Tutorial Week 03

Topics: convergence of sequences, continuous functions, nowhere dense sets, equivalence of metrics

1. Let X and Y be two metric spaces and endow the Cartesian product $X \times Y$ with the Manhattan metric from Example 2.3. Prove that a sequence $((x_n, y_n))$ in $X \times Y$ converges to (x, y) if and only if (x_n) converges to x and (y_n) converges to y.

Solution. By definition,

$$d((x_n, y_n), (x, y)) = d_X(x_n, x) + d_Y(y_n, y).$$

Suppose $(x_n) \longrightarrow x$ and $(y_n) \longrightarrow y$. Let $\varepsilon > 0$, $N_x \in \mathbb{N}$ such that $x_n \in \mathbb{B}_{\varepsilon/2}(x)$ for all $n \ge N_x$, and $N_y \in \mathbb{N}$ such that $y_n \in \mathbb{B}_{\varepsilon/2}(y)$ for all $n \ge N_y$. Set $N = \max\{N_x, N_y\}$, then

$$d((x_n, y_n), (x, y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ for all } n \ge N.$$

Conversely, suppose $((x_n, y_n)) \longrightarrow (x, y)$. Given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $(x_n, y_n) \in \mathbb{B}_{\varepsilon}((x, y))$ for all $n \ge N$, therefore

$$d_X(x_n, x) + d_Y(y_n, y) = d((x_n, y_n), (x, y)) < \varepsilon$$

Since both d_X and d_Y are non-negative, we conclude that each summand is strictly bounded by ε for all $n \ge N$.

Let (x_n) be a sequence in X, let φ: N → N be an injective function, and consider the sequence (y_n) = (x_{φ(n)}) in X. Prove that if (x_n) converges to x, then so does (y_n). Does the converse hold?

Solution. Suppose $(x_n) \to x$. Given $\varepsilon > 0$, let $N \in \mathbb{N}$ be such that $x_n \in \mathbb{B}_{\varepsilon}(x)$ for all $n \ge N$. Since $\varphi \colon \mathbb{N} \to \mathbb{N}$ is injective, the inverse image $\varphi^{-1}(\{1, \ldots, N-1\})$ is a finite set, so it has a maximal element M. (If the set is empty, just take M = 0.) For all $n \ge M + 1$, we have $\varphi(n) \ge N$, so $y_n = x_{\varphi(n)} \in \mathbb{B}_{\varepsilon}(x)$.

The converse certainly does not hold. For instance, take $(x_n) = (1, 0, 1, 0, 1, 0, ...)$ and $\varphi(n) = 2n$, then the sequence $(y_n) = (0, 0, 0, ...)$ converges to 0 but (x_n) does not converge.

3.

(a) Let $f: X \longrightarrow Y$ be a function between two sets X and Y, and let $S \subseteq Y$. Prove that

$$f^{-1}(S) = X \smallsetminus f^{-1}(Y \smallsetminus S).$$

(b) Let $f: X \longrightarrow Y$ be a function between metric spaces. Prove that f is continuous if and only if: for any closed subset $C \subseteq Y$, the inverse image $f^{-1}(C) \subseteq X$ is a closed subset.

Solution.

(a) We have $x \in f^{-1}(S)$ iff $f(x) \in S$ iff $f(x) \notin (Y \setminus S)$ iff $x \notin f^{-1}(Y \setminus S)$.

(b) Suppose f is continuous and $C \subseteq Y$ is closed. By part (a) we have

$$f^{-1}(C) = X \smallsetminus f^{-1}(Y \smallsetminus C).$$

Then $(Y \setminus C) \subseteq Y$ is open, so by Example 2.26, $f^{-1}(Y \setminus C) \subseteq X$ is open, therefore $f^{-1}(C)$ is closed.

Conversely, suppose the inverse image of any closed subset is closed. Let $V \subseteq Y$ be open, then by part (a) we have

$$f^{-1}(V) = X \smallsetminus f^{-1}(Y \smallsetminus V).$$

So $(Y \setminus V) \subseteq Y$ is closed, so $f^{-1}(Y \setminus V) \subseteq X$ is closed, hence $f^{-1}(V)$ is open. By Example 2.26, f is continuous.

4. Show that if $f: X \longrightarrow Y$ is a continuous map between metric spaces and $A \subseteq X$ then $f(\overline{A}) \subseteq \overline{f(A)}$.

Solution. Let $x \in \overline{A}$, let y = f(x), and suppose that $y \notin \overline{f(A)}$. By Exercise 2.9 part (a), there exists an open neighbourhood $V \subseteq (Y \setminus f(A))$ with $y \in V$. As f is continuous, there exists an open neighbourhood $U \subseteq X$ of x with $f(U) \subseteq V$; as V does not intersect f(A), we get that U does not intersect A, contradicting the fact that $x \in \overline{A}$.

5. Give \mathbb{N} the metric induced from \mathbb{R} . Let (X, d) be a metric space and (x_n) a sequence in X. Prove that (x_n) is a continuous function $\mathbb{N} \longrightarrow X$.

Solution. First note that the induced metric on $\mathbb{N} \subseteq \mathbb{R}$ is equivalent to the discrete metric: for any $n \in \mathbb{N}$, we have $\{n\} = (n-1, n+1) \cap \mathbb{N}$, so $\{n\}$ is open in \mathbb{N} . Therefore every subset of \mathbb{N} is open, hence every function $\mathbb{N} \longrightarrow X$ is continuous. \Box

6.

(a) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions, where X, Y, Z are sets, and let $S \subseteq Z$. Then

$$f^{-1}(g^{-1}(S)) = (g \circ f)^{-1}(S).$$

(b) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous functions, where X, Y, Z are metric spaces. Prove that $g \circ f: X \longrightarrow Z$ is continuous.

Solution.

- (a) We have $x \in (g \circ f)^{-1}(S)$ iff $(g \circ f)(x) \in S$ iff $g(f(x)) \in S$ iff $f(x) \in g^{-1}(S)$ iff $x \in f^{-1}(g^{-1}(S))$.
- (b) Let $W \subseteq Z$ be open. As $g: Y \longrightarrow Z$ is continuous, $g^{-1}(W) \subseteq Y$ is open. As $f: X \longrightarrow Y$ is continuous, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \subseteq X$ is open. So $g \circ f$ is continuous.

7. Let $f: X \longrightarrow Y$ be a continuous map between metric spaces and let $S \subseteq Y$ be such that $f(X) \subseteq S$. Endowing S with the metric induced from Y, show that $f: X \longrightarrow S$ is continuous.

Solution. Since $f(X) \subseteq S$, we have that $f^{-1}(Y \setminus S) = \emptyset$.

Let $W \subseteq S$ be open in (the induced metric on) S, then there exists $V \subseteq Y$ open in Ysuch that $W = V \cap S$. Since $f: X \longrightarrow Y$ is continuous, we have that $U := f^{-1}(V)$ is open in X. But $f^{-1}(V) = f^{-1}(V \cap S) \cup f^{-1}(V \setminus S)$, and $f^{-1}(V \setminus S) \subseteq f^{-1}(Y \setminus S) = \emptyset$, so $f^{-1}(V) = f^{-1}(V \cap S) = f^{-1}(W)$ is open in X. \Box

8. Let $g_1: X \longrightarrow Y_1$ and $g_2: X \longrightarrow Y_2$ be continuous maps, with X, Y_1, Y_2 metric spaces. Define $f: X \longrightarrow Y_1 \times Y_2$ by $f(x) = (g_1(x), g_2(x))$. Endow $Y_1 \times Y_2$ with the Manhattan metric.

Show that f is continuous if and only if both g_1 and g_2 are continuous.

Solution. The function f is continuous iff for any sequence $(x_n) \to x \in X$, we have $(f(x_n)) \to f(x) \in Y_1 \times Y_2$, in other words $(g_1(x_n), g_2(x_n)) \to (g_1(x), g_2(x)) \in Y_1 \times Y_2$. But by Exercise 2.22, the latter holds iff $(g_1(x_n)) \to g_1(x) \in Y_1$ and $(g_2(x_n)) \to g_2(x) \in Y_2$, which precisely says that both g_1 and g_2 are continuous.

9. If A and B are subsets of a metric space (X, d), then

$$\overline{A \cup B} = \overline{A} \cup \overline{B}.$$

Solution. By Exercise 2.9 part (b), $A \subseteq A \cup B$ implies $\overline{A} \subseteq \overline{A \cup B}$, and similarly for $\overline{B} \subseteq \overline{A \cup B}$.

For the other inclusion, note that by Example 2.15, $\overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$, so by the minimality of the closure Exercise 2.9, $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

- 10. Let (X, d) be a metric space.
 - (a) Prove that any subset of a nowhere dense subset of X is nowhere dense in X.
 - (b) Prove that a subset $N \subseteq X$ is nowhere dense if and only if $X \setminus \overline{N}$ is dense in X.
 - (c) Prove that the union of any finite collection of nowhere dense subsets of X is nowhere dense in X.

Solution.

- (a) Let $N \subseteq X$ be nowhere dense and let $M \subseteq N$. Then $\overline{M} \subseteq \overline{N}$ by Exercise 2.9 part (b), so $(\overline{M})^{\circ} \subseteq (\overline{N})^{\circ} = \emptyset$ by Exercise 2.3.
- (b) Suppose N is nowhere dense and let $U \subseteq X$ be nonempty and open. If $U \cap (X \setminus \overline{N}) = \emptyset$, then $U \subseteq \overline{N}$, so $U \subseteq (\overline{N})^{\circ} = \emptyset$, contradicting the non-emptiness of U. So it must be that U intersects $X \setminus \overline{N}$ nontrivially, hence $X \setminus \overline{N}$ is dense.

Conversely, suppose $X \times \overline{N}$ is dense but N is not nowhere dense, that is there exists a nonempty open $U \subseteq \overline{N}$. Then $U \cap (X \setminus \overline{N}) = \emptyset$, contradicting the denseness of $X \setminus \overline{N}$.

(c) It suffices to prove the case of two nowhere dense sets M and N. Let $L = M \cup N$. Then by Exercise 2.30 we have $\overline{L} = \overline{M} \cup \overline{N}$ so $X \setminus \overline{L} = (X \setminus \overline{M}) \cap (X \setminus \overline{N})$. As $X \setminus \overline{L}$ is the union of two dense open subsets, it is dense and open by Exercise 2.12, hence L is nowhere dense.

- (a) Show that the relation " d_1 is finer than d_2 " on metrics on X gives rise to a relation " $[d_1]$ is finer than $[d_2]$ " on equivalence classes of metrics on X.
- (b) Show that the latter is a partial order on the set of equivalence classes of metrics on X.
- (c) In the statement from part (b), can we remove the words "equivalence classes of"?
- (d) Show that the partial order from part (b) has a unique maximal element.

Solution.

(a) First we note that the relation "is finer than" on metrics is transitive: if d_1 is finer than d_2 and d_2 is finer than d_3 then d_1 is finer than d_3 . (This is clear from any of the equivalent definitions in Proposition 2.27.)

Next we show that the relation "is finer than" on equivalence classes of metrics is well-defined. Let [d] denote the equivalence class of a metric d. We say that a class $[d_1]$ is finer than a class $[d_2]$ if the metric d_1 is finer than the metric d_2 . To check well-definedness of this concept, suppose that d'_1 is a metric equivalent to d_1 , and d'_2 is a metric equivalent to d_2 . Is is true that d'_1 is finer than d'_2 ? Well, d'_1 is finer than d_1 , which is finer than d_2 , which is finer than d'_2 , so the answer is yes, by transitivity.

(b) Given a class [d], it is true that d is a finer metric than d, so [d] is a finer class than [d].

If $[d_1]$ is a finer class than $[d_2]$ and $[d_2]$ is a finer class than $[d_1]$, then d_1 is a finer metric than d_2 and d_2 is a finer metric than d_1 , hence d_1 and d_2 are equivalent metrics, so $[d_1] = [d_2]$.

Finally, suppose $[d_1]$ is a finer class than $[d_2]$, which is a finer class than $[d_3]$. Then d_1 is a finer metric than d_2 , which is a finer metric than d_3 , so by the transitivity we saw in part (a), d_1 is a finer metric than d_3 , so $[d_1]$ is a finer class than $[d_3]$.

- (c) Not in general, as for metrics, d_1 finer than d_2 and d_2 finer than d_1 does not necessarily imply that $d_1 = d_2$, only that they are equivalent metrics.
- (d) The unique maximal element is the equivalence class of the discrete metric on X, as it is clear that the discrete metric is finer than any metric on X.