Tutorial Week 08

Topics: series in normed spaces; sequence spaces.

1. If a series in a normed space $(V, \|\cdot\|)$

$$\sum_{n=1}^{\infty} a_n$$

converges, and converges absolutely, then

$$\left\|\sum_{n=1}^{\infty} a_n\right\| \leq \sum_{n=1}^{\infty} \|a_n\|.$$

- 2. Give an example of a series that converges but does not converge absolutely.
- 3. If $f \in B(V, W)$ with V, W normed spaces, and the series

$$\sum_{n=1}^{\infty} \alpha_n v_n, \qquad \alpha_n \in \mathbb{F}, v_n \in V,$$

converges in V, then the series

$$\sum_{n=1}^{\infty} \alpha_n f(v_n)$$

converges in W to the limit

$$f\left(\sum_{n=1}^{\infty} \alpha_n v_n\right).$$

4. Prove that if $u = (u_n) \in \ell^{\infty}$ and $v = (v_n) \in \ell^1$, then

$$\sum_{n=1}^\infty |u_n v_n| \leqslant \|u\|_{\ell^\infty} \|v\|_{\ell^1}.$$

5. Consider the subset $c_0 \subseteq \mathbb{F}^{\mathbb{N}}$ of all sequences with limit 0:

$$c_0 = \{(a_n) \in \mathbb{F}^{\mathbb{N}} \colon (a_n) \longrightarrow 0\}.$$

Prove that c_0 is a closed subspace of ℓ^{∞} .

Conclude that c_0 is a Banach space.

6. Prove that the space c_0 of sequences with limit 0 is separable, by finding a Schauder basis for c_0 .

[*Hint*: You needn't look too hard.]

- 7. Consider the space ℓ^{∞} of bounded sequences.
 - (a) Let $S \subseteq \ell^{\infty}$ be the subset of sequences (a_n) such that $a_n \in \{0, 1\}$ for all $n \in \mathbb{N}$. Prove that S is an uncountable set.

[*Hint*: Mimic Cantor's diagonal argument.]

- (b) Use S to construct an uncountable set T of disjoint open balls in ℓ^{∞} .
- (c) Conclude that ℓ^{∞} is not separable.