Tutorial Week 03

Topics: convergence of sequences, continuous functions, nowhere dense sets, equivalence of metrics

1. Let X and Y be two metric spaces and endow the Cartesian product $X \times Y$ with the Manhattan metric from Example 2.3. Prove that a sequence $\left(\left(x_{n}, y_{n}\right)\right)$ in $X \times Y$ converges to (x, y) if and only if $\left(x_{n}\right)$ converges to x and $\left(y_{n}\right)$ converges to y.

Solution. By definition,

$$
d\left(\left(x_{n}, y_{n}\right),(x, y)\right)=d_{X}\left(x_{n}, x\right)+d_{Y}\left(y_{n}, y\right) .
$$

Suppose $\left(x_{n}\right) \longrightarrow x$ and $\left(y_{n}\right) \longrightarrow y$. Let $\varepsilon>0, N_{x} \in \mathbb{N}$ such that $x_{n} \in \mathbb{B}_{\varepsilon / 2}(x)$ for all $n \geqslant N_{x}$, and $N_{y} \in \mathbb{N}$ such that $y_{n} \in \mathbb{B}_{\varepsilon / 2}(y)$ for all $n \geqslant N_{y}$. Set $N=\max \left\{N_{x}, N_{y}\right\}$, then

$$
d\left(\left(x_{n}, y_{n}\right),(x, y)\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text { for all } n \geqslant N .
$$

Conversely, suppose $\left(\left(x_{n}, y_{n}\right)\right) \longrightarrow(x, y)$. Given $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left(x_{n}, y_{n}\right) \in \mathbb{B}_{\varepsilon}((x, y))$ for all $n \geqslant N$, therefore

$$
d_{X}\left(x_{n}, x\right)+d_{Y}\left(y_{n}, y\right)=d\left(\left(x_{n}, y_{n}\right),(x, y)\right)<\varepsilon .
$$

Since both d_{X} and d_{Y} are non-negative, we conclude that each summand is strictly bounded by ε for all $n \geqslant N$.
2. Let $\left(x_{n}\right)$ be a sequence in X, let $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ be an injective function, and consider the sequence $\left(y_{n}\right)=\left(x_{\varphi(n)}\right)$ in X. Prove that if $\left(x_{n}\right)$ converges to x, then so does $\left(y_{n}\right)$.
Does the converse hold?
Solution. Suppose $\left(x_{n}\right) \longrightarrow x$. Given $\varepsilon>0$, let $N \in \mathbb{N}$ be such that $x_{n} \in \mathbb{B}_{\varepsilon}(x)$ for all $n \geqslant N$. Since $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ is injective, the inverse image $\varphi^{-1}(\{1, \ldots, N-1\})$ is a finite set, so it has a maximal element M. (If the set is empty, just take $M=0$.) For all $n \geqslant M+1$, we have $\varphi(n) \geqslant N$, so $y_{n}=x_{\varphi(n)} \in \mathbb{B}_{\varepsilon}(x)$.
The converse certainly does not hold. For instance, take $\left(x_{n}\right)=(1,0,1,0,1,0, \ldots)$ and $\varphi(n)=2 n$, then the sequence $\left(y_{n}\right)=(0,0,0, \ldots)$ converges to 0 but $\left(x_{n}\right)$ does not converge.
3.
(a) Let $f: X \longrightarrow Y$ be a function between two sets X and Y, and let $S \subseteq Y$. Prove that

$$
f^{-1}(S)=X \backslash f^{-1}(Y \backslash S)
$$

(b) Let $f: X \longrightarrow Y$ be a function between metric spaces. Prove that f is continuous if and only if: for any closed subset $C \subseteq Y$, the inverse image $f^{-1}(C) \subseteq X$ is a closed subset.

Solution.

(a) We have $x \in f^{-1}(S)$ iff $f(x) \in S$ iff $f(x) \notin(Y \backslash S)$ iff $x \notin f^{-1}(Y \backslash S)$.
(b) Suppose f is continuous and $C \subseteq Y$ is closed. By part (a) we have

$$
f^{-1}(C)=X \backslash f^{-1}(Y \backslash C) .
$$

Then $(Y \backslash C) \subseteq Y$ is open, so by Example 2.26, $f^{-1}(Y \backslash C) \subseteq X$ is open, therefore $f^{-1}(C)$ is closed.
Conversely, suppose the inverse image of any closed subset is closed. Let $V \subseteq Y$ be open, then by part (a) we have

$$
f^{-1}(V)=X \backslash f^{-1}(Y \backslash V) .
$$

So $(Y \backslash V) \subseteq Y$ is closed, so $f^{-1}(Y \backslash V) \subseteq X$ is closed, hence $f^{-1}(V)$ is open. By Example 2.26, f is continuous.
4. Show that if $f: X \longrightarrow Y$ is a continuous map between metric spaces and $A \subseteq X$ then $f(\bar{A}) \subseteq \overline{f(A)}$.

Solution. Let $x \in \bar{A}$, let $y=f(x)$, and suppose that $y \notin \overline{f(A)}$. By Exercise 2.9 part (a), there exists an open neighbourhood $V \subseteq(Y \backslash f(A))$ with $y \in V$. As f is continuous, there exists an open neighbourhood $U \subseteq X$ of x with $f(U) \subseteq V$; as V does not intersect $f(A)$, we get that U does not intersect A, contradicting the fact that $x \in \bar{A}$.
5. Give \mathbb{N} the metric induced from \mathbb{R}. Let (X, d) be a metric space and $\left(x_{n}\right)$ a sequence in X. Prove that $\left(x_{n}\right)$ is a continuous function $\mathbb{N} \longrightarrow X$.

Solution. First note that the induced metric on $\mathbb{N} \subseteq \mathbb{R}$ is equivalent to the discrete metric: for any $n \in \mathbb{N}$, we have $\{n\}=(n-1, n+1) \cap \mathbb{N}$, so $\{n\}$ is open in \mathbb{N}. Therefore every subset of \mathbb{N} is open, hence every function $\mathbb{N} \longrightarrow X$ is continuous.
6.
(a) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions, where X, Y, Z are sets, and let $S \subseteq Z$. Then

$$
f^{-1}\left(g^{-1}(S)\right)=(g \circ f)^{-1}(S)
$$

(b) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous functions, where X, Y, Z are metric spaces. Prove that $g \circ f: X \longrightarrow Z$ is continuous.

Solution.

(a) We have $x \in(g \circ f)^{-1}(S)$ iff $(g \circ f)(x) \in S$ iff $g(f(x)) \in S$ iff $f(x) \in g^{-1}(S)$ iff $x \in f^{-1}\left(g^{-1}(S)\right)$.
(b) Let $W \subseteq Z$ be open. As $g: Y \longrightarrow Z$ is continuous, $g^{-1}(W) \subseteq Y$ is open. As $f: X \longrightarrow Y$ is continuous, $(g \circ f)^{-1}(W)=f^{-1}\left(g^{-1}(W)\right) \subseteq X$ is open. So $g \circ f$ is continuous.
7. Let $f: X \longrightarrow Y$ be a continuous map between metric spaces and let $S \subseteq Y$ be such that $f(X) \subseteq S$. Endowing S with the metric induced from Y, show that $f: X \longrightarrow S$ is continuous.

Solution. Since $f(X) \subseteq S$, we have that $f^{-1}(Y \backslash S)=\varnothing$.
Let $W \subseteq S$ be open in (the induced metric on) S, then there exists $V \subseteq Y$ open in Y such that $W=V \cap S$. Since $f: X \longrightarrow Y$ is continuous, we have that $U:=f^{-1}(V)$ is open in X. But $f^{-1}(V)=f^{-1}(V \cap S) \cup f^{-1}(V \backslash S)$, and $f^{-1}(V \backslash S) \subseteq f^{-1}(Y \backslash S)=\varnothing$, so $f^{-1}(V)=f^{-1}(V \cap S)=f^{-1}(W)$ is open in X.
8. Let $g_{1}: X \longrightarrow Y_{1}$ and $g_{2}: X \longrightarrow Y_{2}$ be continuous maps, with X, Y_{1}, Y_{2} metric spaces.

Define $f: X \longrightarrow Y_{1} \times Y_{2}$ by $f(x)=\left(g_{1}(x), g_{2}(x)\right)$. Endow $Y_{1} \times Y_{2}$ with the Manhattan metric.

Show that f is continuous if and only if both g_{1} and g_{2} are continuous.
Solution. The function f is continuous iff for any sequence $\left(x_{n}\right) \longrightarrow x \in X$, we have $\left(f\left(x_{n}\right)\right) \longrightarrow f(x) \in Y_{1} \times Y_{2}$, in other words $\left(g_{1}\left(x_{n}\right), g_{2}\left(x_{n}\right)\right) \longrightarrow\left(g_{1}(x), g_{2}(x)\right) \in Y_{1} \times Y_{2}$. But by Exercise 2.22, the latter holds iff $\left(g_{1}\left(x_{n}\right)\right) \longrightarrow g_{1}(x) \in Y_{1}$ and $\left(g_{2}\left(x_{n}\right)\right) \longrightarrow g_{2}(x) \in Y_{2}$, which precisely says that both g_{1} and g_{2} are continuous.
9. If A and B are subsets of a metric space (X, d), then

$$
\overline{A \cup B}=\bar{A} \cup \bar{B} .
$$

 $\bar{B} \subseteq \overline{A \cup B}$.
For the other inclusion, note that by Example 2.15, $\bar{A} \cup \bar{B}$ is a closed set containing $A \cup B$, so by the minimality of the closure Exercise 2.9, $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$.
10. Let (X, d) be a metric space.
(a) Prove that any subset of a nowhere dense subset of X is nowhere dense in X.
(b) Prove that a subset $N \subseteq X$ is nowhere dense if and only if $X \backslash \bar{N}$ is dense in X.
(c) Prove that the union of any finite collection of nowhere dense subsets of X is nowhere dense in X.

Solution.

(a) Let $N \subseteq X$ be nowhere dense and let $M \subseteq N$. Then $\bar{M} \subseteq \bar{N}$ by Exercise 2.9 part (b), so $(\bar{M})^{\circ} \subseteq(\bar{N})^{\circ}=\varnothing$ by Exercise 2.3.
(b) Suppose N is nowhere dense and let $U \subseteq X$ be nonempty and open. If $U \cap(X \backslash \bar{N})=\varnothing$, then $U \subseteq \bar{N}$, so $U \subseteq(\bar{N})^{\circ}=\varnothing$, contradicting the non-emptiness of U. So it must be that U intersects $X \backslash \bar{N}$ nontrivially, hence $X \backslash \bar{N}$ is dense.
Conversely, suppose $X \backslash \bar{N}$ is dense but N is not nowhere dense, that is there exists a nonempty open $U \subseteq \bar{N}$. Then $U \cap(X \backslash \bar{N})=\varnothing$, contradicting the denseness of $X \backslash \bar{N}$.
(c) It suffices to prove the case of two nowhere dense sets M and N. Let $L=M \cup N$. Then by Exercise 2.30 we have $\bar{L}=\bar{M} \cup \bar{N}$ so $X \backslash \bar{L}=(X \backslash \bar{M}) \cap(X \backslash \bar{N})$. As $X \backslash \bar{L}$ is the union of two dense open subsets, it is dense and open by Exercise 2.12, hence L is nowhere dense.
11. Let X be a set.
(a) Show that the relation " d_{1} is finer than d_{2} " on metrics on X gives rise to a relation " $\left[d_{1}\right]$ is finer than $\left[d_{2}\right]$ " on equivalence classes of metrics on X.
(b) Show that the latter is a partial order on the set of equivalence classes of metrics on X.
(c) In the statement from part (b), can we remove the words "equivalence classes of"?
(d) Show that the partial order from part (b) has a unique maximal element.

Solution.

(a) First we note that the relation "is finer than" on metrics is transitive: if d_{1} is finer than d_{2} and d_{2} is finer than d_{3} then d_{1} is finer than d_{3}. (This is clear from any of the equivalent definitions in Proposition 2.27.)
Next we show that the relation "is finer than" on equivalence classes of metrics is well-defined. Let $[d]$ denote the equivalence class of a metric d. We say that a class [d_{1}] is finer than a class [d_{2}] if the metric d_{1} is finer than the metric d_{2}. To check well-definedness of this concept, suppose that d_{1}^{\prime} is a metric equivalent to d_{1}, and d_{2}^{\prime} is a metric equivalent to d_{2}. Is is true that d_{1}^{\prime} is finer than d_{2}^{\prime} ? Well, d_{1}^{\prime} is finer than d_{1}, which is finer than d_{2}, which is finer than d_{2}^{\prime}, so the answer is yes, by transitivity.
(b) Given a class [d], it is true that d is a finer metric than d, so $[d]$ is a finer class than [d].
If $\left[d_{1}\right]$ is a finer class than $\left[d_{2}\right]$ and $\left[d_{2}\right]$ is a finer class than $\left[d_{1}\right]$, then d_{1} is a finer metric than d_{2} and d_{2} is a finer metric than d_{1}, hence d_{1} and d_{2} are equivalent metrics, so $\left[d_{1}\right]=\left[d_{2}\right]$.
Finally, suppose $\left[d_{1}\right]$ is a finer class than $\left[d_{2}\right]$, which is a finer class than $\left[d_{3}\right]$. Then d_{1} is a finer metric than d_{2}, which is a finer metric than d_{3}, so by the transitivity we saw in part (a), d_{1} is a finer metric than d_{3}, so $\left[d_{1}\right]$ is a finer class than $\left[d_{3}\right]$.
(c) Not in general, as for metrics, d_{1} finer than d_{2} and d_{2} finer than d_{1} does not necessarily imply that $d_{1}=d_{2}$, only that they are equivalent metrics.
(d) The unique maximal element is the equivalence class of the discrete metric on X, as it is clear that the discrete metric is finer than any metric on X.

