Tutorial Week 06

Topics: compact sets, normed spaces, inequalities galore.

- 1. Let (X, d_X) and (Y, d_Y) be metric spaces, and let d be any conserving metric on $X \times Y$.
 - (a) Prove that if X and Y are compact, then $X \times Y$ is compact.

[*Hint*: If you're not sure where to start, try sequential compactness.]

- (b) Does the converse hold?
- 2. Let C be a nonempty compact subset of a metric space (X, d). Prove that there exist points $a, b \in C$ such that $d(a, b) = \sup \left\{ d(a, v) : a \in C \right\}$

$$d(a,b) = \sup \left\{ d(x,y) \colon x, y \in C \right\}.$$

In other words, the diameter of C is realised as the distance between two points of C.

3. A subset S of a vector space V over \mathbb{F} is said to be *convex* if for all $v, w \in S$ and all $a, b \in \mathbb{R}_{\geq 0}$ such that a + b = 1, we have

 $av + bw \in S$.

(In other words, for any two points in S, the line segment joining the two points is entirely contained in S.)

Show that:

- (a) Any subspace W of V is convex.
- (b) The intersection of an arbitrary collection of convex sets is convex.
- (c) Any interval $I \subseteq \mathbb{R}$ is convex.
- 4. If V is a vector space over \mathbb{F} and $S \subseteq V$ is a convex set, we say that a function $f: S \longrightarrow \mathbb{R}$ is *convex* if for all $v, w \in S$ and all $a, b \in \mathbb{R}_{\geq 0}$ such that a + b = 1, we have

$$f(av + bw) \leq af(v) + bf(w).$$

Prove that, if $(V, \|\cdot\|)$ is a normed space, then $f: V \longrightarrow \mathbb{R}$ given by $f(v) = \|v\|$ is a convex function.

5. (a) Prove that the functions

(i)
$$f: (0, \infty) \longrightarrow \mathbb{R}, \quad f(x) = x^p, \quad p \ge 1$$
 fixed,
(ii) $\exp: \mathbb{R} \longrightarrow \mathbb{R}, \qquad \exp(x) = e^x,$

are convex.

[*Hint*: Use the second-derivative criterion from Q7.]

(b) Conclude that for any $p \ge 1$, any $x, y \ge 0$ and any $a, b \ge 0$ such that a + b = 1, we have

$$(ax+by)^p \leqslant ax^p + by^p$$

(c) Conclude that for any $x, y \ge 0$ and any $a, b \ge 0$ such that a + b = 1, we have

$$x^a y^b \leq ax + by.$$

[*Hint*: Set $x = e^s$, $y = e^t$.]

(d) Show that for any $p \ge 1$ and any $x, y \ge 0$, we have

$$x^p + y^p \leqslant (x + y)^p$$

[*Hint*: Let t = x/y and compare derivatives to show that $t^p + 1 \leq (t+1)^p$.]

6. (*) Let $p \ge 1$, q > 0, $x, y \ge 0$, and $a, b \ge 0$ such that a + b = 1.

Prove that

$$\min\{x, y\} \leq (ax^{-q} + by^{-q})^{-1/q}$$
$$\leq x^a y^b$$
$$\leq (ax^{1/p} + by^{1/p})^p$$
$$\leq ax + by$$
$$\leq (ax^p + by^p)^{1/p}$$
$$\leq \max\{x, y\}.$$

7. (*) Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \longrightarrow \mathbb{R}$ be a twice-differentiable function. The aim of this Exercise is to check the familiar calculus fact: f is convex if and only if $f''(x) \ge 0$ for all $x \in I$.

It was heavily inspired by Alexander Nagel's Wisconsin notes:

https://people.math.wisc.edu/~ajnagel/convexity.pdf

(a) For any $s, t \in I$ with s < t, define the linear function $L_{s,t}: [s,t] \longrightarrow \mathbb{R}$ by

$$L_{s,t}(x) = f(s) + \left(\frac{x-s}{t-s}\right) \left(f(t) - f(s)\right).$$

Convince yourself that this is the equation of the secant line joining (s, f(s)) to (t, f(t)). Prove that f is convex on I if any only if

 $f(x) \leq L_{s,t}(x)$ for all $s, t \in I$ such that s < t and all $s \leq x \leq t$.

(b) Check that for all $s, t \in I$ such that s < t we have

$$L_{s,t}(x) - f(x) = \frac{x-s}{t-s} \left(f(t) - f(x) \right) - \frac{t-x}{t-s} \left(f(x) - f(s) \right)$$

(c) Use the Mean Value Theorem for f twice to prove that there exist ξ, ζ with $x < \xi < t$ and $s < \zeta < x$ such that

$$L_{s,t}(x) - f(x) = \frac{(t-x)(x-s)}{t-s} \left(f'(\xi) - f'(\zeta) \right).$$

- (d) Use the Mean Value Theorem once more to conclude that if $f''(x) \ge 0$ for all $x \in I$, then f is convex on I.
- (e) Now we prove the converse. From this point on, assume that $f: I \longrightarrow \mathbb{R}$ is twice-differentiable and convex, and let $s, t \in I^{\circ}$.
 - 1. Show that if s < x < t then

$$\frac{f(x) - f(s)}{x - s} \leq \frac{f(t) - f(x)}{t - x}$$

2. Conclude that if $s < x_1 < x_2 < t$ then

$$\frac{f(x_1) - f(s)}{x_1 - s} \leqslant \frac{f(t) - f(x_2)}{t - x_2}$$

3. Conclude that if s < t then $f'(s) \leq f'(t)$, and finally that $f''(x) \geq 0$ on I.