Assignment 2: corrected version as of 2 October

Note: Due Friday 13 October at 20:00 on Canvas \& Gradescope. Please read the instructions given on Canvas. The questions have varying lengths and do not all count for the same number of marks; you may assume that longer questions are worth more.

1. Let U, V, W be normed spaces over \mathbb{F}.

Suppose $\beta: U \times V \longrightarrow W$ is a continuous bilinear map.
Consider the linear function $\beta_{U}: U \longrightarrow \operatorname{Hom}(V, W)$ given by $\beta_{U}(u)=f_{u}$, where

$$
f_{u}: V \longrightarrow W \quad \text { is defined by } f_{u}(v)=\beta(u, v)
$$

(a) Prove that for any $u \in U, f_{u} \in B(V, W)$, in other words f_{u} is continuous.
(b) By part (a) we can think of β_{U} as a function $U \longrightarrow B(V, W)$.

Prove that $\beta_{U}: U \longrightarrow B(V, W)$ is continuous.
2. In Proposition 3.23 we saw that the function

$$
\ell^{1} \times \ell^{\infty} \longrightarrow \mathbb{F} \quad \text { defined by }(u, v) \longmapsto \sum_{n=1}^{\infty} u_{n} v_{n}
$$

is a continuous bilinear map.
(a) Show that there is a continuous linear function $\ell^{1} \longrightarrow\left(c_{0}\right)^{\vee}$ that is an isometry.
(Recall that $c_{0} \subseteq \ell^{\infty}$ consists of all convergent sequences with limit 0 .)
[Hint: It may be useful to prove surjectivity first, and then the distance-preserving property.]
(b) Conclude that ℓ^{1} is a Banach space.
(c) Where in your proof for (a) did you make use of the fact that you are working with c_{0} rather than ℓ^{∞} ?
3. Consider the maps $H_{\text {even }}, H_{\text {odd }}: \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ defined by

$$
H_{\text {even }}\left(\left(a_{n}\right)\right)=\left(a_{2 n}\right), \quad H_{\text {odd }}\left(\left(a_{n}\right)\right)=\left(a_{2 n-1}\right)
$$

and construct $f: \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}} \times \mathbb{F}^{\mathbb{N}}$ as

$$
f(a)=\left(H_{\text {even }}(a), H_{\mathrm{odd}}(a)\right) .
$$

(a) Prove that the restriction of $H_{\text {even }}$ and $H_{\text {odd }}$ to ℓ^{p} gives bounded linear functions $H_{\text {even }}, H_{\text {odd }}: \ell^{p} \longrightarrow \ell^{p}$ for all $p \in \mathbb{R}_{\geqslant 1}$ and for $p=\infty$.
(b) Prove that f is an invertible linear map.
(c) Take $p=1$ and show that the restriction $f: \ell^{1} \longrightarrow \ell^{1} \times \ell^{1}$ is a linear isometry.
(Recall that we are working with the norm on $\ell^{1} \times \ell^{1}$ given by

$$
\|(x, y)\|:=\|x\|_{\ell^{1}}+\|y\|_{\ell^{1}}
$$

as described in Example 3.4.)
(d) Show that the statement from part (c) does not hold for the space ℓ^{∞}; prove the strongest statement that you can for ℓ^{∞}.
(Same comment as in part (c) applies for the norm we consider on $\ell^{\infty} \times \ell^{\infty}$.)
4. Consider the map $f: \ell^{1} \longrightarrow \mathbb{F}^{\mathbb{N}}$ given by

$$
f\left(\left(a_{n}\right)\right)=\left(\frac{a_{n}}{n}\right) .
$$

(a) Prove that f maps to ℓ^{1} and $f: \ell^{1} \longrightarrow \ell^{1}$ is linear, continuous, and injective.
(b) Prove that the image W of f is not closed in ℓ^{1}.
5. Let $V=\mathbb{R}^{2}$ viewed as a normed space with the Euclidean norm. Compute the norm of each of the following elements $M \in B(V, V)$ directly from the description of the operator norm:

$$
\|M\|=\sup _{\|v\|=1}\|M(v)\| .
$$

(a) $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$;
(b) $B=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$;
(c) $C=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ for $a, b \in \mathbb{R}$.
6. We explore the Hilbert Projection Theorem when V is a Banach space but not a Hilbert space.
(a) Let $V=\mathbb{R}^{2}$ with the ℓ^{1}-norm, that is

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right| .
$$

Let $Y=\mathbb{B}_{1}(0)$, the closed unit ball around 0 . Find two distinct closest points in Y to $x=(-1,1) \in V$.
(b) Can you find a similar example for $V=\mathbb{R}^{2}$ with the ℓ^{∞}-norm:

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} ?
$$

(c) Let V be a normed space and Y a convex subset of V. Fix $x \in V$. Let $Z \subseteq Y$ be the set of all closest points in Y to x. Prove that Z is convex.
7. Let $H=\ell^{2}$ over \mathbb{R} and consider the subset

$$
W=\left\{y=\left(y_{n}\right) \in \ell^{2}: y_{n} \geqslant 0 \text { for all } n \in \mathbb{N}\right\} .
$$

(a) Prove that W is a closed, convex subset of H. Is it a vector subspace?
(b) Find the closest point $y_{\min } \in W$ to

$$
x=\left(x_{n}\right)=\left(\frac{(-1)^{n}}{n}\right)=\left(-1, \frac{1}{2},-\frac{1}{3}, \ldots\right)
$$

and compute $d_{W}(x)$.
[Hint: You may use without proof the identity $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.]

