Tutorial Week 07

Topics: metric properties of normed spaces

- 1. Let $(V, \|\cdot\|)$ be a normed space and let $S \subseteq V$ be a subset. Then $\overline{\text{Span}(S)}$ is the smallest closed subspace of V that contains S.
- 2. Let $(V, \|\cdot\|)$ be a normed space and take $r, s > 0, u, v \in V, \alpha \in \mathbb{F}^{\times}$. Show that
 - (a) $\mathbb{B}_r(u+v) = \mathbb{B}_r(u) + \{v\};$
 - (b) $\alpha \mathbb{B}_1(0) = \mathbb{B}_{|\alpha|}(0);$
 - (c) $\mathbb{B}_r(v) = r\mathbb{B}_1(0) + \{v\};$
 - (d) $r\mathbb{B}_1(0) + s\mathbb{B}_1(0) = (r+s)\mathbb{B}_1(0);$
 - (e) $\mathbb{B}_r(u) + \mathbb{B}_s(v) = \mathbb{B}_{r+s}(u+v);$
 - (f) $\mathbb{B}_1(0)$ is a convex subset of V;
 - (g) any open ball in V is convex.

3. Let $(V, \|\cdot\|)$ be a normed space and let S, T be subsets of V and $\alpha \in \mathbb{F}$. Prove that

- (a) If S and T are bounded, so are S + T and αS .
- (b) If S and T are totally bounded, so are S + T and αS .
- (c) If S and T are compact, so are S + T and αS .
- 4. Let $f \in B(V, W)$, that is a continuous linear transformation $f: V \longrightarrow W$.
 - (a) If U is a subspace of V, then its image f(U) is a subspace of W.
 - (b) If U is a closed subspace of W, then its preimage $f^{-1}(U)$ is a closed subspace of V.
 - (c) If S is a convex subset of V, then its image f(S) is a convex subset of W.
 - (d) If S is a convex subset of W, then its preimage $f^{-1}(S)$ is a convex subset of V.
- 5. Prove that the following subset is a closed subspace of ℓ^1 :

$$S = \left\{ (a_n) \in \ell^1 \colon \sum_{n=1}^{\infty} a_n = 0 \right\}.$$

6. Suppose $1 \leq p \leq q$. Prove that

 $\ell^p \subseteq \ell^q.$

Show that if p < q then the inclusion is strict: $\ell^p \subsetneq \ell^q$.