Tutorial Week 02

Topics: infinite-dimensional vector spaces, metrics, open sets.

1. Let \mathbb{R}^{∞} be the set of arbitrary sequences $\left(x_{1}, x_{2}, \ldots\right)$ of elements of \mathbb{R}.

This is a vector space under the naturally-defined addition of sequences and multiplication by a scalar.
Let $e_{j} \in \mathbb{R}^{\infty}$ be the sequence whose j-th entry is 1 , and all the others are 0 . Describe the subspace $\operatorname{Span}\left\{e_{1}, e_{2}, \ldots\right\}$ of \mathbb{R}^{∞}. Is the set $\left\{e_{1}, e_{2}, \ldots\right\}$ a basis of \mathbb{R}^{∞} ?
2. Let $V=\mathbb{R}$ viewed as a vector space over \mathbb{Q}.

Let $\alpha \in \mathbb{R}$. Show that the set $T=\left\{\alpha^{n}: n \in \mathbb{N}\right\}$ is \mathbb{Q}-linearly independent if and only if α is transcendental.
(Note: An element $\alpha \in \mathbb{R}$ is called algebraic if there exists a monic polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha)=0$. An element $\alpha \in \mathbb{R}$ is called transcendental if it is not algebraic.)
3. Let W be a \mathbb{Q}-vector space with a countable basis B. Show that W is a countable set.
[Hint: Use Exercise 1.2.]
Conclude that \mathbb{R} does not have a countable basis as a vector space over \mathbb{Q}.
4. Let (X, \leqslant) be a nonempty finite poset. (This just means that X is a nonempty finite set with a partial order \leqslant.) Prove that X has a maximal element.
[Hint: You could, for instance, use induction on the number of elements of X.]
5. Let $n \in \mathbb{N}, X=\mathbb{R}^{n}$ with the dot product $\cdot,\|x\|=\sqrt{x \cdot x}$ for $x \in X$, and $d(x, y)=\|x-y\|$ for $x, y \in X$. Then (X, d) is a metric space. (The function d is called the Euclidean metric or ℓ^{2} metric on \mathbb{R}^{n}.)
[Hint: The Cauchy-Schwarz inequality can be useful for checking the triangle inequality.]
6. Let X be a nonempty set and define

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { otherwise } .\end{cases}
$$

Prove that (X, d) is a metric space. (The function d is called the discrete metric on X.)
7. Let (X, d) be a metric space and define

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)} .
$$

Prove that $\left(X, d^{\prime}\right)$ is a metric space.
[Hint: Before tackling the triangle inequality, show that if $a, b, c \in \mathbb{R}_{\geqslant 0}$ satisfy $c \leqslant a+b$, then $\left.\frac{c}{1+c} \leqslant \frac{a}{1+a}+\frac{b}{1+b}.\right]$
8. Draw the unit open balls in the metric spaces $\left(\mathbb{R}^{2}, d_{1}\right)$ (Example 2.3), $\left(\mathbb{R}^{2}, d_{2}\right)$ (Exercise 2.14), and ($\mathbb{R}^{2}, d_{\infty}$) (Example 2.4).
9. Is the word "finite" necessary in the statement of Proposition 2.12? If no, give a proof of the statement without "finite". If yes, give an example of an infinite collection of open sets whose intersection is not an open set.

