Tutorial Week 04

Topics: completeness, uniform continuity.

- 1. Let (X, d_X) and (Y, d_Y) be metric spaces and let d be a conserving metric on $X \times Y$.
 - (a) Prove that the sequence $((x_n, y_n))$ is Cauchy in $X \times Y$ if and only if (x_n) is Cauchy in X and (y_n) is Cauchy in Y.
 - (b) Prove that if X and Y are complete then $X \times Y$ is complete. Is the converse true?
- 2. Any distance-preserving function is uniformly continuous.
- 3. Check (directly from the definition of uniform continuity) that $f \colon \mathbb{R}_{>0} \longrightarrow \mathbb{R}_{>0}$ given by $f(x) = \frac{1}{x}$ is not uniformly continuous.
- 4. Let $f: X \longrightarrow Y$ be a uniformly continuous function between two metric spaces and suppose $(x_n) \sim (x'_n)$ are equivalent sequences in X. Prove that $(f(x_n)) \sim (f(x'_n))$ as sequences in Y.

Does the conclusion hold if f is only assumed to be continuous?

5. Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \longrightarrow Y$ a surjective continuous function. Suppose that X is complete and for all $x_1, x_2 \in X$ we have

$$d_X(x_1, x_2) \leq d_Y(f(x_1), f(x_2)).$$

- (a) Prove that Y is complete.In particular, distance-preserving maps preserve completeness.
- (b) Do you feel strongly that uniformly continuous functions ought to preserve completeness? (After all, they preserve Cauchy sequences, and completeness is defined in terms of Cauchy sequences.)

Prove that $f: \mathbb{R} \longrightarrow (-\pi/2, \pi/2)$ given by $f(x) = \arctan(x)$ is uniformly continuous, but...

- 6. Any Cauchy sequence (x_n) is *bounded*, that is there exists $C \ge 0$ such that $d(x_n, x_m) \le C$ for all $n, m \in \mathbb{N}$.
- 7. Suppose A and B are abelian groups. A function $f: A \longrightarrow B$ is called *additive* if f(a+b) = f(a) + f(b).
 - (a) Prove that every additive function $f: A \longrightarrow B$ satisfies

$$f(0) = 0$$
 and $f(-a) = -f(a)$.

- (b) Let V be a Q-vector space. Prove that every additive function $f: \mathbb{Q} \longrightarrow V$ is Q-linear.
- (c) What can you say (and prove) about **continuous** additive functions $\mathbb{R} \longrightarrow \mathbb{R}$?
- (d) Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is additive and continuous at 0. Prove that f is continuous on \mathbb{R} , and conclude that f is \mathbb{R} -linear.
- (e) Let B be a basis for \mathbb{R} as a \mathbb{Q} -vector space. (Recall from Exercise 1.5 that B is uncountable.) Use two distinct irrational elements of B to construct a \mathbb{Q} -linear transformation $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is not \mathbb{R} -linear.

If you would (and why wouldn't you?), follow the rabbit:

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation