
MAST30026 Metric and Hilbert Spaces 2023

Tutorial Week 03

Topics: convergence of sequences, continuous functions, nowhere dense sets, equivalence of
metrics

1. Let X and Y be two metric spaces and endow the Cartesian product X × Y with the
Manhattan metric from Example 2.3. Prove that a sequence ((xn, yn)) in X ×Y converges
to (x, y) if and only if (xn) converges to x and (yn) converges to y.

Solution. By definition,

d((xn, yn), (x, y)) = dX(xn, x) + dY (yn, y).

Suppose (xn) Ð→ x and (yn) Ð→ y. Let ε > 0, Nx ∈ N such that xn ∈ Bε/2(x) for all n ⩾ Nx,
and Ny ∈ N such that yn ∈ Bε/2(y) for all n ⩾ Ny. Set N =max{Nx,Ny}, then

d((xn, yn), (x, y)) <
ε

2
+
ε

2
= ε for all n ⩾ N.

Conversely, suppose ((xn, yn)) Ð→ (x, y). Given ε > 0 there exists N ∈ N such that

(xn, yn) ∈ Bε((x, y)) for all n ⩾ N , therefore

dX(xn, x) + dY (yn, y) = d((xn, yn), (x, y)) < ε.

Since both dX and dY are non-negative, we conclude that each summand is strictly bounded
by ε for all n ⩾ N .

2. Let (xn) be a sequence in X, let φ ∶ N Ð→ N be an injective function, and consider the
sequence (yn) = (xφ(n)) in X. Prove that if (xn) converges to x, then so does (yn).

Does the converse hold?

Solution. Suppose (xn) Ð→ x. Given ε > 0, let N ∈ N be such that xn ∈ Bε(x) for all n ⩾ N .

Since φ ∶ NÐ→ N is injective, the inverse image φ−1({1, . . . ,N − 1}) is a finite set, so it has
a maximal element M . (If the set is empty, just take M = 0.) For all n ⩾M + 1, we have
φ(n) ⩾ N , so yn = xφ(n) ∈ Bε(x).

The converse certainly does not hold. For instance, take (xn) = (1,0,1,0,1,0, . . . ) and
φ(n) = 2n, then the sequence (yn) = (0, 0, 0, . . . ) converges to 0 but (xn) does not converge.

3.

(a) Let f ∶ X Ð→ Y be a function between two sets X and Y , and let S ⊆ Y . Prove that

f−1(S) =X ∖ f−1(Y ∖ S).

(b) Let f ∶ X Ð→ Y be a function between metric spaces. Prove that f is continuous if and
only if: for any closed subset C ⊆ Y , the inverse image f−1(C) ⊆X is a closed subset.

Solution.

(a) We have x ∈ f−1(S) iff f(x) ∈ S iff f(x) ∉ (Y ∖ S) iff x ∉ f−1(Y ∖ S).
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(b) Suppose f is continuous and C ⊆ Y is closed. By part (a) we have

f−1(C) =X ∖ f−1(Y ∖C).

Then (Y ∖ C) ⊆ Y is open, so by Example 2.26, f−1(Y ∖ C) ⊆ X is open, therefore
f−1(C) is closed.

Conversely, suppose the inverse image of any closed subset is closed. Let V ⊆ Y be
open, then by part (a) we have

f−1(V ) =X ∖ f−1(Y ∖ V ).

So (Y ∖ V ) ⊆ Y is closed, so f−1(Y ∖ V ) ⊆X is closed, hence f−1(V ) is open. By Ex-
ample 2.26, f is continuous.

4. Show that if f ∶ X Ð→ Y is a continuous map between metric spaces and A ⊆ X then
f(A) ⊆ f(A).

Solution. Let x ∈ A, let y = f(x), and suppose that y ∉ f(A). By Exercise 2.9 part (a),
there exists an open neighbourhood V ⊆ (Y ∖ f(A)) with y ∈ V . As f is continuous, there
exists an open neighbourhood U ⊆ X of x with f(U) ⊆ V ; as V does not intersect f(A),
we get that U does not intersect A, contradicting the fact that x ∈ A.

5. Give N the metric induced from R. Let (X,d) be a metric space and (xn) a sequence in
X. Prove that (xn) is a continuous function NÐ→X.

Solution. First note that the induced metric on N ⊆ R is equivalent to the discrete metric:
for any n ∈ N, we have {n} = (n− 1, n+ 1) ∩N, so {n} is open in N. Therefore every subset
of N is open, hence every function NÐ→X is continuous.

6.

(a) Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be functions, where X, Y , Z are sets, and let S ⊆ Z.
Then

f−1(g−1(S)) = (g ○ f)−1(S).

(b) Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be continuous functions, where X, Y , Z are metric
spaces. Prove that g ○ f ∶ X Ð→ Z is continuous.

Solution.

(a) We have x ∈ (g ○ f)−1(S) iff (g ○ f)(x) ∈ S iff g(f(x)) ∈ S iff f(x) ∈ g−1(S) iff
x ∈ f−1(g−1(S)).

(b) Let W ⊆ Z be open. As g ∶ Y Ð→ Z is continuous, g−1(W ) ⊆ Y is open. As f ∶ X Ð→ Y
is continuous, (g ○ f)−1(W ) = f−1(g−1(W )) ⊆X is open. So g ○ f is continuous.

7. Let f ∶ X Ð→ Y be a continuous map between metric spaces and let S ⊆ Y be such
that f(X) ⊆ S. Endowing S with the metric induced from Y , show that f ∶ X Ð→ S is
continuous.
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Solution. Since f(X) ⊆ S, we have that f−1(Y ∖ S) = ∅.

Let W ⊆ S be open in (the induced metric on) S, then there exists V ⊆ Y open in Y
such that W = V ∩ S. Since f ∶ X Ð→ Y is continuous, we have that U ∶= f−1(V ) is
open in X. But f−1(V ) = f−1(V ∩ S) ∪ f−1(V ∖ S), and f−1(V ∖ S) ⊆ f−1(Y ∖ S) = ∅, so
f−1(V ) = f−1(V ∩ S) = f−1(W ) is open in X.

8. Let g1 ∶ X Ð→ Y1 and g2 ∶ X Ð→ Y2 be continuous maps, with X, Y1, Y2 metric spaces.

Define f ∶ X Ð→ Y1 × Y2 by f(x) = (g1(x), g2(x)). Endow Y1 × Y2 with the Manhattan
metric.

Show that f is continuous if and only if both g1 and g2 are continuous.

Solution. The function f is continuous iff for any sequence (xn) Ð→ x ∈ X, we have
(f(xn)) Ð→ f(x) ∈ Y1×Y2, in other words (g1(xn), g2(xn)) Ð→ (g1(x), g2(x)) ∈ Y1×Y2. But

by Exercise 2.22, the latter holds iff (g1(xn)) Ð→ g1(x) ∈ Y1 and (g2(xn)) Ð→ g2(x) ∈ Y2,
which precisely says that both g1 and g2 are continuous.

9. If A and B are subsets of a metric space (X,d), then

A ∪B = A ∪B.

Solution. By Exercise 2.9 part (b), A ⊆ A ∪ B implies A ⊆ A ∪B, and similarly for
B ⊆ A ∪B.

For the other inclusion, note that by Example 2.15, A ∪B is a closed set containing A ∪B,
so by the minimality of the closure Exercise 2.9, A ∪B ⊆ A ∪B.

10. Let (X,d) be a metric space.

(a) Prove that any subset of a nowhere dense subset of X is nowhere dense in X.

(b) Prove that a subset N ⊆X is nowhere dense if and only if X ∖N is dense in X.

(c) Prove that the union of any finite collection of nowhere dense subsets of X is nowhere
dense in X.

Solution.

(a) Let N ⊆X be nowhere dense and let M ⊆ N . Then M ⊆ N by Exercise 2.9 part (b),
so (M)

○

⊆ (N)
○

= ∅ by Exercise 2.3.

(b) Suppose N is nowhere dense and let U ⊆X be nonempty and open. If U ∩(X ∖N) = ∅,

then U ⊆ N , so U ⊆ (N)
○

= ∅, contradicting the non-emptiness of U . So it must be

that U intersects X ∖N nontrivially, hence X ∖N is dense.

Conversely, suppose X ∖N is dense but N is not nowhere dense, that is there exists a
nonempty open U ⊆ N . Then U ∩ (X ∖N) = ∅, contradicting the denseness of X ∖N .

(c) It suffices to prove the case of two nowhere dense sets M and N . Let L = M ∪N .
Then by Exercise 2.30 we have L =M ∪N so X ∖L = (X ∖M) ∩ (X ∖N). As X ∖L
is the union of two dense open subsets, it is dense and open by Exercise 2.12, hence L
is nowhere dense.

11. Let X be a set.

3



MAST30026 Metric and Hilbert Spaces 2023

(a) Show that the relation “d1 is finer than d2” on metrics on X gives rise to a relation
“[d1] is finer than [d2]” on equivalence classes of metrics on X.

(b) Show that the latter is a partial order on the set of equivalence classes of metrics on X.

(c) In the statement from part (b), can we remove the words “equivalence classes of”?

(d) Show that the partial order from part (b) has a unique maximal element.

Solution.

(a) First we note that the relation “is finer than” on metrics is transitive: if d1 is finer
than d2 and d2 is finer than d3 then d1 is finer than d3. (This is clear from any of the
equivalent definitions in Proposition 2.27.)

Next we show that the relation “is finer than” on equivalence classes of metrics is
well-defined. Let [d] denote the equivalence class of a metric d. We say that a class
[d1] is finer than a class [d2] if the metric d1 is finer than the metric d2. To check
well-definedness of this concept, suppose that d′1 is a metric equivalent to d1, and d′2 is
a metric equivalent to d2. Is is true that d′1 is finer than d′2? Well, d′1 is finer than d1,
which is finer than d2, which is finer than d′2, so the answer is yes, by transitivity.

(b) Given a class [d], it is true that d is a finer metric than d, so [d] is a finer class than
[d].

If [d1] is a finer class than [d2] and [d2] is a finer class than [d1], then d1 is a finer
metric than d2 and d2 is a finer metric than d1, hence d1 and d2 are equivalent metrics,
so [d1] = [d2].

Finally, suppose [d1] is a finer class than [d2], which is a finer class than [d3]. Then
d1 is a finer metric than d2, which is a finer metric than d3, so by the transitivity we
saw in part (a), d1 is a finer metric than d3, so [d1] is a finer class than [d3].

(c) Not in general, as for metrics, d1 finer than d2 and d2 finer than d1 does not necessarily
imply that d1 = d2, only that they are equivalent metrics.

(d) The unique maximal element is the equivalence class of the discrete metric on X, as it
is clear that the discrete metric is finer than any metric on X.
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