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MAST30026 Metric and Hilbert Spaces Semester 2, 2021

Question 1 (20 marks)

(a) State the definition of compactness for topological spaces.

(b) Prove that if X,Y are topological spaces and f : X −→ Y is a continuous function, then
for any compact subset K ⊆ X the image f(K) ⊆ Y is compact.

(c) Prove the Extreme Value Theorem for continuous maps: if f is a continuous real-valued
function on a nonempty compact topological space X then there exist c, d ∈ X such that
f(c) ≥ f(x) ≥ f(d) for all x ∈ X (you may assume without proof that compact subsets
of R are closed and bounded).

Question 2 (20 marks) Let (X, dX) and (Y, dY ) be metric spaces and f : X −→ Y a function.
Prove that f is continuous (in the sense that preimages of open sets are open) if and only if
it is continuous in the ε-δ sense, that is, for all x ∈ X and ε > 0 there exists δ > 0 with the
property that whenever y ∈ X and dX(x, y) < δ we have dY (f(x), f(y)) < ε.

Question 3 (20 marks) Let X be a Hausdorff topological space.

(a) Prove that if K ⊆ X is compact then it is closed.

(b) Prove that if X is compact then it is normal.

Question 4 (20 marks) Let F be either R or C.

(a) Let V be an inner product space over F, and prove that for u ∈ V the function 〈−, u〉 :
V −→ F is bounded, linear and has operator norm ‖u‖.

(b) Let H be a Hilbert space over F. If K ⊆ H is closed, convex and nonempty, prove that
for each h ∈ H there is a unique point k ∈ K which is closest to h, in the sense that

‖h− k‖ = inf{‖h− v‖ | v ∈ K} .

(Hint: recall the Parallelogram Law ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2).

Question 5 (20 marks) Let (X, d) be a compact metric space. Given a real number 0 < λ < 1
a function f : X −→ X is called a λ-contraction if d(fx, fy) ≤ λd(x, y) for all x, y ∈ X. Let
Ctsλ(X,X) ⊆ Cts(X,X) be the subset of λ-contractions with the subspace topology, where
Cts(X,X) has the compact-open topology. Prove that

(a) The function F : Ctsλ(X,X) −→ X sending a λ-contraction to its unique fixed point
(which exists by the Banach fixed point theorem) is a continuous map.

(b) Let X ⊆ Rn be a compact and convex subset (recall convexity means that for any x, y ∈ X
we have {αx + (1 − α)y |α ∈ [0, 1]} ⊆ X). Prove that F has a continuous right inverse,
by defining a function G : X −→ Ctsλ(X,X) and proving that

(i) G is well-defined, that is, G(y) is a λ-contraction for every y ∈ X,

(ii) F ◦ G = 1,

(iii) G is continuous.
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