Tutorial Week 10

Topics: Projections; adjoint maps

- 1. Let V be a normed space and φ, ψ be commuting projections: $\varphi \circ \psi = \psi \circ \varphi$. Prove that $\varphi \circ \psi$ is a projection with image im $\varphi \cap \operatorname{im} \psi$.
- 2. Let φ be a nonzero orthogonal projection (that is, φ is not the constant function 0) on an inner product space V. Prove that $\|\varphi\| = 1$.
- 3. Let S be a subset of a Hilbert space H. Prove that Span(S) is dense in H if and only if $S^{\perp} = 0$.
- 4. Let V, W be inner product spaces and let $f \in B(V, W)$. Prove that

$$||f|| = \sup_{||v||_V = ||w||_W = 1} |\langle f(v), w \rangle_W|.$$

[*Hint*: Use Exercise 4.2 which says that $||v|| = \sup_{||w||=1} |\langle v, w \rangle|$.]

5. Recall that the adjoint $f^* \colon Y \longrightarrow X$ of a continuous linear map $f \colon X \longrightarrow Y$ of Hilbert spaces satisfies the property

$$\langle f(x), y \rangle_Y = \langle x, f^*(y) \rangle_X$$
 for all $x \in X, y \in Y$.

Prove that for all $\alpha \in \mathbb{F}$ we have

$$(\alpha f)^* = \overline{\alpha} f^*$$

6. Given continuous linear maps $g: X \longrightarrow Y$ and $f: Y \longrightarrow Z$ of Hilbert spaces, prove that

$$(f \circ g)^* = g^* \circ f^*.$$

7. Prove that for any Hilbert space X we have

$$\operatorname{id}_X^* = \operatorname{id}_X.$$

8. Prove that for any continuous linear map $f: X \longrightarrow Y$ of Hilbert spaces, we have

$$(f^*)^* = f_1$$

9. Let $f: X \longrightarrow Y$ be a continuous linear map of Hilbert spaces. Prove that

$$\ker(f^*) = (\operatorname{im} f)^{\perp}$$
 and $\overline{\operatorname{im}(f^*)} = (\ker f)^{\perp}$.

10. Consider the function $g: \ell^2 \longrightarrow \mathbb{F}$ given by

$$g(x) = \sum_{n=1}^{\infty} \frac{x_n}{n^2}.$$

(a) Find $y \in \ell^2$ such that

$$g(x) = \langle x, y \rangle$$
 for all $x \in \ell^2$.

- (b) Deduce that g is linear and bounded and find its norm ||g||.
- [*Hint*: You may use without proof the fact that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.]