
MAST30026 Metric and Hilbert Spaces 2023

Assignment 2

Note: Due Friday 13 October at 20:00 on Canvas & Gradescope. Please read the instructions
given on Canvas. The questions have varying lengths and do not all count for the same
number of marks; you may assume that longer questions are worth more.

1. Let U,V,W be normed spaces over F.
Suppose β ∶ U × V Ð→W is a continuous bilinear map.

Consider the linear function βU ∶ U Ð→ Hom(V,W ) given by βU(u) = fu, where

fu ∶ V Ð→W is defined by fu(v) = β(u, v).

(a) Prove that for any u ∈ U , fu ∈ B(V,W ), in other words fu is continuous.

(b) By part (a) we can think of βU as a function U Ð→ B(V,W ).
Prove that βU ∶ U Ð→ B(V,W ) is continuous.

Solution. Before we start, we establish a useful statement: if a bilinear map β is continuous
then β is a bounded bilinear map, that is there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

(More can be said, see Exercise 3.23, but also Exercise 3.24 to dispel any hope at uniform
continuity in this setting.)

To prove the statement, suppose β is continuous but not bounded. Then for every n ∈ N
there exist vectors un ∈ U and vn ∈ V such that

∥β(un, vn)∥W > n2 ∥un∥U ∥vn∥V .

This forces un, vn to be nonzero. Let

u′n =
1

n ∥un∥U
un and v′n =

1

n ∥vn∥V
vn.

We now prove (u′n, v′n)Ð→ (0, 0) but β(u′n, v′n) /Ð→ 0 = β(0, 0) as nÐ→∞, which contradicts
the continuity of β.

Since ∥u′n∥U = ∥v′n∥V = 1/n, it follows that

∥(u′n, v′n)∥U×V = ∥u′n∥U + ∥v′n∥V =
1

2n
.

Therefore, ∥(u′n, v′n)∥Ð→ 0 and thus (u′n, v′n)Ð→ (0,0) as nÐ→∞.

On the other hand, we have

∥β(u′n, v′n)∥W = ∥β(
1

n ∥un∥U
un,

1

n ∥vn∥V
vn)∥

W

= ∥β(un, vn)∥W
n2 ∥un∥U ∥vn∥V

> 1.

Hence β(u′n, v′n) /Ð→ 0 as nÐ→∞.

Now we can address the two parts of the question.
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(a) First approach (direct): Let v ∈ V . We prove that fu ∶ V Ð→W is continuous at v.
(Note that, crucially, u remains fixed.)

Let ε > 0; as β is continuous at (u, v), there exists δ > 0 such that

if ∥(u, v1) − (u, v)∥U×V < δ, then ∥β(u, v1) − β(u, v)∥W < ε.

Therefore, if ∥v1 − v∥V < δ, then

∥(u, v1) − (u, v)∥U×V = ∥v1 − v∥V < δ,

so that
∥fu(v1) − fu(v)∥W = ∥β(u, v1) − β(u, v)∥W < ε.

Second approach (using boundedness): Let ε > 0; as β is continuous, it is bounded,
so there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

It follows that
∥fu(v)∥W = ∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V .

Since c∥u∥U is a constant independent of v, the linear transformation fu is bounded
and thus continuous.

(b) Let ε > 0; as β is continuous, it is bounded, so there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

It follows that

∥βU(u)∥B(V,W ) = ∥fu∥B(V,W ) = sup
∥v∥V =1

∥β(u, v)∥W ⩽ c ∥u∥U .

Therefore, βU is bounded and thus continuous.
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2. In Proposition 3.23 we saw that the function

ℓ1 × ℓ∞ Ð→ F defined by (u, v)z→
∞

∑
n=1

unvn

is a continuous bilinear map.

(a) Show that there is a continuous linear function ℓ1 Ð→ (c0)∨ that is an isometry.
(Recall that c0 ⊆ ℓ∞ consists of all convergent sequences with limit 0.)

[Hint : It may be useful to prove surjectivity first, and then the distance-preserving
property.]

(b) Conclude that ℓ1 is a Banach space.

(c) Where in your proof for (a) did you make use of the fact that you are working with c0
rather than ℓ∞?

Solution.

(a) If we restrict the bilinear map from the statement to ℓ1 × c0, we get a continuous
bilinear map

β ∶ ℓ1 × c0 Ð→ F.

By Exercise 3.25, βU is linear and continuous. In our notation, this is the function
uz→ u∨ ∶ ℓ1 Ð→ (c0)

∨

, where

u∨(v) = β(u, v) =
∞

∑
n=1

unvn.

We have the Hölder Inequality

∞

∑
n=1

∣unvn∣ ⩽ ∥u∥ℓ1∥v∥ℓ∞ ,

valid for all u ∈ ℓ1 and all v ∈ ℓ∞, so certainly for all v ∈ c0.
Hence for v ≠ 0:

∣u∨(v)∣
∥v∥ℓ∞

⩽ ∥u∥ℓ1 ,

so taking supremum we get ∥u∨∥ ⩽ ∥u∥ℓ1 .
For surjectivity, we need to show that each φ ∈ (c0)

∨

is of the form φ = u∨ for some u ∈ ℓ1.
Take such φ. Recall that c0 has Schauder basis {e1, e2, . . .}, so for any v = (vn) ∈ c0 we
have

φ(v) =
∞

∑
n=1

vnφ(en).

Let un = φ(en) and u = (un). We need to show that u ∈ ℓ1. For this, fix m ∈ N and let
(ignoring the n’s for which un = 0)

x =
m

∑
n=1

∣un∣
un

en = (
∣u1∣
u1

, . . . ,
∣um∣
um

,0,0, . . .) ,

so that
∥x∥ℓ∞ = 1.
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Then

m

∑
n=1

∣un∣ = ∣
m

∑
n=1

∣un∣
un

un∣

= ∣
m

∑
n=1

φ(∣un∣
un

en)∣

= ∣φ(x)∣ ⩽ ∥φ∥ ∥x∥ℓ∞ = ∥φ∥.

Taking the limit as mÐ→∞ we conclude that u ∈ ℓ1 and that ∥u∥ℓ1 ⩽ ∥φ∥.
So uz→ u∨ is surjective.

If we go through the previous construction with φ = u∨, we have u∨(en) = β(u, en) = un,
so we land back on u and ∥u∥ℓ1 ⩽ ∥φ∥ = ∥u∨∥. As we have already established the
opposite inequality, we conclude that ∥u∨∥ = ∥u∥ℓ1 , so uz→ u∨ is distance-preserving.

Putting it all together, we have a linear isometry ℓ1 Ð→ (c0)
∨

.

(b) We know that duals of normed spaces are complete, so (c0)
∨

is complete, so ℓ1, being
isometric to it, also is complete.

(c) We used the Schauder basis {e1, e2, . . .} for c0 to prove surjectivity as well as the
distance-preserving property.
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3. Consider the maps Heven,Hodd ∶ FN Ð→ FN defined by

Heven((an)) = (a2n), Hodd((an)) = (a2n−1)

and construct f ∶ FN Ð→ FN × FN as

f(a) = (Heven(a),Hodd(a)).

(a) Prove that the restriction of Heven and Hodd to ℓp gives bounded linear functions
Heven,Hodd ∶ ℓp Ð→ ℓp for all p ∈ R⩾1 and for p =∞.

(b) Prove that f is an invertible linear map.

(c) Take p = 1 and show that the restriction f ∶ ℓ1 Ð→ ℓ1 × ℓ1 is a linear isometry.

(Recall that we are working with the norm on ℓ1 × ℓ1 given by

∥(x, y)∥ ∶= ∥x∥ℓ1 + ∥y∥ℓ1

as described in Example 3.4.)

(d) Show that the statement from part (c) does not hold for the space ℓ∞; prove the
strongest statement that you can for ℓ∞.

(Same comment as in part (c) applies for the norm we consider on ℓ∞ × ℓ∞.)

Solution. (a) Linearity is straightforward, even on all of FN:

Heven(λa + µb) =Heven((λan + µbn))
= (λa2n + µb2n)
= λ(a2n) + µ(b2n)
= λHeven(a) + µHeven(b)

and similarly for Hodd.

If a = (an) ∈ ℓp then

∥Heven(a)∥
p

ℓp
=
∞

∑
n=1

∣a2n∣p ⩽
∞

∑
n=1

∣an∣p = ∥a∥pℓp ,

so Heven(a) ∈ ℓp and Heven ∶ ℓp Ð→ ℓp is bounded. The same argument works for Hodd.

Similarly, if a = (an) ∈ ℓ∞ then

∥Heven∥ℓ∞ = sup
n∈N
∣a2n∣ ⩽ sup

n∈N
∣an∣ = ∥a∥ℓ∞

and the same for Hodd.

(b) The map f is linear because its two components are linear.

We construct an explicit inverse g ∶ FN × FN Ð→ FN: given b, c ∈ FN, define

g(b, c) ∶= a ∶= (an) ∈ FN by an =
⎧⎪⎪⎨⎪⎪⎩

bn/2 if n is even

c(n+1)/2 if n is odd.

It is clear that g is the inverse of f .
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(c) We have

∥f(a)∥ = ∥(Heven(a),Hodd(a))∥
= ∥Heven(a)∥ℓ1 + ∥Hodd(a)∥ℓ1

=
∞

∑
n=1

∣a2n∣ +
∞

∑
n=1

∣a2n−1∣

=
∞

∑
n=1

∣an∣

= ∥a∥ℓ1 ,

so that f is a distance-preserving map.

To prove surjectivity of f , we show that the restriction of the function g from part (b)
maps to ℓ1: for b, c ∈ ℓ1, we have a ∶= g(b, c).
The fact that a ∈ ℓ1 follows from

2m

∑
n=1

∣an∣ =
m

∑
k=1

∣a2k∣ +
m

∑
k=1

∣a2k−1∣ =
m

∑
k=1

∣bk∣ +
m

∑
k=1

∣ck∣.

As b, c ∈ ℓ1, the limit of the RHS as mÐ→∞ exists and equals ∥b∥ℓ1 + ∥c∥ℓ1 , so a ∈ ℓ1,
f(a) = (b, c), and (of course) ∥a∥ℓ1 = ∥(b, c)∥.

(d) We try to use the same approach as in (b):

∥f(a)∥ = ∥(Heven(a),Hodd(a))∥
= ∥Heven(a)∥ℓ∞ + ∥Hodd(a)∥ℓ∞
= sup

n∈N
∣a2n∣ + sup

n∈N
∣a2n−1∣

⩽ sup
n∈N
∣an∣ + sup

n∈N
∣an∣

= 2∥a∥ℓ∞ ,

which shows that f is bounded.

It also indicates that f is not distance-preserving: take (a) = (1,1, . . . ) then

∥f(a)∥ = 2 ≠ 1 = ∥a∥ℓ∞ .

So far we know that f is linear and bounded. It is also injective because it is the
restriction of the injective map from part (b).

To prove surjectivity, we show that the restriction of the function g from part (b) maps
to ℓ∞: for b, c ∈ ℓ∞, we have a ∶= g(b, c). But

sup
n∈N
∣an∣ = sup{sup

n∈N
∣a2n∣, sup

n∈N
∣a2n−1∣} = sup{∥b∥ℓ∞ , ∥c∥ℓ∞},

which is finite because it is the maximum of two finite quantities.

Finally, the last equation tells us that

∥g(b, c)∥ = ∥a∥ = sup{∥b∥ℓ∞ , ∥c∥ℓ∞} ⩽ ∥b∥ℓ∞ + ∥c∥ℓ∞ = ∥(b, c)∥,

so g is also a bounded function, hence continuous.

We conclude that f is a linear homeomorphism.
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4. Consider the map f ∶ ℓ1 Ð→ FN given by

f((an)) = (
an
n
) .

(a) Prove that f maps to ℓ1 and f ∶ ℓ1 Ð→ ℓ1 is linear, continuous, and injective.

(b) Prove that the image W of f is not closed in ℓ1.

Solution. (a) For all n ∈ N we have

∣an
n
∣ ⩽ ∣an∣,

so that for m ∈ N:
m

∑
n=1

∣an
n
∣ ⩽

m

∑
n=1

∣an∣.

As (an) ∈ ℓ1, the RHS has a finite limit as m Ð→ ∞, hence so does the LHS, so
f((an)) ∈ ℓ1.
Linearity is clear:

f(λ(an)+µ(bn)) = f((λan+µbn)) = (
λan + µbn

n
) = λ(an

n
)+µ(bn

n
) = λf((an))+µf((bn)).

We’ve seen already that ∥f((an))∥ℓ1 ⩽ ∥(an)∥ℓ1 , so f is bounded, hence continuous.

Suppose f((an)) = f((bn)), then for all n ∈ N we have an/n = bn/n, therefore an = bn.
So f is injective.

(b) For each n ∈ N let vn = (1,1/2, . . . ,1/n,0,0, . . . ) ∈ FN. Since vn has only finitely many
nonzero terms, it is in ℓ1. Letting wn = f(vn), we have wn ∈W .

Set

w = (1, 1
22
,
1

32
, . . .) .

Since
∞

∑
n=1

1

n2

converges, we have w ∈ ℓ1.
However, w ∉W : if w ∈W then w = f(v) where v = (1,1, . . . ), but v ∉ ℓ1.
Finally

∥w −wn∥ℓ1 = ∥(0,0, . . . ,0,
1

(n + 1)2 ,
1

(n + 2)2 , . . .∥
ℓ1

=
∞

∑
k=n+1

1

k2
,

which is the tail of a convergent series, hence converges to 0. Therefore (wn) Ð→ w,
but w ∉W , so W is not closed in ℓ1.
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5. Let V = R2 viewed as a normed space with the Euclidean norm. Compute the norm of each
of the following elements M ∈ B(V,V ) directly from the description of the operator norm:

∥M∥ = sup
∥v∥=1

∥M(v)∥.

(a) A = (0 1
0 0
);

(b) B = ( 0 1
−1 0

);

(c) C = (a 0
0 b
) for a, b ∈ R.

Solution. In all cases we will denote v = (x1

x2
) ∈ R2 with x2

1 + x2
2 = 1.

(a) We have

∥Av∥ = ∥(x2

0
)∥ = ∣x2∣.

Maximising this under the constraint x2
1 + x2

2 = 1 gives ∥A∥ = 1.
(b) We have

∥Bv∥ = ∥( x2

−x1
)∥ =

√
x2
2 + x2

1 = 1,

so ∥B∥ = 1.
(c) We have

∥Cv∥ = ∥(ax1

bx2
)∥ =

√
a2x2

1 + b2x2
2,

so we are looking to maximise, under the constraint x2
1 + x2

2 = 1, the quantity

S = a2x2
1 + b2x2

2 = a2x2
1 + b2(1 − x2

1) = b2 + (a2 − b2)x2
1.

If ∣a∣ ⩾ ∣b∣ then a2 − b2 ⩾ 0 so to maximise S we must maximise x2
1, which happens when

x2
1 = 1, so that S = a2.

Otherwise we have ∣a∣ < ∣b∣ so a2 − b2 < 0 so to maximise S we must minimise x2
1, which

happens when x1 = 0, so that S = b2.
Hence the maximum value of S is S =max{a2, b2} and so ∥C∥ =

√
S =max{∣a∣, ∣b∣}.
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6. We explore the Hilbert Projection Theorem when V is a Banach space but not a Hilbert
space.

(a) Let V = R2 with the ℓ1-norm, that is

∥(x1, x2)∥ = ∣x1∣ + ∣x2∣.

Let Y = B1(0), the closed unit ball around 0. Find two distinct closest points in Y to
x = (−1,1) ∈ V .

(b) Can you find a similar example for V = R2 with the ℓ∞-norm:

∥(x1, x2)∥ =max{∣x1∣, ∣x2∣}?

(c) Let V be a normed space and Y a convex subset of V . Fix x ∈ V . Let Z ⊆ Y be the
set of all closest points in Y to x. Prove that Z is convex.

Solution.

(a) Let y = (y1, y2) ∈ Y , then d(y,0) ⩽ 1.
Note that d(x,0) = 2. By the triangle inequality

d(x, y) + d(y,0) ⩾ d(x,0)⇒ d(x, y) ⩾ d(x,0) − d(y,0) ⩾ 2 − 1 = 1.

Since this holds for all y ∈ Y , we have dY (x) ⩾ 1.
But there are (uncountably many) points of Y at distance 1 from x: take any point
y = (y1, y2) on the line segment joining (−1, 0) to (0, 1), then y2 = y1+1 with −1 ⩽ y1 ⩽ 0
and

d(x, y) = ∣ − 1 − y1∣ + ∣y1∣ = 1 + y1 − y1 = 1.
We conclude that dY (x) = 1 and all the points on that line segment are closest points
to x.

(b) We can recreate a similar scenario for the ℓ∞-norm on V = R2 by taking Y = B1(0) and
x = (2,0), for instance.
The same argument as in (a) gives us dY (x) = 1 and every point on the line segment
joining (1,−1) to (1,1) is at this distance from x.

(c) (Let’s note that the conclusion definitely holds for parts (a) and (b), as well as in the
Hilbert case covered by the Projection Theorem.)

Let D = dY (x).
If Z is empty it is certainly convex.

Otherwise let z1, z2 ∈ Z and let a ∈ [0, 1]. Consider y = az1+(1−a)z2. Since z1, z2 ∈ Z ⊆ Y
and Y is convex, we have that y ∈ Y . We have

d(y, x) = ∥y − x∥ = ∥az1 + (1 − a)z2 − x∥ = ∥az1 − ax + (1 − a)z2 − (1 − a)x∥
= ∥a(z1 − x) + (1 − a)(z2 − x)∥ ⩽ ∥a(z1 − x)∥ + ∥(1 − a)(z2 − x)∥
= a∥z1 − x∥ + (1 − a)∥z2 − x∥ = aD + (1 − a)D =D.

So d(y, x) ⩽ D, but also d(y, x) ⩾ D = dY (x), so we must have d(y, x) = D and
y ∈ Z.
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7. Let H = ℓ2 over R and consider the subset

W = {y = (yn) ∈ ℓ2 ∶ yn ⩾ 0 for all n ∈ N}.

(a) Prove that W is a closed, convex subset of H. Is it a vector subspace?

(b) Find the closest point ymin ∈W to

x = (xn) = (
(−1)n
n
) = (−1, 1

2
,−1

3
, . . .)

and compute dW (x).

[Hint : You may use without proof the identity
∞

∑
n=1

1

n2
= π2

6
.]

Solution.

(a) If y, z ∈ W and a ∈ [0,1] then ay + (1 − a)z = (ayn + (1 − a)zn) and it is clear that
ayn + (1 − a)zn ⩾ 0, so W is convex.

To show that W is closed we note that

W = ⋂
n∈N

π−1n ([0,∞)),

where πn ∶ ℓ2 Ð→ R is given by πn((an)) = an. We’ve seen in Exercise 3.19 that πn is
continuous, so since [0,∞) is closed in R, W is the intersection of a collection of closed
subsets, hence it is closed.

Not a vector subspace because not closed under multiplication by −1 ∈ R.
(b) Let y = (yn) ∈W , then

∥x − y∥2 =
∞

∑
n=1

∣(−1)
n

n
− yn∣

2

= ∑
n odd

∣− 1
n
− yn∣

2

+ ∑
n even

∣ 1
n
− yn∣

2

= ∑
n odd

∣ 1
n
+ yn∣

2

+ ∑
n even

∣ 1
n
− yn∣

2

Note that since yn ⩾ 0:

if n is odd then ∣ 1
n
+ yn∣

2

⩾ 1

n2

if n is even then ∣ 1
n
− yn∣

2

⩾ 0.

Putting this together with the previous result, we get

d(x, y)2 = ∥x − y∥2 ⩾ ∑
n odd

1

n2
.

As this holds for all y ∈W , we get that

dW (x) ⩾
√
∑

n odd

1

n2
.
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But following the calculations above it is easy to put together an element ymin = (yn) ∈W
that achieves this lower bound:

yn =
⎧⎪⎪⎨⎪⎪⎩

1
n if n is even

0 if n is odd.

Finally, to compute dW (x), note

∑
n odd

1

n2
=
∞

∑
n=1

1

n2
− ∑

n even

1

n2
=
∞

∑
n=1

1

n2
−
∞

∑
k=1

1

(2k)2 =
3

4

∞

∑
n=1

1

n2
= π2

8
,

hence
dW (x) =

π

2
√
2
.
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