MAST30026 Metric and Hilbert Spaces 2023

Assignment 2

Note: Due Friday 13 October at 20:00 on Canvas & Gradescope. Please read the instructions
given on Canvas. The questions have varying lengths and do not all count for the same
number of marks; you may assume that longer questions are worth more.

1. Let U,V,W be normed spaces over F.
Suppose : U x V — W is a continuous bilinear map.

Consider the linear function fy: U — Hom(V, W) given by Sy (u) = f,, where
fu: V—W is defined by f.(v) = B(u,v).

(a) Prove that for any uwe U, f, € B(V,WW), in other words f, is continuous.

(b) By part (a) we can think of Sy as a function U — B(V,W).
Prove that gy : U — B(V,W) is continuous.

Solution. Before we start, we establish a useful statement: if a bilinear map [ is continuous
then (3 is a bounded bilinear map, that is there exists ¢ > 0 such that

16w, v)|w < c|ulu vl for all ue U,veV.

(More can be said, see Exercise 3.23, but also Exercise 3.24 to dispel any hope at uniform
continuity in this setting.)

To prove the statement, suppose 8 is continuous but not bounded. Then for every n € N
there exist vectors u,, € U and v,, € V such that

8t va) lw > 0 Jun [ [0y

This forces u,, v, to be nonzero. Let

1 1
=—u, and v}, =
nfunfu nfon|lv

We now prove (ul,,v),) — (0,0) but g(u!,,v!,) - 0= (0,0) as n — oo, which contradicts
the continuity of 3.

Since |ul, | = |vi v = 1/n, it follows that

[ Cumy o) oy = un o + Jonllv = 5~

Therefore, |(u!,v!.)| — 0 and thus (u!
On the other hand, we have

ns n)—>(00)asn—>oo

|8Cun, vn) lw

= > 1.
w1 unllo vy

180, ') oy = Hﬁ( ! )

nunlle ™ n ol

Hence p(u!,,vl) - 0 as n — oo.

Now we can address the two parts of the question.
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(a)

First approach (direct): Let v € V. We prove that f,: V — W is continuous at v.
(Note that, crucially, v remains fixed.)

Let € > 0; as 8 is continuous at (u,v), there exists ¢ > 0 such that

if | (u, v1) = (u, v) Josy <6, then || B(u, v1) = B(u, v)[w <e.

Therefore, if v —v|y <, then

[Cu,v1) = (u, ) [y = o1 =v]v <6,

so that
| fulvr) = fu(0)lw = 18w, v1) = B, v) |w <e.

Second approach (using boundedness): Let € > 0; as 3 is continuous, it is bounded,
so there exists ¢ > 0 such that

18w, v)|w < c|ululv]v for all ue U,ve V.

It follows that
| fu()llw = 8w, v) |w < clulv [v]v.

Since c|u|y is a constant independent of v, the linear transformation f, is bounded
and thus continuous.

Let € > 0; as ( is continuous, it is bounded, so there exists ¢ > 0 such that
18(u,v)|w < cluly |v]y  forallueU,veV.

It follows that

|8v (W) Bevwy = I ful Bvwy = Sup [8(u, v)[w <clufu.
v|y=

Therefore, 5y is bounded and thus continuous. ]
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2. In Proposition 3.23 we saw that the function
' x(* —TF defined by (u,v) Z Uy Up,

is a continuous bilinear map.

(a) Show that there is a continuous linear function ¢ — () that is an isometry.
(Recall that ¢y € > consists of all convergent sequences with limit 0.)

[Hint: It may be useful to prove surjectivity first, and then the distance-preserving
property.]
(b) Conclude that ¢! is a Banach space.

(¢) Where in your proof for (a) did you make use of the fact that you are working with ¢
rather than (=7

Solution.

(a) If we restrict the bilinear map from the statement to ¢! x ¢y, we get a continuous
bilinear map
Bt xcy — F.

By Exercise 3.25, By is linear and continuous. In our notation, this is the function
\%
ur—u¥: fl — (co) , where

u'(v) = B(u,v) = Y unvy.
n=1
We have the Holder Inequality

o0
Z |Unvn| |u||£1 ”UHIZ“?

valid for all v € £* and all v € £*, so certainly for all v € .

Hence for v # 0:
[u¥(v)|
[v] =

so taking supremum we get [u¥| < |Jufq.

< e,

For surjectivity, we need to show that each ¢ € (co)v is of the form ¢ = u" for some v € (1.
Take such . Recall that ¢y has Schauder basis {e1, s, ...}, so for any v = (v,,) € ¢y we
have

o(v) = i v (en).

Let u, = ¢(e,) and u = (u,,). We need to show that u € !. For this, fix m € N and let
(ignoring the n’s for which w,, =0)

:ZMBHZ(M |Um|00 )
n=1 Unp, U1 Um
so that

| ]e~ =1.
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Then

n=1 Un

( )

=| ( <lellzle = lel-

|M3

Taking the limit as m — oo we conclude that u € ¢* and that |u|x < ||¢]

So u — uY is surjective.

If we go through the previous construction with ¢ = uV, we have u(e,) = f(u,€,) = Uy,

so we land back on u and ||u|a < |¢| = |uY]|. As we have already established the
opposite inequality, we conclude that |u"| = |u]s, so u— u" is distance-preserving.

Putting it all together, we have a linear isometry ¢! — (co)v.

(b) We know that duals of normed spaces are complete, so (co)v is complete, so £, being
isometric to it, also is complete.

(c) We used the Schauder basis {ej,eq,...} for ¢y to prove surjectivity as well as the
distance-preserving property. 0
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3. Consider the maps Heyen, Hogq: FY — FYN defined by

Heven((an)) = (a2n)7 Hodd((an)) = (a2n—1)

and construct f: FN — FN x FN a5

(d)

f(a') = (Heven(a)aHodd(a))-
Prove that the restriction of Heyen and Hoqq to P gives bounded linear functions
Heven, Hoqq: 0P — P for all p € Ry; and for p = oo.
Prove that f is an invertible linear map.
Take p =1 and show that the restriction f: /1 — ¢! x (! is a linear isometry.

(Recall that we are working with the norm on ¢! x ¢! given by

|G, )] ==l + [yl

as described in Example 3.4.)

Show that the statement from part (c) does not hold for the space ¢*; prove the
strongest statement that you can for £°.

(Same comment as in part (c) applies for the norm we consider on £*° x (>.)

Solution. (a) Linearity is straightforward, even on all of FN:

(b)

Heven(Aa + ,U/b) = Heven(()\an + ,U/bn>)
= ()\G/Qn + :ub2n)
= /\(a2n) + /'L(an)
= /\Heven(a) + MHeven(b)

and similarly for Hgqgq.
If a = (a,) € P then

o0 o0
| Heven (a) [}, = 3 lazal? < 3 lanl? = all,.
n=1 n=1

S0 Heyen(a) € P and Heyen: 7 —> (P is bounded. The same argument works for Hoqq.

Similarly, if a = (a,) € £~ then
”HevenH[m = sup |a2n| < sup |an| = ||a||€°°
neN neN

and the same for H,qq.
The map f is linear because its two components are linear.

We construct an explicit inverse g: FN x FN — FN: given b, c € FN, define

b2 if n is even

b,c):=a:=(a,)eFY b ay =
9(b,c) (@) Y {C(n+1)/2 if n is odd.

It is clear that ¢ is the inverse of f.
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(c)

We have

1£(a)] = [(Heven(a), Hoaa(a))||
= | Heven(@) [ 1 + | Hoaa(a) |

(o] o0
= Z |a2n| + Z |a2n—1|
n=1

3
—_

|an|

I
M

‘a’flv

so that f is a distance-preserving map.

To prove surjectivity of f, we show that the restriction of the function g from part (b)
maps to ¢!: for b,c e ', we have a := g(b, c).

The fact that a € ¢! follows from

2m m m m m
> lanl = 3 lask] + Y- lagk-1] = X7 1bel + 3 lex]-
n=1 k=1 k=1 k=1 k=1

As b, c e ('] the limit of the RHS as m — oo exists and equals |b]a + ||c[s, so a € £1,
f(a) = (b,c), and (of course) [ap = (b, c)].

We try to use the same approach as in (b):

Hf(a)H = H(Heven(a)aHodd(a))H
= [Hoven(@)] = + [ Hoaa(@)]

= sup |ag,| + sup |ag, 1|
neN neN

< sup |a,| + sup|a,|
neN neN

=2[afe,
which shows that f is bounded.
It also indicates that f is not distance-preserving: take (a) = (1,1,...) then

[f(a) =2#1=]a]e.

So far we know that f is linear and bounded. It is also injective because it is the
restriction of the injective map from part (b).

To prove surjectivity, we show that the restriction of the function g from part (b) maps
to £°°: for b,c € £, we have a := g(b,c). But

sup aa| = sup {stupla, . supla1|f = sup (bl el =
neN neN neN
which is finite because it is the maximum of two finite quantities.

Finally, the last equation tells us that

lg(b, )l = lal =sup {[blle=, [cle=} < Ille + el = (B, )]

so ¢ is also a bounded function, hence continuous.

We conclude that f is a linear homeomorphism. [
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4. Consider the map f: ¢! — FYN given by

f(@)=(2).

n
a) Prove that f maps to /! and f: ¢! — (! is linear, continuous, and injective.
J

(b) Prove that the image W of f is not closed in ¢*.

Solution. (a) For all n e N we have
An

< anl,
so that for m e N:
m a/n m
Y€ aal.
n=1 n=1
As (a,) € ¢*, the RHS has a finite limit as m — oo, hence so does the LHS, so

f ((an)) el
Linearity is clear:

P #a(0)) = F(Ouanrib)) = (F22) (22 ) (22) < Ap (o)) 0 (),

n

We've seen already that Hf((an))Hﬁ1 < H(an)H@, so f is bounded, hence continuous.
Suppose f((an)) = f((bn)), then for all n € N we have a,/n = b,/n, therefore a, = b,.
So f is injective.

(b) For each n €N let v, = (1, 1/2,...,1/n,0,0,.. ) € FN. Since v,, has only finitely many
nonzero terms, it is in ¢!. Letting w, = f(v,), we have w, € W.

Set
1 1
w = 1,@,3—2,... .
Since
ii
n:1n2

converges, we have w € (1.

However, w ¢ W: if w e W then w = f(v) where v = (1,1,...), but v ¢ £1.

Finally
1 1 > 1
—wyller =1(0,0,...,0, , yen = —,
Hw w HZl H( (n+ 1)2 (7’L+2)2 # k:zn;rl k’2

which is the tail of a convergent series, hence converges to 0. Therefore (w,) — w,
but w ¢ W, so W is not closed in £1. ]
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5. Let V = R? viewed as a normed space with the Euclidean norm. Compute the norm of each
of the following elements M € B(V, V') directly from the description of the operator norm:

| M] = sup [M(v)].

[vl=1
01
(a) A_ O 0)7
0 1
m5-(9 )
(c) C= g 2) for a,beR.

Solution. In all cases we will denote v = (xl) e R? with 93% + x% =1.

()

Maximising this under the constraint z? + 3 = 1 gives | A| = 1.

(b) We have
X
ol =|( %2 )| - vz -

axrq
=/ a?x? + b3,
bCL’Q

so we are looking to maximise, under the constraint 2 + 23 = 1, the quantity

(a) We have
| Avll =

\: 2.

so |B| =1.
(c) We have

|Cvl =

S =a’z? + b3 = a2t + b7(1 - x%) =b*+ (a® - b*)a?.
If |a| > |b| then a?—b? > 0 so to maximise S we must maximise 7, which happens when
z? =1, so that S = a2.

Otherwise we have |a| < || so a? - b% < 0 so to maximise S we must minimise 2%, which
happens when z; = 0, so that S = b

Hence the maximum value of S is S = max {a?,b?} and so |C| = /S = max {|a|, |p|}. O
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6. We explore the Hilbert Projection Theorem when V is a Banach space but not a Hilbert
space.

(a) Let V =R? with the ¢!-norm, that is

| (@1, 22)|| =[] + [,
Let Y =B;(0), the closed unit ball around 0. Find two distinct closest points in Y to
x=(-1,1)eV.

(b) Can you find a similar example for V' = R? with the ¢*°-norm:
H(%J&)H = max{\xﬂ, |952|}?

(c) Let V be a normed space and Y a convex subset of V. Fix x € V. Let Z Y be the
set of all closest points in Y to z. Prove that Z is convex.

Solution.
(a) Let y = (y1,y2) € Y, then d(y,0) < 1.
Note that d(x,0) = 2. By the triangle inequality

d(z,y) +d(y,0) > d(x,0) = d(z,y) >d(x,0) —d(y,0)>2-1=1.

Since this holds for all y € Y, we have dy(z) > 1.

But there are (uncountably many) points of Y at distance 1 from z: take any point
y = (y1,y2) on the line segment joining (-1,0) to (0,1), then y, = y; +1 with -1 <y; <0
and

d(z,y) =[-1-m[+|y|=1+y -y = 1.
We conclude that dy (x) =1 and all the points on that line segment are closest points
to x.

(b) We can recreate a similar scenario for the /*-norm on V' = R? by taking ¥ = B;(0) and
x =(2,0), for instance.

The same argument as in (a) gives us dy (x) =1 and every point on the line segment
joining (1,-1) to (1,1) is at this distance from .

(c) (Let’s note that the conclusion definitely holds for parts (a) and (b), as well as in the
Hilbert case covered by the Projection Theorem.)

Let D = dy(CL’)
If Z is empty it is certainly convex.
Otherwise let 21,29 € Z and let a € [0,1]. Consider y = az;+(1-a)zy. Since 21,20 € ZCY
and Y is convex, we have that y € Y. We have
d(y,x) =|y-z| = Ha21 +(1-a)z - xH = Ha21 —ar+(l-a)z-(1- a)xH
= Ha(21 —x)+(1-a)(z - :E)” < Ha(21 - x)H + H(l —a)(z - :L’)H
=a|z1—z|+(1-a)|z-2z|=aD+(1-a)D =D.

So d(y,z) < D, but also d(y,z) > D = dy(x), so we must have d(y,z) = D and
yes. O
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7. Let H =2 over R and consider the subset
W={y:(yn)E€2: Yn 2 0 for allneN}.

(a) Prove that W is a closed, convex subset of H. Is it a vector subspace?

(b) Find the closest point yyi, € W to

SENC NS

and compute dyy (z).

[} 1 2
[Hint: You may use without proof the identity Z — = %]
n

Solution.

(a) If y,z € W and a € [0,1] then ay + (1 - a)z = (ay, + (1 - a)z,) and it is clear that
ayn + (1 -a)z, 20, so W is convex.
To show that W is closed we note that

W = ﬂ Wﬁl([o, o<>))7

neN

where m,: (2 — R is given by Wn((an)) =a,. We've seen in Exercise 3.19 that =, is
continuous, so since [0, 00) is closed in R, TV is the intersection of a collection of closed
subsets, hence it is closed.

Not a vector subspace because not closed under multiplication by —1 € R.
(b) Let y = (y,) € W, then

2

oo

lz=yl* =2,

GOk

n

n=1
1 2 1 2
= —— —UYn —+ — —UYn
n;id n / n;:en n y
1 2 1 2
= Z —+tYp| t Z — —Yn
n odd n'even | TV
Note that since y,, > 0:
P 1 2 1
if n is odd then ‘— +Un| 2 —
n n
1 2
if n is even then ‘— - ya| 20.
n
Putting this together with the previous result, we get
2 2 1
d(z,y)* = lz-y[*> ) —.
nodd T
As this holds for all y € W, we get that
1
dw(x) 2 Z )
nodd

10
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But following the calculations above it is easy to put together an element Y, = (y,,) € W
that achieves this lower bound:

~ % if n is even
Yn if 1 is odd.

Finally, to compute dy (z), note

1 >0 1 1 >0 1 > 1 3 & 2
hence .
dw(l’)=— D

11



