Tutorial Week 11

Topics: Self-adjoint maps, uniform norm, pointwise and uniform convergence.

1. Let $f \in B(H, H)$ with H a Hilbert space. Then the maps

$$
p=f^{*} \circ f \quad \text { and } \quad s=f+f^{*}
$$

are self-adjoint.
2. The composition of two self-adjoint maps f, g on a Hilbert space is self-adjoint if and only if the maps commute.
3. Let $f \in B(H, H)$ with H a Hilbert space. Suppose that f is invertible with continuous inverse. Then the adjoint f^{*} is invertible and

$$
\left(f^{*}\right)^{-1}=\left(f^{-1}\right)^{*}
$$

4. Let B be an orthonormal system in a Hilbert space H. Prove that B is an orthonormal basis if and only if:

$$
\text { for every } x \in H \text {, if }\langle x, y\rangle=0 \text { for all } y \in B \text {, then } x=0 \text {. }
$$

5. For each $n \in \mathbb{N}$ define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{x^{2}}{1+n x} .
$$

Convince yourself that each f_{n} is continuous.
Find the pointwise limit f of the sequence $\left(f_{n}\right)$ and determine whether the sequence converges uniformly to f.
6. For each $n \in \mathbb{N}$ define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{1-x^{n}}{1+x^{n}}
$$

Convince yourself that each f_{n} is continuous.
Find the pointwise limit f of the sequence $\left(f_{n}\right)$ and determine whether the sequence converges uniformly to f.
7. Suppose that the Weierstraß Approximation Theorem holds for $K=[0,1]$.

Prove that the Theorem holds for any closed interval $[a, b]$ with $a<b$.
[Hint: Find a polynomial function of degree one $\varphi:[0,1] \longrightarrow[a, b]$ that is surjective and use it and its inverse to move between functions on $[0,1]$ and functions on $[a, b]$.]

See the back of this page for a very optional Question 8.
8. (*) Prove that for any $x \in \mathbb{R}$ and for any $n \in \mathbb{Z}_{\geqslant 0}$ we have
(a) $\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}=1 ;$
(b) $\sum_{k=0}^{n} k\binom{n}{k} x^{k}(1-x)^{n-k}=n x$;
(c) $\sum_{k=0}^{n} k^{2}\binom{n}{k} x^{k}(1-x)^{n-k}=n(n-1) x^{2}+n x$;
(d) $\quad \delta^{2} \sum_{k:|k / n-x| \geqslant \delta}\binom{n}{k} x^{k}(1-x)^{n-k} \leqslant \frac{1}{4 n} \quad$ for all $\delta>0$.
[Hint: For (b), note that $k\binom{n}{k}=n\binom{n-1}{k-1}$.
For (c), start by showing that $\sum_{k=0}^{n} k(k-1)\binom{n}{k} x^{k}(1-x)^{n-k}=n(n-1) x^{2}$.
For (d), use the fact that $\delta^{2} \leqslant(x-k / n)^{2}$ for all k such that $|k / n-x| \geqslant \delta$, so that the sum in question is bounded above by $\sum_{k=0}^{n}(x-k / n)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}$.]

