Assignment 2: corrected version as of 2 October

Note: Due Friday 13 October at 20:00 on Canvas & Gradescope. Please read the instructions given on Canvas. The questions have varying lengths and do not all count for the same number of marks; you may assume that longer questions are worth more.

1. Let U, V, W be normed spaces over \mathbb{F} .

Suppose $\beta: U \times V \longrightarrow W$ is a continuous bilinear map.

Consider the linear function $\beta_U \colon U \longrightarrow \operatorname{Hom}(V, W)$ given by $\beta_U(u) = f_u$, where

 $f_u: V \longrightarrow W$ is defined by $f_u(v) = \beta(u, v)$.

- (a) Prove that for any $u \in U$, $f_u \in B(V, W)$, in other words f_u is continuous.
- (b) By part (a) we can think of β_U as a function $U \longrightarrow B(V, W)$. Prove that $\beta_U : U \longrightarrow B(V, W)$ is continuous.
- 2. In Proposition 3.23 we saw that the function

$$\ell^1 \times \ell^\infty \longrightarrow \mathbb{F}$$
 defined by $(u, v) \longmapsto \sum_{n=1}^\infty u_n v_n$

is a continuous bilinear map.

(a) Show that there is a continuous linear function $\ell^1 \longrightarrow (c_0)^{\vee}$ that is an isometry. (Recall that $c_0 \subseteq \ell^{\infty}$ consists of all convergent sequences with limit 0.)

[*Hint*: It may be useful to prove surjectivity first, and then the distance-preserving property.]

- (b) Conclude that ℓ^1 is a Banach space.
- (c) Where in your proof for (a) did you make use of the fact that you are working with c_0 rather than ℓ^{∞} ?
- 3. Consider the maps $H_{\text{even}}, H_{\text{odd}} \colon \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}}$ defined by

$$H_{\text{even}}((a_n)) = (a_{2n}), \qquad H_{\text{odd}}((a_n)) = (a_{2n-1})$$

and construct $f \colon \mathbb{F}^{\mathbb{N}} \longrightarrow \mathbb{F}^{\mathbb{N}} \times \mathbb{F}^{\mathbb{N}}$ as

$$f(a) = (H_{\text{even}}(a), H_{\text{odd}}(a)).$$

- (a) Prove that the restriction of H_{even} and H_{odd} to ℓ^p gives bounded linear functions $H_{\text{even}}, H_{\text{odd}} \colon \ell^p \longrightarrow \ell^p$ for all $p \in \mathbb{R}_{\geq 1}$ and for $p = \infty$.
- (b) Prove that f is an invertible linear map.
- (c) Take p = 1 and show that the restriction $f: \ell^1 \longrightarrow \ell^1 \times \ell^1$ is a linear isometry. (Recall that we are working with the norm on $\ell^1 \times \ell^1$ given by

$$\|(x,y)\| \coloneqq \|x\|_{\ell^1} + \|y\|_{\ell^1}$$

as described in Example 3.4.)

(d) Show that the statement from part (c) does not hold for the space ℓ^{∞} ; prove the strongest statement that you can for ℓ^{∞} .

(Same comment as in part (c) applies for the norm we consider on $\ell^{\infty} \times \ell^{\infty}$.)

4. Consider the map $f: \ell^1 \longrightarrow \mathbb{F}^{\mathbb{N}}$ given by

$$f((a_n)) = \left(\frac{a_n}{n}\right).$$

- (a) Prove that f maps to ℓ^1 and $f: \ell^1 \longrightarrow \ell^1$ is linear, continuous, and injective.
- (b) Prove that the image W of f is not closed in ℓ^1 .
- 5. Let $V = \mathbb{R}^2$ viewed as a normed space with the Euclidean norm. Compute the norm of each of the following elements $M \in B(V, V)$ directly from the description of the operator norm:

$$||M|| = \sup_{||v||=1} ||M(v)||.$$

- (a) $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix};$ (b) $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$ (c) $C = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ for $a, b \in \mathbb{R}.$
- 6. We explore the Hilbert Projection Theorem when V is a Banach space but not a Hilbert space.
 - (a) Let $V = \mathbb{R}^2$ with the ℓ^1 -norm, that is

$$||(x_1, x_2)|| = |x_1| + |x_2|.$$

Let $Y = \mathbb{B}_1(0)$, the closed unit ball around 0. Find two distinct closest points in Y to $x = (-1, 1) \in V$.

(b) Can you find a similar example for $V = \mathbb{R}^2$ with the ℓ^{∞} -norm:

$$\|(x_1, x_2)\| = \max\{|x_1|, |x_2|\}$$
?

- (c) Let V be a normed space and Y a convex subset of V. Fix $x \in V$. Let $Z \subseteq Y$ be the set of all closest points in Y to x. Prove that Z is convex.
- 7. Let $H = \ell^2$ over \mathbb{R} and consider the subset

$$W = \left\{ y = (y_n) \in \ell^2 \colon y_n \ge 0 \text{ for all } n \in \mathbb{N} \right\}.$$

- (a) Prove that W is a closed, convex subset of H. Is it a vector subspace?
- (b) Find the closest point $y_{\min} \in W$ to

$$x = (x_n) = \left(\frac{(-1)^n}{n}\right) = \left(-1, \frac{1}{2}, -\frac{1}{3}, \dots\right)$$

and compute $d_W(x)$.

[*Hint*: You may use without proof the identity $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.]