Assignment 2

1. Let $m=p^{r}$ with p prime and $r \in \mathbb{N}$ and let $n=\varphi(m)$. Let $\zeta=e^{2 \pi i / m}$ and $K=\mathbb{Q}(\zeta)$. Show that

$$
\Delta(\zeta)=\frac{(-1)^{\binom{n}{2}} m^{n}}{p^{m / p}}
$$

The minimal polynomial for ζ over \mathbb{Q} is

$$
f(x)=\frac{x^{p^{r}}-1}{x^{p^{r-1}}-1}
$$

Its derivative is

$$
f^{\prime}(x)=\frac{p^{r} x^{p^{r}-1}\left(x^{p^{r-1}}-1\right)-p^{r-1} x^{p^{r-1}-1}\left(x^{p^{r}}-1\right)}{\left(x^{p^{r-1}}-1\right)^{2}}
$$

This simplifies considerably when evaluated at $x=\zeta$, since $\zeta^{p^{r}}=1$ and $\zeta^{p^{r}-1}=\zeta^{-1}$:

$$
f^{\prime}(\zeta)=\frac{p^{r}\left(\zeta^{p^{r-1}-1}-\zeta^{-1}\right)}{\left(\zeta^{p^{r-1}}-1\right)^{2}}=\frac{p^{r}}{\zeta\left(\zeta^{p^{r-1}}-1\right)}
$$

Next we compute the norm:

$$
N_{\mathbb{Q}}^{K}\left(f^{\prime}(\zeta)\right)=\frac{\left(p^{r}\right)^{n}}{N_{\mathbb{Q}}^{K}\left(\zeta^{r-1}-1\right)} .
$$

Letting $\omega=\zeta^{p^{r-1}}$, we have $\omega^{p}=1$ and (seen in the lectures):

$$
N_{\mathbb{Q}}^{\mathbb{Q}(\omega)}(\omega-1)=p,
$$

therefore

$$
N_{\mathbb{Q}}^{K}(\omega-1)=\left(N_{\mathbb{Q}}^{\mathbb{Q}(\omega)}(\omega-1)\right)^{p^{r-1}}=p^{p^{r-1}},
$$

and finally

$$
\Delta_{K}=(-1)^{\binom{n}{2}} N_{\mathbb{Q}}^{K}\left(f^{\prime}(\zeta)\right)=\frac{(-1)^{\binom{n}{2}} m^{n}}{p^{m / p}}
$$

2. Let K be a number field and consider its embeddings $\sigma_{1}, \ldots, \sigma_{n}: K \rightarrow \mathbb{C}$. Let r_{1} denote the number of embeddings whose image is actually contained in \mathbb{R}. The remaining $n-r_{1}$ embeddings come in pairs $\sigma, \bar{\sigma}$, where $\bar{\sigma}$ is the composition of σ and the complex conjugation automorphism of \mathbb{C}. Let r_{2} be the number of such pairs, so that $n=r_{1}+2 r_{2}$.
Prove that the sign of Δ_{K} is $(-1)^{r_{2}}$.
Let $\omega_{1}, \ldots, \omega_{n}$ be a \mathbb{Z}-basis for \mathcal{O}_{K}, then

$$
\Delta_{K}=\operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right)^{2}
$$

Consider the effect of complex conjugation; it leaves the r_{1} rows corresponding to the real embeddings, and interchanges each pair of r_{2} rows corresponding to the conjugate pairs of non-real embeddings. Therefore

$$
\overline{\operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right)}=(-1)^{r_{2}} \operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right) .
$$

If r_{2} is even, then $\operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right)$ is real, so its square $\Delta_{K}>0$.
If r_{2} is odd, then $\operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right)$ is purely imaginary, so its square $\Delta_{K}<0$.
3. Fix $g, n \in \mathbb{Z}_{>1}$ with n odd such that $d:=n^{g}-1$ is squarefree. Show that the ideal class group of $K=\mathbb{Q}(\sqrt{-d})$ contains an element of order equal to g.
As d is even and squarefree, it must be $\equiv 2(\bmod 4)$, so $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-d}]$. As ideals of \mathcal{O}_{K} we have

$$
(n)^{g}=\left(n^{g}\right)=(1+d)=(1+\sqrt{-d})(1-\sqrt{-d}) .
$$

Consider the ideal $(1+\sqrt{-d})+(1-\sqrt{-d})$. It contains $2=1+\sqrt{-d}+1-\sqrt{-d}$. It also contains the odd number $n^{g}=(1+\sqrt{-d})(1-\sqrt{-d})$. Therefore it contains $1=\operatorname{gcd}\left(2, n^{g}\right)$, so $(1+\sqrt{-d})$ and $(1-\sqrt{-d})$ are coprime ideals. As their product is the g-th power of the ideal (n), each of these ideals must be a g-th power, so there exist ideals I, J such that $I^{g}=(1+\sqrt{-d})$ and $J^{g}=(1-\sqrt{-d})$ and $I J=(n)$.
Clearly the order of I in the ideal class group divides g.
Suppose $I^{k}=(a+b \sqrt{-d})$ for some $k \in \mathbb{N}, a, b \in \mathbb{Z}$. We cannot have $b=0$: otherwise $I^{k}=(a)=J^{k}$, but I and J are coprime, so $(a)=\mathcal{O}_{K}$, therefore $N(I)^{k}=N(J)^{k}=1$, contradicting the fact that $N(I J)=N(n)>1$.
Taking norms in $I^{k}=(a+b \sqrt{-d})$ we have

$$
n^{k}=a^{2}+b^{2} d \geq d=n^{g}-1,
$$

which forces $k \geq g$.
4. Find the class number of $K=\mathbb{Q}(\sqrt{-19})$.

Since $-19 \equiv 1(\bmod 4)$, we have $\Delta_{K}=-19$ and $\mathcal{O}_{K}=\mathbb{Z}[\theta]$ where $\theta=\frac{1+\sqrt{-19}}{2}$. Note that $\theta^{2}-\theta+5=0$. The Hurwitz bound is

$$
B_{K}=(1+|\theta|)(1+|\bar{\theta}|) \approx 10.472 \ldots
$$

It suffices then to consider the decomposition of the primes $2,3,5,7$ to determine the prime ideals with norm ≤ 10.
The polynomial $x^{2}-x+5$ is irreducible modulo 2 and 3 , so these are inert and $2 \mathcal{O}_{K}, 3 \mathcal{O}_{K}$ are prime ideals.
The polynomial $x^{2}-x+5=x(x-1)$ modulo 5 , so $5 \mathcal{O}_{K}=(5, \theta)(5, \theta-1)$. But $\theta(\theta-1)=-5$ implying that $5 \in(\theta)$ and $5 \in(\theta-1)$ and hence the two prime ideals $(5, \theta)=(\theta)$ and $(5, \theta-1)=(\theta-1)$ of norm 5 are principal.
Finally, the polynomial $x^{2}-x+5=x^{2}-x-2=(x+1)(x-2)$ modulo 7 , so $7 \mathcal{O}_{K}=$ $(7, \theta+1)(7, \theta-2)$. Since $(\theta+1)(\theta-2)=-7$, we get that $(7, \theta+1)=(\theta+1)$ and $(7, \theta-2)=(\theta-2)$ are also principal.
We conclude that the class number is one.
5. Let p be a prime number that is congruent to 13 or 17 modulo 20 .
a) Show that the congruence $x^{4} \equiv 25(\bmod p)$ has no solutions.

Since $x^{4}-25=\left(x^{2}-5\right)\left(x^{2}+5\right)$ and p is prime, if the congruence has a solution then

$$
1=\left(\frac{ \pm 5}{p}\right)=\left(\frac{ \pm 1}{p}\right)\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=\left(\frac{ \pm 3}{5}\right)=-1
$$

which is a contradiction. In the process we used the fact that $p \equiv 1(\bmod 4)$ in two places (to get that -1 is a quadratic residue $\bmod p$, and in applying the Law of Quadratic Reciprocity).
b) Show that the equation $x^{4}+p y^{4}=25 z^{4}$ has no integer solutions other than $(0,0,0)$. Suppose (x, y, z) is a non-zero integer solution.
Without loss of generality $\operatorname{gcd}(x, y, z)=1$ (otherwise divide through by the gcd to reduce to this case). Also $\operatorname{gcd}(p, z)=1$, as otherwise $p \mid x$ and $p \mid y$ and $\operatorname{gcd}(x, y, z) \geq p$. Reducing the equation modulo p, we get $x^{4} \equiv 25 z^{4}(\bmod p)$, which has no solutions by part (a).
6. Let $K=\mathbb{Q}(\sqrt{-6})$. Determine which prime numbers p split, ramify, respectively remain inert in K, expressing your answer in terms of congruence conditions on p.
Since $-6 \equiv 2(\bmod 4)$ we have $\Delta_{K}=-24$.
Therefore 2 and 3 are the primes that ramify in \mathcal{O}_{K}.
For $p \neq 2,3$ we have that p splits in \mathcal{O}_{K} if and only if

$$
1=\left(\frac{-24}{p}\right)=\left(\frac{-6}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{-3}{p}\right) .
$$

We know that (for $p \neq 2,3$)

$$
\begin{gathered}
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1,7 & (\bmod 8) \\
-1 & \text { if } p \equiv 3,5 & (\bmod 8)
\end{array}\right. \\
\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 \quad(\bmod 3) \\
-1 & \text { if } p \equiv 2 & (\bmod 3),
\end{array}\right.
\end{gathered}
$$

where $\left(\frac{p}{3}\right)=\left(\frac{3^{*}}{p}\right)=\left(\frac{-3}{p}\right)$ comes from the Quadratic Reciprocity Law.
The conditions can be combined into

- p splits in \mathcal{O}_{K} if and only if $p \equiv 1,5,7,11(\bmod 24)$;
- p is inert in \mathcal{O}_{K} if and only if $p \equiv 13,17,19,23(\bmod 24)$;
- p is ramified in \mathcal{O}_{K} if and only if $p=2,3$.

