Tutorial Week 03

Topics: convergence of sequences, continuous functions, nowhere dense sets, equivalence of metrics

- 1. Let X and Y be two metric spaces and endow the Cartesian product $X \times Y$ with the Manhattan metric from Example 2.3. Prove that a sequence $((x_n, y_n))$ in $X \times Y$ converges to (x, y) if and only if (x_n) converges to x and (y_n) converges to y.
- Let (x_n) be a sequence in X, let φ: N → N be an injective function, and consider the sequence (y_n) = (x_{φ(n)}) in X. Prove that if (x_n) converges to x, then so does (y_n). Does the converse hold?

3.

(a) Let $f: X \longrightarrow Y$ be a function between two sets X and Y, and let $S \subseteq Y$. Prove that

$$f^{-1}(S) = X \smallsetminus f^{-1}(Y \smallsetminus S).$$

- (b) Let $f: X \longrightarrow Y$ be a function between metric spaces. Prove that f is continuous if and only if: for any closed subset $C \subseteq Y$, the inverse image $f^{-1}(C) \subseteq X$ is a closed subset.
- 4. Show that if $f: X \longrightarrow Y$ is a continuous map between metric spaces and $A \subseteq X$ then $f(\overline{A}) \subseteq \overline{f(A)}$.
- 5. Give \mathbb{N} the metric induced from \mathbb{R} . Let (X, d) be a metric space and (x_n) a sequence in X. Prove that (x_n) is a continuous function $\mathbb{N} \longrightarrow X$.
- 6.
- (a) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions, where X, Y, Z are sets, and let $S \subseteq Z$. Then

$$f^{-1}(g^{-1}(S)) = (g \circ f)^{-1}(S).$$

- (b) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous functions, where X, Y, Z are metric spaces. Prove that $g \circ f: X \longrightarrow Z$ is continuous.
- 7. Let $f: X \longrightarrow Y$ be a continuous map between metric spaces and let $S \subseteq Y$ be such that $f(X) \subseteq S$. Endowing S with the metric induced from Y, show that $f: X \longrightarrow S$ is continuous.
- 8. Let $g_1: X \longrightarrow Y_1$ and $g_2: X \longrightarrow Y_2$ be continuous maps, with X, Y_1, Y_2 metric spaces. Define $f: X \longrightarrow Y_1 \times Y_2$ by $f(x) = (g_1(x), g_2(x))$. Endow $Y_1 \times Y_2$ with the Manhattan metric.

Show that f is continuous if and only if both g_1 and g_2 are continuous.

9. If A and B are subsets of a metric space (X, d), then

$$\overline{A \cup B} = \overline{A} \cup \overline{B}.$$

- 10. Let (X, d) be a metric space.
 - (a) Prove that any subset of a nowhere dense subset of X is nowhere dense in X.
 - (b) Prove that a subset $N \subseteq X$ is nowhere dense if and only if $X \setminus \overline{N}$ is dense in X.

- (c) Prove that the union of any finite collection of nowhere dense subsets of X is nowhere dense in X.
- 11. Let X be a set.
 - (a) Show that the relation " d_1 is finer than d_2 " on metrics on X gives rise to a relation " $[d_1]$ is finer than $[d_2]$ " on equivalence classes of metrics on X.
 - (b) Show that the latter is a partial order on the set of equivalence classes of metrics on X.
 - (c) In the statement from part (b), can we remove the words "equivalence classes of"?
 - (d) Show that the partial order from part (b) has a unique maximal element.