Tutorial Week 09

Topics: more sequence spaces; inner product spaces.

1. Consider the map $\pi_1 \colon \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}$ given by

$$\pi_1((a_n)) = a_1.$$

- (a) Show that π_1 is linear.
- (b) Prove that the restriction of π_1 to ℓ^{∞} or to ℓ^p for $p \ge 1$ is continuous and surjective.
- 2. Consider the left shift map $L \colon \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ given by $L((a_n)) = (a_{n+1})$, that is

$$L(a_1, a_2, a_3, \dots) = (a_2, a_3, \dots).$$

- (a) Prove that L is a surjective linear map. What is the kernel of L?
- (b) Prove that for all $p \ge 1$ and for $p = \infty$, the restriction of L to ℓ^p is a surjective continuous map onto ℓ^p .
- (c) Define the right shift map $R \colon \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ and prove that it is an injective linear map, the restriction of which is distance-preserving for any ℓ^p with $p \ge 1$ and $p = \infty$.
- (d) Check that $L \circ R = id_{\mathbb{F}^{\mathbb{N}}} \neq R \circ L$.
- 3. (*) Consider the subset c of $\mathbb{F}^{\mathbb{N}}$ consisting of all convergent sequences (with any limit).
 - (a) Convince yourself that c is a vector subspace of ℓ^{∞} .
 - (b) Prove that $\lim : c \longrightarrow \mathbb{F}$ given by

$$(a_n) \mapsto \lim_{n \to \infty} (a_n)$$

is a continuous surjective linear map.

(c) Prove that the formula

$$J((a_n)) = R((a_n)) - \left(\lim_{n \to \infty} a_n\right)(1, 1, \dots)$$

defines a linear homeomorphism $J: c \longrightarrow c_0$. (Here R denotes the right shift map.)

- (d) Show that c is separable and find a Schauder basis for c.
- 4. For any $n \in \mathbb{N}$, give a linear distance-preserving map $\mathbb{F}^n \longrightarrow \ell^2$. (Take the Euclidean norm on \mathbb{F}^n .)
- 5. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Prove that the inner product is a continuous function.
- 6. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For any $v \in V$ we have

$$\|v\| = \sup_{\|w\|=1} |\langle v, w\rangle|.$$

The supremum is in fact achieved by a well-chosen w.

- 7. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let R, S be subsets of V.
 - (a) Prove that $S \cap S^{\perp} = 0$.
 - (b) Prove that if $R \subseteq S$ then $S^{\perp} \subseteq R^{\perp}$.
 - (c) Prove that $S \subseteq (S^{\perp})^{\perp}$.
 - (d) Prove that $S^{\perp} = \overline{\text{Span}(S)}^{\perp}$.
- 8. Let (X, d) be a metric space and let $S \subseteq X$. Prove that $d_S(x) = 0$ if and only if $x \in \overline{S}$.