Assignment 2

Note: Due Friday 13 October at 20:00 on Canvas \& Gradescope. Please read the instructions given on Canvas. The questions have varying lengths and do not all count for the same number of marks; you may assume that longer questions are worth more.

1. Let U, V, W be normed spaces over \mathbb{F}.

Suppose $\beta: U \times V \longrightarrow W$ is a continuous bilinear map.
Consider the linear function $\beta_{U}: U \longrightarrow \operatorname{Hom}(V, W)$ given by $\beta_{U}(u)=f_{u}$, where

$$
f_{u}: V \longrightarrow W \quad \text { is defined by } f_{u}(v)=\beta(u, v)
$$

(a) Prove that for any $u \in U, f_{u} \in B(V, W)$, in other words f_{u} is continuous.
(b) By part (a) we can think of β_{U} as a function $U \longrightarrow B(V, W)$. Prove that $\beta_{U}: U \longrightarrow B(V, W)$ is continuous.

Solution. Before we start, we establish a useful statement: if a bilinear map β is continuous then β is a bounded bilinear map, that is there exists $c>0$ such that

$$
\|\beta(u, v)\|_{W} \leqslant c\|u\|_{U}\|v\|_{V} \quad \text { for all } u \in U, v \in V \text {. }
$$

(More can be said, see Exercise 3.23, but also Exercise 3.24 to dispel any hope at uniform continuity in this setting.)
To prove the statement, suppose β is continuous but not bounded. Then for every $n \in \mathbb{N}$ there exist vectors $u_{n} \in U$ and $v_{n} \in V$ such that

$$
\left\|\beta\left(u_{n}, v_{n}\right)\right\|_{W}>n^{2}\left\|u_{n}\right\|_{U}\left\|v_{n}\right\|_{V}
$$

This forces u_{n}, v_{n} to be nonzero. Let

$$
u_{n}^{\prime}=\frac{1}{n\left\|u_{n}\right\|_{U}} u_{n} \text { and } v_{n}^{\prime}=\frac{1}{n\left\|v_{n}\right\|_{V}} v_{n} .
$$

We now prove $\left(u_{n}^{\prime}, v_{n}^{\prime}\right) \longrightarrow(0,0)$ but $\beta\left(u_{n}^{\prime}, v_{n}^{\prime}\right) \nrightarrow 0=\beta(0,0)$ as $n \longrightarrow \infty$, which contradicts the continuity of β.
Since $\left\|u_{n}^{\prime}\right\|_{U}=\left\|v_{n}^{\prime}\right\|_{V}=1 / n$, it follows that

$$
\left\|\left(u_{n}^{\prime}, v_{n}^{\prime}\right)\right\|_{U \times V}=\left\|u_{n}^{\prime}\right\|_{U}+\left\|v_{n}^{\prime}\right\|_{V}=\frac{1}{2 n} .
$$

Therefore, $\left\|\left(u_{n}^{\prime}, v_{n}^{\prime}\right)\right\| \longrightarrow 0$ and thus $\left(u_{n}^{\prime}, v_{n}^{\prime}\right) \longrightarrow(0,0)$ as $n \longrightarrow \infty$.
On the other hand, we have

$$
\left\|\beta\left(u_{n}^{\prime}, v_{n}^{\prime}\right)\right\|_{W}=\left\|\beta\left(\frac{1}{n\left\|u_{n}\right\|_{U}} u_{n}, \frac{1}{n\left\|v_{n}\right\|_{V}} v_{n}\right)\right\|_{W}=\frac{\left\|\beta\left(u_{n}, v_{n}\right)\right\|_{W}}{n^{2}\left\|u_{n}\right\|_{U}\left\|v_{n}\right\|_{V}}>1 .
$$

Hence $\beta\left(u_{n}^{\prime}, v_{n}^{\prime}\right) \nrightarrow 0$ as $n \longrightarrow \infty$.
Now we can address the two parts of the question.
(a) First approach (direct): Let $v \in V$. We prove that $f_{u}: V \longrightarrow W$ is continuous at v. (Note that, crucially, u remains fixed.)

Let $\varepsilon>0$; as β is continuous at (u, v), there exists $\delta>0$ such that

$$
\text { if }\left\|\left(u, v_{1}\right)-(u, v)\right\|_{U \times V}<\delta \text {, then }\left\|\beta\left(u, v_{1}\right)-\beta(u, v)\right\|_{W}<\varepsilon .
$$

Therefore, if $\left\|v_{1}-v\right\|_{V}<\delta$, then

$$
\left\|\left(u, v_{1}\right)-(u, v)\right\|_{U \times V}=\left\|v_{1}-v\right\|_{V}<\delta,
$$

so that

$$
\left\|f_{u}\left(v_{1}\right)-f_{u}(v)\right\|_{W}=\left\|\beta\left(u, v_{1}\right)-\beta(u, v)\right\|_{W}<\varepsilon .
$$

Second approach (using boundedness): Let $\varepsilon>0$; as β is continuous, it is bounded, so there exists $c>0$ such that

$$
\|\beta(u, v)\|_{W} \leqslant c\|u\|_{U}\|v\|_{V} \quad \text { for all } u \in U, v \in V \text {. }
$$

It follows that

$$
\left\|f_{u}(v)\right\|_{W}=\|\beta(u, v)\|_{W} \leqslant c\|u\|_{U}\|v\|_{V} .
$$

Since $c\|u\|_{U}$ is a constant independent of v, the linear transformation f_{u} is bounded and thus continuous.
(b) Let $\varepsilon>0$; as β is continuous, it is bounded, so there exists $c>0$ such that

$$
\|\beta(u, v)\|_{W} \leqslant c\|u\|_{U}\|v\|_{V} \quad \text { for all } u \in U, v \in V \text {. }
$$

It follows that

$$
\left\|\beta_{U}(u)\right\|_{B(V, W)}=\left\|f_{u}\right\|_{B(V, W)}=\sup _{\|v\|_{V}=1}\|\beta(u, v)\|_{W} \leqslant c\|u\|_{U} .
$$

Therefore, β_{U} is bounded and thus continuous.
2. In Proposition 3.23 we saw that the function

$$
\ell^{1} \times \ell^{\infty} \longrightarrow \mathbb{F} \quad \text { defined by }(u, v) \longmapsto \sum_{n=1}^{\infty} u_{n} v_{n}
$$

is a continuous bilinear map.
(a) Show that there is a continuous linear function $\ell^{1} \longrightarrow\left(c_{0}\right)^{\vee}$ that is an isometry. (Recall that $c_{0} \subseteq \ell^{\infty}$ consists of all convergent sequences with limit 0 .)
[Hint: It may be useful to prove surjectivity first, and then the distance-preserving property.]
(b) Conclude that ℓ^{1} is a Banach space.
(c) Where in your proof for (a) did you make use of the fact that you are working with c_{0} rather than ℓ^{∞} ?

Solution.

(a) If we restrict the bilinear map from the statement to $\ell^{1} \times c_{0}$, we get a continuous bilinear map

$$
\beta: \ell^{1} \times c_{0} \longrightarrow \mathbb{F} .
$$

By Exercise 3.25, β_{U} is linear and continuous. In our notation, this is the function $u \longmapsto u^{\vee}: \ell^{1} \longrightarrow\left(c_{0}\right)^{\vee}$, where

$$
u^{\vee}(v)=\beta(u, v)=\sum_{n=1}^{\infty} u_{n} v_{n} .
$$

We have the Hölder Inequality

$$
\sum_{n=1}^{\infty}\left|u_{n} v_{n}\right| \leqslant\|u\|_{\ell^{1}}\|v\|_{\ell^{\infty}},
$$

valid for all $u \in \ell^{1}$ and all $v \in \ell^{\infty}$, so certainly for all $v \in c_{0}$.
Hence for $v \neq 0$:

$$
\frac{\left|u^{\vee}(v)\right|}{\|v\|_{\ell^{\infty}}} \leqslant\|u\|_{\ell^{1}},
$$

so taking supremum we get $\left\|u^{\vee}\right\| \leqslant\|u\|_{\ell^{1}}$.
For surjectivity, we need to show that each $\varphi \in\left(c_{0}\right)^{\vee}$ is of the form $\varphi=u^{\vee}$ for some $u \in \ell^{1}$. Take such φ. Recall that c_{0} has Schauder basis $\left\{e_{1}, e_{2}, \ldots\right\}$, so for any $v=\left(v_{n}\right) \in c_{0}$ we have

$$
\varphi(v)=\sum_{n=1}^{\infty} v_{n} \varphi\left(e_{n}\right) .
$$

Let $u_{n}=\varphi\left(e_{n}\right)$ and $u=\left(u_{n}\right)$. We need to show that $u \in \ell^{1}$. For this, fix $m \in \mathbb{N}$ and let (ignoring the n 's for which $u_{n}=0$)

$$
x=\sum_{n=1}^{m} \frac{\left|u_{n}\right|}{u_{n}} e_{n}=\left(\frac{\left|u_{1}\right|}{u_{1}}, \ldots, \frac{\left|u_{m}\right|}{u_{m}}, 0,0, \ldots\right),
$$

so that

$$
\|x\|_{e^{\infty}}=1 .
$$

Then

$$
\begin{aligned}
\sum_{n=1}^{m}\left|u_{n}\right| & =\left|\sum_{n=1}^{m} \frac{\left|u_{n}\right|}{u_{n}} u_{n}\right| \\
& =\left|\sum_{n=1}^{m} \varphi\left(\frac{\left|u_{n}\right|}{u_{n}} e_{n}\right)\right| \\
& =|\varphi(x)| \leqslant\|\varphi\|\|x\|_{\ell^{\infty}}=\|\varphi\| .
\end{aligned}
$$

Taking the limit as $m \longrightarrow \infty$ we conclude that $u \in \ell^{1}$ and that $\|u\|_{\ell^{1}} \leqslant\|\varphi\|$.
So $u \longmapsto u^{\vee}$ is surjective.
If we go through the previous construction with $\varphi=u^{\vee}$, we have $u^{\vee}\left(e_{n}\right)=\beta\left(u, e_{n}\right)=u_{n}$, so we land back on u and $\|u\|_{\ell^{1}} \leqslant\|\varphi\|=\left\|u^{\vee}\right\|$. As we have already established the opposite inequality, we conclude that $\left\|u^{\vee}\right\|=\|u\|_{\ell^{1}}$, so $u \longmapsto u^{\vee}$ is distance-preserving. Putting it all together, we have a linear isometry $\ell^{1} \longrightarrow\left(c_{0}\right)^{\vee}$.
(b) We know that duals of normed spaces are complete, so $\left(c_{0}\right)^{\vee}$ is complete, so ℓ^{1}, being isometric to it, also is complete.
(c) We used the Schauder basis $\left\{e_{1}, e_{2}, \ldots\right\}$ for c_{0} to prove surjectivity as well as the distance-preserving property.
3. Consider the maps $H_{\text {even }}, H_{\text {odd }}: \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ defined by

$$
H_{\text {even }}\left(\left(a_{n}\right)\right)=\left(a_{2 n}\right), \quad H_{\text {odd }}\left(\left(a_{n}\right)\right)=\left(a_{2 n-1}\right)
$$

and construct $f: \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}} \times \mathbb{F}^{\mathbb{N}}$ as

$$
f(a)=\left(H_{\mathrm{even}}(a), H_{\mathrm{odd}}(a)\right)
$$

(a) Prove that the restriction of $H_{\text {even }}$ and $H_{\text {odd }}$ to ℓ^{p} gives bounded linear functions $H_{\text {even }}, H_{\text {odd }}: \ell^{p} \longrightarrow \ell^{p}$ for all $p \in \mathbb{R}_{\geqslant 1}$ and for $p=\infty$.
(b) Prove that f is an invertible linear map.
(c) Take $p=1$ and show that the restriction $f: \ell^{1} \longrightarrow \ell^{1} \times \ell^{1}$ is a linear isometry.
(Recall that we are working with the norm on $\ell^{1} \times \ell^{1}$ given by

$$
\|(x, y)\|:=\|x\|_{\ell^{1}}+\|y\|_{\ell^{1}}
$$

as described in Example 3.4.)
(d) Show that the statement from part (c) does not hold for the space ℓ^{∞}; prove the strongest statement that you can for ℓ^{∞}.
(Same comment as in part (c) applies for the norm we consider on $\ell^{\infty} \times \ell^{\infty}$.)
Solution. (a) Linearity is straightforward, even on all of $\mathbb{F}^{\mathbb{N}}$:

$$
\begin{aligned}
H_{\text {even }}(\lambda a+\mu b) & =H_{\text {even }}\left(\left(\lambda a_{n}+\mu b_{n}\right)\right) \\
& =\left(\lambda a_{2 n}+\mu b_{2 n}\right) \\
& =\lambda\left(a_{2 n}\right)+\mu\left(b_{2 n}\right) \\
& =\lambda H_{\text {even }}(a)+\mu H_{\text {even }}(b)
\end{aligned}
$$

and similarly for $H_{\text {odd }}$.
If $a=\left(a_{n}\right) \in \ell^{p}$ then

$$
\left\|H_{\mathrm{even}}(a)\right\|_{\ell^{p}}^{p}=\sum_{n=1}^{\infty}\left|a_{2 n}\right|^{p} \leqslant \sum_{n=1}^{\infty}\left|a_{n}\right|^{p}=\|a\|_{\ell^{p}}^{p},
$$

so $H_{\text {even }}(a) \in \ell^{p}$ and $H_{\text {even }}: \ell^{p} \longrightarrow \ell^{p}$ is bounded. The same argument works for $H_{\text {odd }}$. Similarly, if $a=\left(a_{n}\right) \in \ell^{\infty}$ then

$$
\left\|H_{\text {even }}\right\|_{\ell^{\infty}}=\sup _{n \in \mathbb{N}}\left|a_{2 n}\right| \leqslant \sup _{n \in \mathbb{N}}\left|a_{n}\right|=\|a\|_{\ell^{\infty}}
$$

and the same for $H_{\text {odd }}$.
(b) The map f is linear because its two components are linear.

We construct an explicit inverse $g: \mathbb{F}^{\mathbb{N}} \times \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$: given $b, c \in \mathbb{F}^{\mathbb{N}}$, define

$$
g(b, c):=a:=\left(a_{n}\right) \in \mathbb{F}^{\mathbb{N}} \quad \text { by } \quad a_{n}= \begin{cases}b_{n / 2} & \text { if } n \text { is even } \\ c_{(n+1) / 2} & \text { if } n \text { is odd. }\end{cases}
$$

It is clear that g is the inverse of f.
(c) We have

$$
\begin{aligned}
\|f(a)\| & =\left\|\left(H_{\mathrm{even}}(a), H_{\mathrm{odd}}(a)\right)\right\| \\
& =\left\|H_{\mathrm{even}}(a)\right\|_{\ell^{1}}+\left\|H_{\mathrm{odd}}(a)\right\|_{\ell^{1}} \\
& =\sum_{n=1}^{\infty}\left|a_{2 n}\right|+\sum_{n=1}^{\infty}\left|a_{2 n-1}\right| \\
& =\sum_{n=1}^{\infty}\left|a_{n}\right| \\
& =\|a\|_{\ell^{1}},
\end{aligned}
$$

so that f is a distance-preserving map.
To prove surjectivity of f, we show that the restriction of the function g from part (b) maps to ℓ^{1} : for $b, c \in \ell^{1}$, we have $a:=g(b, c)$.
The fact that $a \in \ell^{1}$ follows from

$$
\sum_{n=1}^{2 m}\left|a_{n}\right|=\sum_{k=1}^{m}\left|a_{2 k}\right|+\sum_{k=1}^{m}\left|a_{2 k-1}\right|=\sum_{k=1}^{m}\left|b_{k}\right|+\sum_{k=1}^{m}\left|c_{k}\right| .
$$

As $b, c \in \ell^{1}$, the limit of the RHS as $m \longrightarrow \infty$ exists and equals $\|b\|_{\ell^{1}}+\|c\|_{\ell^{1}}$, so $a \in \ell^{1}$, $f(a)=(b, c)$, and (of course) $\|a\|_{\ell^{1}}=\|(b, c)\|$.
(d) We try to use the same approach as in (b):

$$
\begin{aligned}
\|f(a)\| & =\left\|\left(H_{\text {even }}(a), H_{\text {odd }}(a)\right)\right\| \\
& =\left\|H_{\text {even }}(a)\right\|_{\ell^{\infty}}+\left\|H_{\text {odd }}(a)\right\|_{\ell^{\infty}} \\
& =\sup _{n \in \mathbb{N}}\left|a_{2 n}\right|+\sup _{n \in \mathbb{N}}\left|a_{2 n-1}\right| \\
& \leqslant \sup _{n \in \mathbb{N}}\left|a_{n}\right|+\sup _{n \in \mathbb{N}}\left|a_{n}\right| \\
& =2\|a\|_{\ell^{\infty}},
\end{aligned}
$$

which shows that f is bounded.
It also indicates that f is not distance-preserving: take $(a)=(1,1, \ldots)$ then

$$
\|f(a)\|=2 \neq 1=\|a\|_{\ell \infty} .
$$

So far we know that f is linear and bounded. It is also injective because it is the restriction of the injective map from part (b).
To prove surjectivity, we show that the restriction of the function g from part (b) maps to ℓ^{∞} : for $b, c \in \ell^{\infty}$, we have $a:=g(b, c)$. But

$$
\sup _{n \in \mathbb{N}}\left|a_{n}\right|=\sup \left\{\sup _{n \in \mathbb{N}}\left|a_{2 n}\right|, \sup _{n \in \mathbb{N}}\left|a_{2 n-1}\right|\right\}=\sup \left\{\|b\|_{\ell \infty},\|c\|_{\ell \infty}\right\}
$$

which is finite because it is the maximum of two finite quantities.
Finally, the last equation tells us that

$$
\|g(b, c)\|=\|a\|=\sup \left\{\|b\|_{\ell^{\infty}},\|c\|_{\ell^{\infty}}\right\} \leqslant\|b\|_{\ell^{\infty}}+\|c\|_{\ell^{\infty}}=\|(b, c)\|,
$$

so g is also a bounded function, hence continuous.
We conclude that f is a linear homeomorphism.
4. Consider the map $f: \ell^{1} \longrightarrow \mathbb{F}^{\mathbb{N}}$ given by

$$
f\left(\left(a_{n}\right)\right)=\left(\frac{a_{n}}{n}\right) .
$$

(a) Prove that f maps to ℓ^{1} and $f: \ell^{1} \longrightarrow \ell^{1}$ is linear, continuous, and injective.
(b) Prove that the image W of f is not closed in ℓ^{1}.

Solution. (a) For all $n \in \mathbb{N}$ we have

$$
\left|\frac{a_{n}}{n}\right| \leqslant\left|a_{n}\right|
$$

so that for $m \in \mathbb{N}$:

$$
\sum_{n=1}^{m}\left|\frac{a_{n}}{n}\right| \leqslant \sum_{n=1}^{m}\left|a_{n}\right| .
$$

As $\left(a_{n}\right) \in \ell^{1}$, the RHS has a finite limit as $m \longrightarrow \infty$, hence so does the LHS, so $f\left(\left(a_{n}\right)\right) \in \ell^{1}$.
Linearity is clear:
$f\left(\lambda\left(a_{n}\right)+\mu\left(b_{n}\right)\right)=f\left(\left(\lambda a_{n}+\mu b_{n}\right)\right)=\left(\frac{\lambda a_{n}+\mu b_{n}}{n}\right)=\lambda\left(\frac{a_{n}}{n}\right)+\mu\left(\frac{b_{n}}{n}\right)=\lambda f\left(\left(a_{n}\right)\right)+\mu f\left(\left(b_{n}\right)\right)$.
We've seen already that $\left\|f\left(\left(a_{n}\right)\right)\right\|_{\ell^{1}} \leqslant\left\|\left(a_{n}\right)\right\|_{\ell^{1}}$, so f is bounded, hence continuous.
Suppose $f\left(\left(a_{n}\right)\right)=f\left(\left(b_{n}\right)\right)$, then for all $n \in \mathbb{N}$ we have $a_{n} / n=b_{n} / n$, therefore $a_{n}=b_{n}$. So f is injective.
(b) For each $n \in \mathbb{N}$ let $v_{n}=(1,1 / 2, \ldots, 1 / n, 0,0, \ldots) \in \mathbb{F}^{\mathbb{N}}$. Since v_{n} has only finitely many nonzero terms, it is in ℓ^{1}. Letting $w_{n}=f\left(v_{n}\right)$, we have $w_{n} \in W$.
Set

$$
w=\left(1, \frac{1}{2^{2}}, \frac{1}{3^{2}}, \ldots\right) .
$$

Since

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

converges, we have $w \in \ell^{1}$.
However, $w \notin W$: if $w \in W$ then $w=f(v)$ where $v=(1,1, \ldots)$, but $v \notin \ell^{1}$.
Finally

$$
\left\|w-w_{n}\right\|_{\ell^{1}}=\|\left(0,0, \ldots, 0, \frac{1}{(n+1)^{2}}, \frac{1}{(n+2)^{2}}, \ldots \|_{\ell^{1}}=\sum_{k=n+1}^{\infty} \frac{1}{k^{2}},\right.
$$

which is the tail of a convergent series, hence converges to 0 . Therefore $\left(w_{n}\right) \longrightarrow w$, but $w \notin W$, so W is not closed in ℓ^{1}.
5. Let $V=\mathbb{R}^{2}$ viewed as a normed space with the Euclidean norm. Compute the norm of each of the following elements $M \in B(V, V)$ directly from the description of the operator norm:

$$
\|M\|=\sup _{\|v\|=1}\|M(v)\| .
$$

(a) $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$;
(b) $B=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$;
(c) $C=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ for $a, b \in \mathbb{R}$.

Solution. In all cases we will denote $v=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$ with $x_{1}^{2}+x_{2}^{2}=1$.
(a) We have

$$
\|A v\|=\left\|\binom{x_{2}}{0}\right\|=\left|x_{2}\right| .
$$

Maximising this under the constraint $x_{1}^{2}+x_{2}^{2}=1$ gives $\|A\|=1$.
(b) We have

$$
\|B v\|=\left\|\binom{x_{2}}{-x_{1}}\right\|=\sqrt{x_{2}^{2}+x_{1}^{2}}=1,
$$

so $\|B\|=1$.
(c) We have

$$
\|C v\|=\left\|\binom{a x_{1}}{b x_{2}}\right\|=\sqrt{a^{2} x_{1}^{2}+b^{2} x_{2}^{2}},
$$

so we are looking to maximise, under the constraint $x_{1}^{2}+x_{2}^{2}=1$, the quantity

$$
S=a^{2} x_{1}^{2}+b^{2} x_{2}^{2}=a^{2} x_{1}^{2}+b^{2}\left(1-x_{1}^{2}\right)=b^{2}+\left(a^{2}-b^{2}\right) x_{1}^{2} .
$$

If $|a| \geqslant|b|$ then $a^{2}-b^{2} \geqslant 0$ so to maximise S we must maximise x_{1}^{2}, which happens when $x_{1}^{2}=1$, so that $S=a^{2}$.
Otherwise we have $|a|<|b|$ so $a^{2}-b^{2}<0$ so to maximise S we must minimise x_{1}^{2}, which happens when $x_{1}=0$, so that $S=b^{2}$.
Hence the maximum value of S is $S=\max \left\{a^{2}, b^{2}\right\}$ and so $\|C\|=\sqrt{S}=\max \{|a|,|b|\}$.
6. We explore the Hilbert Projection Theorem when V is a Banach space but not a Hilbert space.
(a) Let $V=\mathbb{R}^{2}$ with the ℓ^{1}-norm, that is

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right| .
$$

Let $Y=\mathbb{B}_{1}(0)$, the closed unit ball around 0 . Find two distinct closest points in Y to $x=(-1,1) \in V$.
(b) Can you find a similar example for $V=\mathbb{R}^{2}$ with the ℓ^{∞}-norm:

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} ?
$$

(c) Let V be a normed space and Y a convex subset of V. Fix $x \in V$. Let $Z \subseteq Y$ be the set of all closest points in Y to x. Prove that Z is convex.

Solution.

(a) Let $y=\left(y_{1}, y_{2}\right) \in Y$, then $d(y, 0) \leqslant 1$.

Note that $d(x, 0)=2$. By the triangle inequality

$$
d(x, y)+d(y, 0) \geqslant d(x, 0) \Rightarrow d(x, y) \geqslant d(x, 0)-d(y, 0) \geqslant 2-1=1 .
$$

Since this holds for all $y \in Y$, we have $d_{Y}(x) \geqslant 1$.
But there are (uncountably many) points of Y at distance 1 from x : take any point $y=\left(y_{1}, y_{2}\right)$ on the line segment joining $(-1,0)$ to $(0,1)$, then $y_{2}=y_{1}+1$ with $-1 \leqslant y_{1} \leqslant 0$ and

$$
d(x, y)=\left|-1-y_{1}\right|+\left|y_{1}\right|=1+y_{1}-y_{1}=1 .
$$

We conclude that $d_{Y}(x)=1$ and all the points on that line segment are closest points to x.
(b) We can recreate a similar scenario for the ℓ^{∞}-norm on $V=\mathbb{R}^{2}$ by taking $Y=\mathbb{B}_{1}(0)$ and $x=(2,0)$, for instance.
The same argument as in (a) gives us $d_{Y}(x)=1$ and every point on the line segment joining $(1,-1)$ to $(1,1)$ is at this distance from x.
(c) (Let's note that the conclusion definitely holds for parts (a) and (b), as well as in the Hilbert case covered by the Projection Theorem.)
Let $D=d_{Y}(x)$.
If Z is empty it is certainly convex.
Otherwise let $z_{1}, z_{2} \in Z$ and let $a \in[0,1]$. Consider $y=a z_{1}+(1-a) z_{2}$. Since $z_{1}, z_{2} \in Z \subseteq Y$ and Y is convex, we have that $y \in Y$. We have

$$
\begin{aligned}
d(y, x) & =\|y-x\|=\left\|a z_{1}+(1-a) z_{2}-x\right\|=\left\|a z_{1}-a x+(1-a) z_{2}-(1-a) x\right\| \\
& =\left\|a\left(z_{1}-x\right)+(1-a)\left(z_{2}-x\right)\right\| \leqslant\left\|a\left(z_{1}-x\right)\right\|+\left\|(1-a)\left(z_{2}-x\right)\right\| \\
& =a\left\|z_{1}-x\right\|+(1-a)\left\|z_{2}-x\right\|=a D+(1-a) D=D .
\end{aligned}
$$

So $d(y, x) \leqslant D$, but also $d(y, x) \geqslant D=d_{Y}(x)$, so we must have $d(y, x)=D$ and $y \in Z$.
7. Let $H=\ell^{2}$ over \mathbb{R} and consider the subset

$$
W=\left\{y=\left(y_{n}\right) \in \ell^{2}: y_{n} \geqslant 0 \text { for all } n \in \mathbb{N}\right\} .
$$

(a) Prove that W is a closed, convex subset of H. Is it a vector subspace?
(b) Find the closest point $y_{\min } \in W$ to

$$
x=\left(x_{n}\right)=\left(\frac{(-1)^{n}}{n}\right)=\left(-1, \frac{1}{2},-\frac{1}{3}, \ldots\right)
$$

and compute $d_{W}(x)$.
[Hint: You may use without proof the identity $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.]

Solution.

(a) If $y, z \in W$ and $a \in[0,1]$ then $a y+(1-a) z=\left(a y_{n}+(1-a) z_{n}\right)$ and it is clear that $a y_{n}+(1-a) z_{n} \geqslant 0$, so W is convex.

To show that W is closed we note that

$$
W=\bigcap_{n \in \mathbb{N}} \pi_{n}^{-1}([0, \infty)),
$$

where $\pi_{n}: \ell^{2} \longrightarrow \mathbb{R}$ is given by $\pi_{n}\left(\left(a_{n}\right)\right)=a_{n}$. We've seen in Exercise 3.19 that π_{n} is continuous, so since $[0, \infty)$ is closed in \mathbb{R}, W is the intersection of a collection of closed subsets, hence it is closed.
Not a vector subspace because not closed under multiplication by $-1 \in \mathbb{R}$.
(b) Let $y=\left(y_{n}\right) \in W$, then

$$
\begin{aligned}
\|x-y\|^{2} & =\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n}-y_{n}\right|^{2} \\
& =\sum_{n \text { odd }}\left|-\frac{1}{n}-y_{n}\right|^{2}+\sum_{n \text { even }}\left|\frac{1}{n}-y_{n}\right|^{2} \\
& =\sum_{n \text { odd }}\left|\frac{1}{n}+y_{n}\right|^{2}+\sum_{n \text { even }}\left|\frac{1}{n}-y_{n}\right|^{2}
\end{aligned}
$$

Note that since $y_{n} \geqslant 0$:

$$
\begin{aligned}
& \text { if } n \text { is odd then }\left|\frac{1}{n}+y_{n}\right|^{2} \geqslant \frac{1}{n^{2}} \\
& \text { if } n \text { is even then }\left|\frac{1}{n}-y_{n}\right|^{2} \geqslant 0
\end{aligned}
$$

Putting this together with the previous result, we get

$$
d(x, y)^{2}=\|x-y\|^{2} \geqslant \sum_{n \text { odd }} \frac{1}{n^{2}} .
$$

As this holds for all $y \in W$, we get that

$$
d_{W}(x) \geqslant \sqrt{\sum_{n \text { odd }} \frac{1}{n^{2}}} .
$$

But following the calculations above it is easy to put together an element $y_{\min }=\left(y_{n}\right) \in W$ that achieves this lower bound:

$$
y_{n}= \begin{cases}\frac{1}{n} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd. }\end{cases}
$$

Finally, to compute $d_{W}(x)$, note

$$
\sum_{n \text { odd }} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n \text { even }} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}}=\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{8},
$$

hence

$$
d_{W}(x)=\frac{\pi}{2 \sqrt{2}}
$$

