Assignment 1

Note: Due Friday 1 September at 20:00 on Canvas \& Gradescope. Please read the instructions given on Canvas. The questions have varying lengths and do not all count for the same number of marks; you may assume that longer questions are worth more.
1.
(a) Let (X, d) be a metric space with X a finite set. Prove that d is equivalent to the discrete metric on X.
(b) Let X be a set and let d be the discrete metric on X.

Is X (i) complete? (ii) compact? (iii) connected? (iv) bounded?
For each property listed, either give a proof that all discrete metric spaces X have the property, or give a specific counterexample of a discrete metric space X that does not have the property.

Solution.

(a) If X is empty, then d equals to the discrete metric vacuously and of course d is equivalent to the discrete metric. If X is not empty, then we prove that every singleton $\{x\}$ is open with respect to the metric d in two cases:

- If X has only one element, then $X=\{x\}$ is open by Example 2.8.
- If X has more than one element, then there are finitely many pairs $(x, y) \in X \times X$, so we can look at the non-empty set

$$
\{d(x, y): x, y \in X, x \neq y\} .
$$

The minimum r of this set is the minimum of finitely many positive numbers, hence $r>0$. Then $\mathbb{B}_{r}(x)=\{x\}$ for all $x \in X$, showing that $\{x\}$ is open for all $x \in X$.
(b)
(i) Since d is the discrete metric, $d(x, y)=1$ iff $x \neq y$, so the only Cauchy sequences are the eventually constant sequences of the form $\left(x_{1}, \ldots, x_{n}, x_{n}, x_{n}, \ldots\right)$, which converges to $x_{n} \in X$. So yes, X is complete.
(ii) \mathbb{Z} has the open cover

$$
\mathbb{Z}=\bigcup_{m \in \mathbb{Z}} \mathbb{B}_{1}(m),
$$

where all the open sets are disjoint, so there is no finite subcover.
In fact, a discrete metric space X is compact iff X is a finite set.
(iii) Let $X=\{x, y\}$ where $x \neq y$. Then $\{x\}$ and $\{y\}$ are open sets and express X as a nontrivial disjoint union of two open sets. So X is disconnected.
In fact, the only connected discrete metric spaces are the empty set and the singletons.
(iv) X is bounded, since $d(x, y) \leqslant 1$ for all $x, y \in X$.
2. Let X be a set and let d_{1}, d_{2} be two metrics on X.
(a) Suppose that there exist $m, M \in \mathbb{R}_{>0}$ such that

$$
\begin{equation*}
m d_{1}(x, y) \leqslant d_{2}(x, y) \leqslant M d_{1}(x, y) \quad \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

Show that d_{1} and d_{2} are equivalent.
(b) Prove that the converse of (a) does not hold.

In other words, find a set X and two equivalent metrics d_{1} and d_{2} with the property that there do not exist positive real numbers m and M such that Equation (1) holds.

Solution.

(a) Use Proposition 2.27. Consider an open ball $\mathbb{B}_{r}^{d_{2}}(x)$ of $\left(X, d_{2}\right)$. I claim that the open ball $\mathbb{B}_{r / M}^{d_{1}}(x)$ of $\left(X, d_{1}\right)$ is contained in $\mathbb{B}_{r}^{d_{2}}(x)$: if $y \in \mathbb{B}_{r / M}^{d_{1}}(x)$ then $d_{1}(x, y)<r / M$, so that

$$
d_{2}(x, y) \leqslant M d_{1}(x, y)<r .
$$

So d_{1} is finer than d_{2}.
Now consider an open ball $\mathbb{B}_{r}^{d_{1}}(x)$ of $\left(X, d_{1}\right)$. I claim that the open ball $\mathbb{B}_{r m}^{d_{2}}(x)$ of $\left(X, d_{2}\right)$ is contained in $\mathbb{B}_{r}^{d_{1}}(x)$: if $y \in \mathbb{B}_{r m}^{d_{2}}(x)$ then $d_{2}(x, y)<r m$, so that

$$
d_{1}(x, y) \leqslant \frac{1}{m} d_{2}(x, y)<r .
$$

So d_{2} is finer than d_{1}.
(b) Let $X=\mathbb{Z}$. Let d_{1} be the discrete metric on \mathbb{Z}. Let d_{2} be the induced Euclidean metric from \mathbb{R}, that is $d_{2}(x, y)=|x-y|$ for all $x, y \in \mathbb{Z}$.
First we note that d_{1} and d_{2} are equivalent metrics. It suffices to show that every singleton $\{x\} \subseteq \mathbb{Z}$ is open with respect to d_{2} :

$$
\mathbb{B}_{1}^{d_{2}}(x)=\{y \in \mathbb{Z}:|y-x|<1\}=\{y \in \mathbb{Z}: x-1<y<x+1\}=\{x\} .
$$

Suppose that d_{1} and d_{2} satisfy Equation (1) for some $m, M>0$. In particular, if $x \neq y$ we would have

$$
m \leqslant|x-y| \leqslant M \quad \text { for all } x \neq y \in \mathbb{Z},
$$

which is blatantly false (take $y=0, x=\lceil M\rceil+1$).
3. Let X be a compact metric space and $\left\{C_{i}: i \in I\right\}$ be a collection of closed subsets of X such that

$$
\bigcap_{j \in J} C_{j} \neq \varnothing \quad \text { for every finite subset } J \subseteq I .
$$

Prove that

$$
\bigcap_{i \in I} C_{i} \neq \varnothing .
$$

Give an example showing that the conclusion need not hold without the compactness condition.

Solution. Suppose that

$$
\bigcap_{i \in I} C_{i}=\varnothing .
$$

Therefore

$$
X=\bigcup_{i \in I} U_{i}, \quad \text { where } U_{i}:=X \backslash C_{i}
$$

is an open covering of X. Since X is compact, there exists a finite subset $J \subseteq I$ such that

$$
X=\bigcup_{j \in J} U_{j},
$$

which implies that

$$
\bigcup_{j \in J} C_{j}=\varnothing,
$$

contradicting the hypothesis on the collection $\left\{C_{i}: i \in I\right\}$.
Here is a counterexample where X is not compact. Take $X=\mathbb{R}_{>0}, I=\mathbb{N}$, and $C_{i}=(0,1 / i]$ for $i \in I$. Then each C_{i} is closed in X : since both X and $(1 / i, \infty)$ are open in \mathbb{R}, we conclude that $X \backslash C_{i}=X \cap(1 / i, \infty)$ is open in X.
Also,

$$
\bigcap_{i \in I} C_{i}=\varnothing,
$$

because if $x \in \mathbb{R}_{>0}$ is in C_{i} for all $i \in I$, then $0<x \leqslant 1 / i$ for all i in I, hence $0<x \leqslant 0$ by taking limits as $i \longrightarrow \infty$, contradiction.
If $J \subseteq I$ is finite, let $m=\max \{J\}$, then

$$
\bigcap_{j \in J} C_{j}=C_{m} \neq \varnothing .
$$

4. Let (X, d) be a metric space and define $d^{\prime}: X \times X \longrightarrow \mathbb{R}_{\geqslant 0}$ by

$$
d^{\prime}(x, y)=\min \{d(x, y), 1\} .
$$

Prove that d^{\prime} is a metric on X and that d^{\prime} is equivalent to d.
Solution. It is clear that $d^{\prime}(y, x)=d^{\prime}(x, y)$ and that $d^{\prime}(x, y)=0$ if and only if $d(x, y)=0$ if and only if $x=y$.
For the triangle inequality: $d^{\prime}(x, y) \leqslant 1$ so if at least one of $d^{\prime}(x, t), d^{\prime}(t, y)$ is 1 , the triangle inequality holds. So we may assume that $d^{\prime}(x, t)=d(x, t)$ and $d^{\prime}(t, y)=d(t, y)$. Then

$$
d^{\prime}(x, y) \leqslant d(x, y) \leqslant d(x, t)+d(t, y)=d^{\prime}(x, t)+d^{\prime}(t, y) .
$$

It remains to prove the equivalence of d and d^{\prime}. Let $x \in X$ and $s \leqslant 1$.
I claim that $\mathbb{B}_{s}^{d}(x)=\mathbb{B}_{s}^{d^{\prime}}(x)$. To see this, let $y \in \mathbb{B}_{s}^{d}(x)$, then $d(x, y)<s \leqslant 1$, so

$$
\left.d^{\prime}(x, y)=\min \{d(x, y), 1)\right\}=d(x, y)<s
$$

In the other direction, let $y \in \mathbb{B}_{s}^{d^{\prime}}(x)$, then

$$
\min \{d(x, y), 1\}=d^{\prime}(x, y)<s \leqslant 1
$$

which forces $d(x, y)=d^{\prime}(x, y)<s$.
We conclude by noting that for any $r>0$, if we set $s=\min \{r, 1\}$ we get $\mathbb{B}_{s}^{d}(x)=\mathbb{B}_{s}^{d^{\prime}}(x) \subseteq$ $\mathbb{B}_{r}^{d^{\prime}}(x)$, and $\mathbb{B}_{s}^{d^{\prime}}(x)=\mathbb{B}_{s}^{d}(x) \subseteq \mathbb{B}_{r}^{d}(x)$. In other words, any d^{\prime}-open ball contains a d-open ball, and vice-versa.
5. Let (X, d) be a metric space.
(a) Fix an arbitrary element $y \in X$ and consider the function $f: X \longrightarrow \mathbb{R}$ given by $f(x)=d(x, y)$. Prove that f is uniformly continuous.
(b) Give $X \times X$ any conserving metric D coming from d. Prove that $d: X \times X \longrightarrow \mathbb{R}$ is uniformly continuous (with respect to D).
(c) Let d^{\prime} be a metric on X and put on $X \times X$ any conserving metric D^{\prime} coming from d^{\prime}. Suppose that $d: X \times X \longrightarrow \mathbb{R}$ is continuous with respect to D^{\prime}. Prove that d^{\prime} is a finer metric than d.

Solution.

(a) Let $\varepsilon>0$. Set $\delta=\varepsilon$. If $x, x^{\prime} \in X$ satisfy $d\left(x, x^{\prime}\right)<\delta=\varepsilon$, then

$$
\left|f(x)-f\left(x^{\prime}\right)\right|=\left|d(x, y)-d\left(x^{\prime}, y\right)\right| \leqslant d\left(x, x^{\prime}\right)<\varepsilon .
$$

(b) Let $\varepsilon>0$. Set $\delta=\varepsilon / 2$. If $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X \times X$ satisfy

$$
\max \left\{d\left(x_{1}, x_{1}^{\prime}\right), d\left(x_{2}, x_{2}^{\prime}\right)\right\} \leqslant D\left(\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right)<\delta=\frac{\varepsilon}{2},
$$

(where we used the fact that D is conserving), then

$$
\left|d\left(x_{1}, x_{2}\right)-d\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right| \leqslant d\left(x_{1}, x_{1}^{\prime}\right)+d\left(x_{2}, x_{2}^{\prime}\right)<\varepsilon,
$$

where the first inequality is obtained by applying the triangle inequality a couple of times, as in Example 2.37.
(c) We prove that if $\left(x_{n}\right) \longrightarrow x \in X$ with respect to d^{\prime}, then $\left(x_{n}\right) \longrightarrow x$ with respect to x. Suppose $\left(x_{n}\right) \longrightarrow x \in X$ with respect to d^{\prime}. Then $\left(\left(x_{n}, x\right)\right) \longrightarrow(x, x) \in X \times X$ with respect to D^{\prime}. But $d: X \times X \longrightarrow \mathbb{R}$ is continuous with respect to D^{\prime}, so $\left(d\left(x_{n}, x\right)\right) \longrightarrow$ $d(x, x)=0 \in \mathbb{R}$. Therefore $\left(x_{n}\right) \longrightarrow x \in X$ with respect to d.
6. Give $\mathbb{Q} \subseteq \mathbb{R}$ the induced metric and consider the sequence $\left(x_{n}\right)$ defined recursively by

$$
x_{1}=1, \quad x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} \quad \text { for } n \in \mathbb{N} \text {. }
$$

(a) Prove that $1 \leqslant x_{n} \leqslant 2$ for all $n \in \mathbb{N}$ and breathe a sigh of relief that the recursive definition does not accidentally divide by 0 .
(b) For $n \in \mathbb{N}$, let $y_{n}=x_{n+1}-x_{n}$. Prove that

$$
y_{n+1}=-\frac{y_{n}^{2}}{2 x_{n+1}} \quad \text { for all } n \in \mathbb{N}
$$

(c) Prove that

$$
\left|y_{n}\right| \leqslant \frac{1}{2^{n}} \quad \text { for all } n \in \mathbb{N} \text {. }
$$

(d) Show that $\left(x_{n}\right)$ is Cauchy.
(e) Consider the function $f:[1,2] \longrightarrow[1,2]$ given by

$$
f(x)=\frac{x}{2}+\frac{1}{x} .
$$

Prove that f is a contraction. What is the fixed point of f ?

Solution.

(a) Induction on n. Base case $x_{1}=1$ clear.

Fix $n \in \mathbb{N}$ and suppose $1 \leqslant x_{n} \leqslant 2$. Then

$$
\frac{1}{2} \leqslant \frac{x_{n}}{2} \leqslant 1 \quad \text { and } \quad \frac{1}{2} \leqslant \frac{1}{x_{n}} \leqslant 1,
$$

so $1 \leqslant x_{n+1} \leqslant 2$.
(b) Fix $n \in \mathbb{N}$. Noting that $2 x_{n} x_{n+1}=x_{n}^{2}+2$, we have

$$
\begin{aligned}
y_{n}^{2} & =\left(x_{n+1}-x_{n}\right)^{2}=x_{n+1}^{2}-2 x_{n+1} x_{n}+x_{n}^{2}=x_{n+1}^{2}-2 \\
2 x_{n+1} y_{n+1} & =2 x_{n+1}\left(\frac{1}{x_{n+1}}-\frac{x_{n+1}}{2}\right)=2-x_{n+1}^{2}=-y_{n}^{2} .
\end{aligned}
$$

(c) From part (b) we have

$$
\left|y_{n+1}\right|=\frac{\left|y_{n}\right|^{2}}{2 x_{n+1}} \quad \text { for all } n \in \mathbb{N}
$$

We can use this, part (a), and induction by n.
For the base case we have $y_{1}=\frac{1}{2}$.
For the induction step, fix $n \in \mathbb{N}$ and suppose $\left|y_{n}\right| \leqslant \frac{1}{2^{n}}$, then

$$
\left|y_{n+1}\right|=\frac{\left|y_{n}\right|^{2}}{2 x_{n+1}} \leqslant \frac{\left|y_{n}\right|^{2}}{2} \leqslant \frac{1}{2^{2 n+1}} \leqslant \frac{1}{2^{n+1}} .
$$

(d) Let $\varepsilon>0$ and let $N \in \mathbb{N}$ be such that $2^{N}>1 / \varepsilon$. If $n \geqslant m \geqslant N$ then

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|y_{n-1}+y_{n-2}+\cdots+y_{m+1}\right| \\
& \leqslant\left|y_{n-1}\right|+\cdots+\left|y_{m+1}\right| \\
& \leqslant \frac{1}{2^{n-1}}+\cdots+\frac{1}{2^{m+1}} \\
& =\left(\frac{1}{2^{n-m-2}}+\frac{1}{2^{n-m-3}}+\cdots+1\right) \frac{1}{2^{m+1}} \\
& \leqslant \frac{2}{2^{m+1}} \leqslant \frac{1}{2^{N}}<\varepsilon .
\end{aligned}
$$

Here we used the fact that the geometric series with ratio $1 / 2$ sums up to 2 .
(e) Let $x_{1}, x_{2} \in[1,2]$. The function f is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on (x_{1}, x_{2}), so there exists $\xi \in\left(x_{1}, x_{2}\right)$ such that

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(\xi),
$$

from which we deduce that

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(\xi)\right|\left|x_{2}-x_{1}\right| .
$$

But since $\xi \in(1,2)$ we have

$$
1<\xi<2 \Rightarrow \frac{1}{4}<\frac{1}{\xi^{2}}<1 \Rightarrow-\frac{1}{2}<f^{\prime}(\xi)<\frac{1}{2} .
$$

We conclude that f is a contraction with constant $1 / 2$.
Since f is a contraction and $[1,2]$ is complete, we know that f has a unique fixed point, which is precisely the limit of the sequence $\left(x_{n}\right)$ defined above. We can find it explicitly as

$$
x=f(x)=\frac{x}{2}+\frac{1}{x} \Rightarrow x^{2}=2,
$$

and since $x \in[1,2]$ we get $x=\sqrt{2}$.
7. Let $\mathbb{S}^{1}=\mathbb{S}_{1}((0,0))=\left\{x, y \in \mathbb{R}: x^{2}+y^{2}=1\right\}$ be the unit circle in \mathbb{R}^{2}.

Consider the function $f:[0,1) \longrightarrow \mathbb{S}^{1}$ given by the parametrisation

$$
f(t)=(\cos (2 \pi t), \sin (2 \pi t))
$$

Endow $[0,1)$ with the induced metric from \mathbb{R} and \mathbb{S}^{1} with the induced metric from \mathbb{R}^{2}.
Prove that f is a bijective continuous function, but not a homeomorphism.
(You may use without proof whatever properties of the functions sin and cos you manage to remember from previous subjects.)

Solution.

(a) We know that $t \longmapsto 2 \pi t, t \longmapsto \cos (t)$ and $t \longmapsto \sin (t)$ are continuous, so by Exercise 2.29 so is f.
(b) Suppose $t_{1} \neq t_{2} \in[0,1)$ are such that $f\left(t_{1}\right)=f\left(t_{2}\right)$. Then $\cos \left(2 \pi t_{1}\right)=\cos \left(2 \pi t_{2}\right)$, which implies that $t_{2}=1-t_{1}$. In that case $\sin \left(2 \pi t_{2}\right)=\sin \left(2 \pi-2 \pi t_{1}\right)=\sin \left(-2 \pi t_{1}\right)=-\sin \left(2 \pi t_{1}\right)$. But we also have $\sin \left(2 \pi t_{2}\right)=\sin \left(2 \pi t_{1}\right)$, so $\sin \left(2 \pi t_{1}\right)=0$, hence $t_{1}=0$ and $t_{2}=1-t_{1}=1$, contradicting $t_{2} \in[0,1)$.
We conclude that f is injective.
For surjectivity, let $(x, y) \in \mathbb{S}^{1}$, in other words $x^{2}+y^{2}=1$. Define $\theta \in[0,2 \pi)$ by

$$
\theta= \begin{cases}\arccos (x) & \text { if } y \geqslant 0 \\ 2 \pi-\arccos (x) & \text { if } y<0\end{cases}
$$

Letting $t=\theta /(2 \pi)$, we have $f(t)=(x, y)$.
(c) At this point we know that f is a homeomorphism iff $f^{-1}: \mathbb{S}^{1} \longrightarrow[0,1)$ is continuous. Note that $\mathbb{S}^{1} \subseteq \mathbb{R}^{2}$ is compact: it is clearly bounded as any two points are at distance at most 2 of each other, so we just need to check that it is a closed subset of \mathbb{R}^{2}.
But $\mathbb{S}^{1}=\mathbb{D}_{1}((0,0)) \cap C$ is the intersection of two closed sets, where

$$
C=\left\{x, y \in \mathbb{R}: x^{2}+y^{2} \geqslant 1\right\}=\mathbb{R}^{2} \backslash \mathbb{B}_{1}((0,0)) .
$$

Since \mathbb{S}^{1} is compact, if f^{-1} were continuous then $[0,1)=f^{-1}\left(\mathbb{S}^{1}\right)$ would be compact, hence closed in \mathbb{R}. This is a contradiction, because 1 is an accumulation point of $[0,1)$ but does not lie in the set.
8. Let X be a metric space and Y a complete metric space. Let $D \subseteq X$ be a dense subset and $f: D \longrightarrow Y$ a uniformly continuous function.
(a) Prove that f has a unique uniformly continuous extension to X, that is there exists a unique uniformly continuous function

$$
\widehat{f}: X \longrightarrow Y \quad \text { such that } \quad \widehat{f}(u)=f(u) \quad \text { for all } u \in D
$$

(Make sure you give a complete argument: how do you construct \widehat{f} ? is it well-defined? does it extend f ? why is it uniformly continuous? why is it unique?)
(b) If, in addition, f is distance-preserving, then so is the extension \widehat{f}.
(c) Show that any uniformly continuous (resp. distance-preserving) function $g: X \longrightarrow Y$ between arbitrary metric spaces has a unique uniformly continuous (resp. distancepreserving) extension to completions, $\widehat{g}: \widehat{X} \longrightarrow \widehat{Y}$.

Solution.

(a) The first task is to construct the function $\widehat{f}: X \longrightarrow Y$. Let $x \in X$. Since D is dense in X, there exists a sequence $\left(u_{n}\right)$ in D such that $\left(u_{n}\right) \longrightarrow x$. In particular, $\left(u_{n}\right)$ is Cauchy in D. Since $f: D \longrightarrow Y$ is uniformly continuous, $\left(f\left(u_{n}\right)\right)$ is Cauchy in Y. As Y is complete, $\left(f\left(u_{n}\right)\right)$ has a limit $y \in Y$.
Define $\widehat{f}(x)=y$.
But wait, is this actually well-defined? We did make one choice in the construction, namely a sequence $\left(u_{n}\right)$ in D that converges to x. Any other valid choice is a sequence $\left(u_{n}^{\prime}\right)$ in D with the same limit x, so $\left(u_{n}^{\prime}\right) \sim\left(u_{n}\right)$. As f is continuous, we have $\left(f\left(u_{n}^{\prime}\right)\right) \sim\left(f\left(u_{n}\right)\right)$, which implies that $\left(f\left(u_{n}^{\prime}\right)\right) \longrightarrow y \in Y$.
Is \widehat{f} an extension of f ? If $u \in D$ and we work through the above construction, we see that we can take $u_{n}=u$ for all $n \in \mathbb{N}$, so $f\left(u_{n}\right)=f(u)$ for all $n \in \mathbb{N}$, and finally $\widehat{f}(u)=y=f(u)$. In other words, $\widehat{f}(u)=f(u)$ for $u \in D$, as claimed.
Next we prove uniform continuity of \widehat{f}. Let $\varepsilon>0$. Since $f: D \longrightarrow Y$ is uniformly continuous, there exists $\delta>0$ such that for all $u, u^{\prime} \in D$, if $d_{X}\left(u, u^{\prime}\right)<\delta$, then $d_{Y}\left(f(u), f\left(u^{\prime}\right)\right)<\varepsilon / 2$. Now suppose that $x, x^{\prime} \in X$ satisfy $d_{X}\left(x, x^{\prime}\right)<\delta / 3$. Let $\left(u_{n}\right)$ be a sequence as in the definition of $\widehat{f}(x)$ above, and similarly with $\left(u_{n}^{\prime}\right)$ and $\widehat{f}\left(x^{\prime}\right)$. As $\left(u_{n}\right) \longrightarrow x$, there exists $N \in \mathbb{N}$ such that $d_{X}\left(u_{n}, x\right)<\delta / 3$ for all $n \geqslant N$. Similarly, as $\left(u_{n}^{\prime}\right) \longrightarrow x^{\prime}$, there exists $N^{\prime} \in \mathbb{N}$ such that $d_{X}\left(u_{n}^{\prime}, x^{\prime}\right)<\delta / 3$ for all $n \geqslant N^{\prime}$. Letting $M=\max \left\{N, N^{\prime}\right\}$ we get for all $n \geqslant M$:

$$
d_{X}\left(u_{n}, u_{n}^{\prime}\right) \leqslant d_{X}\left(u_{n}, x\right)+d_{X}\left(x, x^{\prime}\right)+d_{X}\left(x^{\prime}, u_{n}^{\prime}\right)<\delta
$$

Therefore $d_{Y}\left(f\left(u_{n}\right), f\left(u_{n}^{\prime}\right)\right)<\varepsilon / 2$ for all $n \geqslant M$.
As $\widehat{f}(x)=\lim f\left(u_{n}\right)$ and $\widehat{f}\left(x^{\prime}\right)=\lim f\left(u_{n}^{\prime}\right)$, we conclude that

$$
d_{Y}\left(\widehat{f}(x), \widehat{f}\left(x^{\prime}\right)\right) \leqslant \frac{\varepsilon}{2}<\varepsilon .
$$

The uniqueness of \widehat{f} follows from Example 2.43, which says that there is at most one continuous extension.
(b) If f is distance-preserving, we use the same line of argument, only simpler. Let $\left(u_{n}\right) \longrightarrow x,\left(u_{n}^{\prime}\right) \longrightarrow x^{\prime}$ with $u_{n}, u_{n}^{\prime} \in D$. Then

$$
\begin{aligned}
d_{Y}\left(\widehat{f}(x), \widehat{f}\left(x^{\prime}\right)\right) & =d_{Y}\left(\lim _{n \rightarrow \infty} \widehat{f}\left(u_{n}\right), \lim _{n \longrightarrow \infty} \widehat{f}\left(u_{n}^{\prime}\right)\right) \\
& =\lim _{n \longrightarrow \infty} d_{Y}\left(f\left(u_{n}\right), f\left(u_{n}^{\prime}\right)\right)=\lim _{n \rightarrow \infty} d_{X}\left(u_{n}, u_{n}^{\prime}\right)=d_{X}\left(x, x^{\prime}\right)
\end{aligned}
$$

(c) For the case of completions, let $D=\iota(X) \subseteq \widehat{X}$, and apply the above to the function $\iota_{Y} \circ g \circ \iota_{X}^{-1}: D \longrightarrow \widehat{Y}$.

