Tutorial Week 02

Topics: infinite-dimensional vector spaces, metrics, open sets.

1. Let \mathbb{R}^{∞} be the set of arbitrary sequences $(x_1, x_2, ...)$ of elements of \mathbb{R} .

This is a vector space under the naturally-defined addition of sequences and multiplication by a scalar.

Let $e_j \in \mathbb{R}^{\infty}$ be the sequence whose *j*-th entry is 1, and all the others are 0. Describe the subspace Span $\{e_1, e_2, \ldots\}$ of \mathbb{R}^{∞} . Is the set $\{e_1, e_2, \ldots\}$ a basis of \mathbb{R}^{∞} ?

2. Let $V = \mathbb{R}$ viewed as a vector space over \mathbb{Q} .

Let $\alpha \in \mathbb{R}$. Show that the set $T = \{\alpha^n \colon n \in \mathbb{N}\}$ is \mathbb{Q} -linearly independent if and only if α is transcendental.

(Note: An element $\alpha \in \mathbb{R}$ is called algebraic if there exists a monic polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. An element $\alpha \in \mathbb{R}$ is called transcendental if it is not algebraic.)

Let W be a Q-vector space with a countable basis B. Show that W is a countable set.
[Hint: Use Exercise 1.2.]

Conclude that \mathbb{R} does not have a countable basis as a vector space over \mathbb{Q} .

4. Let (X, \leq) be a nonempty finite poset. (This just means that X is a nonempty finite set with a partial order \leq .) Prove that X has a maximal element.

[*Hint*: You could, for instance, use induction on the number of elements of X.]

5. Let $n \in \mathbb{N}$, $X = \mathbb{R}^n$ with the dot product \cdot , $||x|| = \sqrt{x \cdot x}$ for $x \in X$, and d(x, y) = ||x - y|| for $x, y \in X$. Then (X, d) is a metric space. (The function d is called the *Euclidean metric* or ℓ^2 metric on \mathbb{R}^n .)

[*Hint*: The Cauchy–Schwarz inequality can be useful for checking the triangle inequality.]

6. Let X be a nonempty set and define

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that (X, d) is a metric space. (The function d is called the *discrete metric* on X.)

7. Let (X, d) be a metric space and define

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Prove that (X, d') is a metric space.

[*Hint*: Before tackling the triangle inequality, show that if $a, b, c \in \mathbb{R}_{\geq 0}$ satisfy $c \leq a + b$, then $\frac{c}{1+c} \leq \frac{a}{1+a} + \frac{b}{1+b}$.]

- 8. Draw the unit open balls in the metric spaces (\mathbb{R}^2, d_1) (Example 2.3), (\mathbb{R}^2, d_2) (Exercise 2.14), and $(\mathbb{R}^2, d_{\infty})$ (Example 2.4).
- 9. Is the word "finite" necessary in the statement of Proposition 2.12? If no, give a proof of the statement without "finite". If yes, give an example of an infinite collection of open sets whose intersection is not an open set.