:

c=f(b)=bf(1)=b1=b,

contradicting the fact that b # c.



