MAST30026 Metric and Hilbert Spaces 2023

Assignment 1

Note: Due Friday 1 September at 20:00 on Canvas & Gradescope. Please read the
instructions given on Canvas. The questions have varying lengths and do not all count for
the same number of marks; you may assume that longer questions are worth more.

(a) Let (X,d) be a metric space with X a finite set. Prove that d is equivalent to the
discrete metric on X.

(b) Let X be a set and let d be the discrete metric on X.

Is X (i) complete? (ii) compact? (iii) connected? (iv) bounded?

For each property listed, either give a proof that all discrete metric spaces X have the
property, or give a specific counterexample of a discrete metric space X that does not
have the property.

Solution.

(a) If X is empty, then d equals to the discrete metric vacuously and of course d is
equivalent to the discrete metric. If X is not empty, then we prove that every singleton

(b)

{x}

(i)

(i)

(iii)

(iv)

is open with respect to the metric d in two cases:
If X has only one element, then X = {z} is open by Example 2.8.

If X has more than one element, then there are finitely many pairs (z,y) € X x X
so we can look at the non-empty set

{d(x,y): x,yeX,xiy}.

The minimum 7 of this set is the minimum of finitely many positive numbers,
hence r > 0. Then B,(z) = {z} for all z € X, showing that {z} is open for all
reX.

Since d is the discrete metric, d(x,y) = 1 iff  # y, so the only Cauchy sequences
are the eventually constant sequences of the form (z1,...,z,, Ty, Ty, ... ), which
converges to x, € X. So yes, X is complete.

7 has the open cover

Z = U Bl(m),

meZ

where all the open sets are disjoint, so there is no finite subcover.
In fact, a discrete metric space X is compact iff X is a finite set.

Let X = {z,y} where z # y. Then {x} and {y} are open sets and express X as a
nontrivial disjoint union of two open sets. So X is disconnected.

In fact, the only connected discrete metric spaces are the empty set and the
singletons.

X is bounded, since d(x,y) <1 for all z,y € X. ]
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2. Let X be a set and let d;, dy be two metrics on X.

(a)

(b)

Suppose that there exist m, M € R,y such that
mdi(z,y) <ds(z,y) < Mdi(z,y) for all z,y e X. (1)

Show that d; and ds are equivalent.
Prove that the converse of (a) does not hold.

In other words, find a set X and two equivalent metrics d; and dy with the property
that there do not exist positive real numbers m and M such that Equation (1) holds.

Solution.

()

Use Proposition 2.27. Consider an open ball B (z) of (X,ds). I claim that the open
ball IB%f}M(x) of (X,d;) is contained in B®(x): if y € ]B%ff}M(a:) then dy(z,y) <r/M, so
that

dz(l’,y) < Mdl(x7y) <T.

So d; is finer than d,.

Now consider an open ball B (z) of (X,d;). I claim that the open ball B, (z) of
(X,ds) is contained in B (z): if y € B2, () then dy(z,y) < rm, so that

dl(x7y) < %d2(x7y) <T.

So dy is finer than d;.

Let X =7Z. Let d; be the discrete metric on Z. Let ds be the induced Euclidean metric
from R, that is dy(x,y) = |z —y| for all z,y € Z.

First we note that d; and dy are equivalent metrics. It suffices to show that every

singleton {x} € Z is open with respect to ds:

B2(z)={yeZ: ly-2z|<1}={yeZ:z-1<y<xz+1}={z}.

Suppose that d; and dy satisfy Equation (1) for some m, M > 0. In particular, if = # y
we would have
m<|lr—yl <M for all z # y € Z,

which is blatantly false (take y =0, z =[M]+1). O
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3. Let X be a compact metric space and {C’i: 1el } be a collection of closed subsets of X
such that
NC+2 for every finite subset J ¢ I.
jeJ
Prove that
N Ci+.
iel
Give an example showing that the conclusion need not hold without the compactness
condition.

Solution. Suppose that
m CZ = .

iel
Therefore
X =u, where U; := X \ (j,

i€l
is an open covering of X. Since X is compact, there exists a finite subset J ¢ I such that

X=UU;,

jeJ

which implies that
UCj=g,

jeJ
contradicting the hypothesis on the collection {C;: i€ I}.
Here is a counterexample where X is not compact. Take X =R, I =N, and C; = (0,1/i]
for i € I. Then each C; is closed in X: since both X and (1/i,00) are open in R, we
conclude that X \ C; = X n(1/i,00) is open in X.
Also,

m C’L =,

el
because if z € Ryq is in C; for all i € I, then 0 <z < 1/i for all 4 in I, hence 0 < x < 0 by
taking limits as ¢ — oo, contradiction.

If J ¢ I is finite, let m = max{J}, then

ij=Cm¢®. ]

jedJ
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4. Let (X,d) be a metric space and define d’: X x X — Ry by

d'(z,y) = min {d(x, Y), 1}.

Prove that d’ is a metric on X and that d’ is equivalent to d.

Solution. It is clear that d'(y,z) = d'(x,y) and that d'(z,y) = 0 if and only if d(x,y) =0 if
and only if z = y.

For the triangle inequality: d’(z,y) < 1 so if at least one of d'(z,t), d'(t,y) is 1, the triangle
inequality holds. So we may assume that d'(z,t) = d(x,t) and d'(t,y) = d(t,y). Then

d'(z,y) <d(z,y) <d(x,t) +d(t,y) =d'(x,t) +d'(t,y).
It remains to prove the equivalence of d and d’. Let z € X and s < 1.
I claim that B%(z) = B¢ (x). To see this, let y € BY(x), then d(x,y) <s< 1, so
d'(z,y) = min{d(x,y),1)} = d(x,y) < s.
In the other direction, let y € B4 (x), then
min{d(z,y),1} =d'(z,y) <s <1,

which forces d(x,y) =d'(z,y) < s.

We conclude by noting that for any r > 0, if we set s = min{r, 1} we get Bé(z) = B% () c
BY (x), and BY (z) = B¢(x) € B¢(x). In other words, any d’-open ball contains a d-open
ball, and vice-versa. O
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5. Let (X,d) be a metric space.

(a) Fix an arbitrary element y € X and consider the function f: X — R given by
f(z) =d(z,y). Prove that f is uniformly continuous.

(b) Give X x X any conserving metric D coming from d. Prove that d: X x X — R is
uniformly continuous (with respect to D).

(c) Let d' be a metric on X and put on X x X any conserving metric D’ coming from d’'.
Suppose that d: X x X — R is continuous with respect to D’. Prove that d’ is a finer
metric than d.

Solution.

(a) Let €>0. Set 6 =¢. If z,2" € X satisfy d(z,2") <d = ¢, then
[f(x) = f(@)] = ld(z,y) - d(«, y)| < d(z,2") <e.
(b) Let €>0. Set 6 =¢/2. If (z1,22), (z],2}) € X x X satisfy

max{d(z1,21), d(ws, 73) } < D((1,22), (1, 23)) <0 = 3,

DO | ™

(where we used the fact that D is conserving), then

|d(z1, x2) = d(2, 25)| < d(21, 27) + d(22,25) <€,
where the first inequality is obtained by applying the triangle inequality a couple of
times, as in Example 2.37.

(c) We prove that if (x,) — 2z € X with respect to d’, then (z,,) — x with respect to x.

Suppose (z,) — = € X with respect to d’. Then ((a:n,:c)) — (z,x) € X x X with
respect to D’. But d: X x X — R is continuous with respect to D', so (d(z,,z)) —
d(z,z) =0eR. Therefore (z,) — = € X with respect to d. O
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6. Give Q € R the induced metric and consider the sequence (z,) defined recursively by

T 1
x =1, Tpe1 = — + — for neN.
2 oz,

(a) Prove that 1 < x, < 2 for all n € N and breathe a sigh of relief that the recursive
definition does not accidentally divide by 0.
(b) For neN, let y, = ©,,11 — z,,. Prove that

2
Y
2$n+1

Ynal = for all n e N.

(c) Prove that

1
[yn| < on for all n € N.

(d) Show that (z,) is Cauchy.
(e) Consider the function f: [1,2] — [1,2] given by

Prove that f is a contraction. What is the fixed point of f7

Solution.
(a) Induction on n. Base case x; = 1 clear.

Fix n € N and suppose 1 <z, <2. Then

X
<?”<1 and <— <1,

1
Tn

N | —
DN | —

so 1<y €2

b) Fix n € N. Noting that 22,2, = 2 + 2, we have
( g 242,

2
2 _ 2 2 _ .2
Y = (xml - xn) =T, — 2T 1T + T =T — 2

1 Tn+1
-ty 2o,

2xn+1yn+1 = 2xn+1 (
Tn+1 2

(c¢) From part (b) we have
[ynl?
2xn+l

We can use this, part (a), and induction by n.

for all n e N.

|yn+1| =

For the base case we have y; = %

For the induction step, fix n € N and suppose |y,| < 5=, then

N 9ny

2 2
[Yn| <Iynl PRI
21;7”1 2 92n+1 gn+1

|yn+1| =
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(d) Let e >0 and let N € N be such that 2V > 1/e. If n > m > N then

|':En - xm| = |yn—1 +Yp-2t--t ym+1|

< |yn—1| toeee At |ym+1|

‘ 1 1

= on-1 toot gm+1

1 1 1

- 2n—m72 + 2n7m73 +eetd 2m+1
2 1

< < —
\2m+1\2N<5'

Here we used the fact that the geometric series with ratio 1/2 sums up to 2.

(e) Let x1,x9 € [1,2]. The function f is continuous on [z7,x2] and differentiable on
(z1,x2), so there exists £ € (x1,23) such that

f(x2) = f(x1)

T2 —T1

= f'(£),
from which we deduce that

|f (22) = f(z2)] = [f" () |2 — 7],
But since £ € (1,2) we have
1 1 1 1
1<5<2:>Z<§<1:>—§<f’(5)<§.
We conclude that f is a contraction with constant 1/2.

Since f is a contraction and [1,2] is complete, we know that f has a unique fixed
point, which is precisely the limit of the sequence (z,) defined above. We can find it
explicitly as

1
= f(e) =5+ - =at=2,
€T

and since z € [1,2] we get = = /2. O
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7. Let St = Sl((0,0)) = {m,y eR: a2 +y2= 1} be the unit circle in R2.

Consider the function f: [0,1) — S! given by the parametrisation

f(t) = (cos(2mt), sin(2nt)).

Endow [0, 1) with the induced metric from R and S' with the induced metric from R2.

Prove that f is a bijective continuous function, but not a homeomorphism.

(You may use without proof whatever properties of the functions sin and cos you manage
to remember from previous subjects.)

Solution.

()
(b)

We know that ¢ — 27t, t —> cos(t) and ¢ — sin(t) are continuous, so by Exercise 2.29
so is f.

Suppose tq # tg € [0,1) are such that f(t1) = f(t2). Then cos(27t;) = cos(27ts), which
implies that to = 1—-¢;. In that case sin(27ty) = sin(27—27t;) = sin(-27ty) = —sin(27t;).
But we also have sin(27ty) = sin(27t;), so sin(27t;) =0, hence t; =0 and to = 1-1¢; =1,
contradicting ¢, € [0, 1).

We conclude that f is injective.

For surjectivity, let (z,y) € S!, in other words 22 + y? = 1. Define 0 € [0,27) by

0~ arccos(z) ify>0
|27 —arccos(z) if y<O.

Letting ¢t = 0/(27), we have f(t) = (z,y).

At this point we know that f is a homeomorphism iff f=1: S! — [0,1) is continuous.
Note that S! ¢ R? is compact: it is clearly bounded as any two points are at distance
at most 2 of each other, so we just need to check that it is a closed subset of R2.

But S! = ]D)l((O, 0)) N C is the intersection of two closed sets, where

C={z,yeR: 2 +y*>1} =R*\ B,((0,0)).

Since S' is compact, if f~! were continuous then [0,1) = f~}(S') would be compact,
hence closed in R. This is a contradiction, because 1 is an accumulation point of [0, 1)
but does not lie in the set. ]
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8. Let X be a metric space and Y a complete metric space. Let D € X be a dense subset
and f: D — Y a uniformly continuous function.

(a) Prove that f has a unique uniformly continuous extension to X, that is there exists a
unique uniformly continuous function

f: X —Y suchthat f(u)=f(u) forallueD.

(Make sure you give a complete argument: how do you construct f? is it well-defined?
does it extend f7 why is it uniformly continuous? why is it unique?)

(b) If, in addition, f is distance-preserving, then so is the extension T

(c) Show that any uniformly continuous (resp. distance-preserving) function g: X — Y
between arbitrary metric spaces has a unique umformly continuous (resp. distance-
preserving) extension to completions, §: X —-Y.

Solution.

(a) The first task is to construct the function f: X — Y. Let 2 € X. Since D is dense
in X, there exists a sequence (u,) in D such that (u,) — z. In particular, (u,) is
Cauchy in D. Since f: D — Y is uniformly continuous, ( f (un)) is Cauchy in Y. As

Y is complete, (f(un)) has a limit y € Y.
Define f(z) = .

But wait, is this actually well-defined” We did make one choice in the construction,
namely a sequence (u,) in D that converges to x. Any other valid choice is a sequence
(ul) in D with the same limit z, so (u/) ~ (u,). As f is continuous, we have
(f(ur)) ~ (f(un)), which implies that (f(ul)) —yeY.

Is J?an extension of f7 If u e D and we work through the above construction, we
see that we can take u, = u for all n € N, so f(uy) = f(u) for all n € N, and finally
f(u) =y = f(u). In other words, f(u) = f(u) for ue D, as claimed.

Next we prove uniform continuity of f Let € >0. Since f: D — Y is uniformly
continuous, there exists 0 > 0 such that for all u,u’ € D, if dx(u,u’) < §, then
dy (f(u), f( ")) < g/2. Now suppose that x, 2’ € X satisfy dX(x x') <§/3. Let (un)
be a sequence as in the definition of f(z) above, and similarly with (u/,) and f(z').
As (u,) — x, there exists N € N such that dX(un,:c) < 0/3 for all n > N. Similarly,
as (ul) — ', there exists N’ € N such that dx(u/,z") < /3 for all n > N’. Letting
M = max{N, N'} we get for all n > M:

dx (tun,ul) <dx(un,x) +dx(z,x") +dx (', ul) < 0.

Therefore dy (f(un), f(ul)) <e/2 for all n.> M.
As f(z) =lim f(u,) and f(2/) = lim f(u!,), we conclude that

dy (Fl@). fla) < 5 <e.

The uniqueness of ffollows from Example 2.43, which says that there is at most one
continuous extension.

(b) If f is distance-preserving, we use the same line of argument, only simpler. Let
(up) — x, (u!)) — 2’ with u,,u!, € D. Then

dy (Fl), F(a")) = dy ( Jim_F(u,), i F(u,))
= hm dy (f(uy), f(un))— hm dx (tun,u,) =dx(x,x").
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(c) For the case of completions, let D = (X)) ¢ X, and apply the above to the function
lyogoiy}: D—Y. O

10



