
MAST30026 Metric and Hilbert Spaces 2023

Tutorial Week 06

Topics: compact sets, normed spaces, inequalities galore.

1. Let (X,dX) and (Y, dY ) be metric spaces, and let d be any conserving metric on X × Y .

(a) Prove that if X and Y are compact, then X × Y is compact.

[Hint : If you’re not sure where to start, try sequential compactness.]

(b) Does the converse hold?

2. Let C be a nonempty compact subset of a metric space (X,d). Prove that there exist points
a, b ∈ C such that

d(a, b) = sup{d(x, y) ∶ x, y ∈ C}.

In other words, the diameter of C is realised as the distance between two points of C.

3. A subset S of a vector space V over F is said to be convex if for all v,w ∈ S and all a, b ∈ R⩾0
such that a + b = 1, we have

av + bw ∈ S.

(In other words, for any two points in S, the line segment joining the two points is entirely
contained in S.)

Show that:

(a) Any subspace W of V is convex.

(b) The intersection of an arbitrary collection of convex sets is convex.

(c) Any interval I ⊆ R is convex.

4. If V is a vector space over F and S ⊆ V is a convex set, we say that a function f ∶ S Ð→ R is
convex if for all v,w ∈ S and all a, b ∈ R⩾0 such that a + b = 1, we have

f(av + bw) ⩽ af(v) + bf(w).

Prove that, if (V, ∥ ⋅ ∥) is a normed space, then f ∶ V Ð→ R given by f(v) = ∥v∥ is a convex
function.

5. (a) Prove that the functions

(i) f ∶ (0,∞)Ð→ R, f(x) = xp, p ⩾ 1 fixed,

(ii) exp ∶ RÐ→ R, exp(x) = ex,

are convex.

[Hint : Use the second-derivative criterion from Q7.]

(b) Conclude that for any p ⩾ 1, any x, y ⩾ 0 and any a, b ⩾ 0 such that a + b = 1, we have

(ax + by)p ⩽ axp + byp.

(c) Conclude that for any x, y ⩾ 0 and any a, b ⩾ 0 such that a + b = 1, we have

xa yb ⩽ ax + by.

[Hint : Set x = es, y = et.]

(d) Show that for any p ⩾ 1 and any x, y ⩾ 0, we have

xp + yp ⩽ (x + y)p.

[Hint : Let t = x/y and compare derivatives to show that tp + 1 ⩽ (t + 1)p.]
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6. (*) Let p ⩾ 1, q > 0, x, y ⩾ 0, and a, b ⩾ 0 such that a + b = 1.

Prove that

min{x, y} ⩽ (ax−q + by−q)−1/q

⩽ xayb

⩽ (ax1/p + by1/p)p

⩽ ax + by

⩽ (axp + byp)
1/p

⩽max{x, y}.

7. (*) Let I ⊆ R be an interval and let f ∶ I Ð→ R be a twice-differentiable function.

The aim of this Exercise is to check the familiar calculus fact: f is convex if and only if f ′′(x) ⩾ 0
for all x ∈ I.

It was heavily inspired by Alexander Nagel’s Wisconsin notes:

https://people.math.wisc.edu/~ajnagel/convexity.pdf

(a) For any s, t ∈ I with s < t, define the linear function Ls,t ∶ [s, t]Ð→ R by

Ls,t(x) = f(s) + (
x − s

t − s
) (f(t) − f(s)).

Convince yourself that this is the equation of the secant line joining (s, f(s)) to (t, f(t)).

Prove that f is convex on I if any only if

f(x) ⩽ Ls,t(x) for all s, t ∈ I such that s < t and all s ⩽ x ⩽ t.

(b) Check that for all s, t ∈ I such that s < t we have

Ls,t(x) − f(x) =
x − s

t − s
(f(t) − f(x)) −

t − x

t − s
(f(x) − f(s)).

(c) Use the Mean Value Theorem for f twice to prove that there exist ξ, ζ with x < ξ < t and
s < ζ < x such that

Ls,t(x) − f(x) =
(t − x)(x − s)

t − s
(f ′(ξ) − f ′(ζ)).

(d) Use the Mean Value Theorem once more to conclude that if f ′′(x) ⩾ 0 for all x ∈ I, then f is
convex on I.

(e) Now we prove the converse. From this point on, assume that f ∶ I Ð→ R is twice-differentiable
and convex, and let s, t ∈ I○.

1. Show that if s < x < t then
f(x) − f(s)

x − s
⩽
f(t) − f(x)

t − x
.

2. Conclude that if s < x1 < x2 < t then

f(x1) − f(s)

x1 − s
⩽
f(t) − f(x2)

t − x2
.

3. Conclude that if s < t then f ′(s) ⩽ f ′(t), and finally that f ′′(x) ⩾ 0 on I.
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