
MAST90136 Algebraic Number Theory 2022

Assignment 2

1. Let m = pr with p prime and r ∈ N and let n = φ(m). Let ζ = e2πi/m and K = Q(ζ). Show
that

∆(ζ) =
(−1)(

n
2)mn

pm/p
.

The minimal polynomial for ζ over Q is

f(x) =
xpr − 1

xpr−1 − 1
.

Its derivative is

f ′(x) =
prxpr−1

(
xpr−1 − 1

)
− pr−1xpr−1−1

(
xpr − 1

)
(xpr−1 − 1)

2 .

This simplifies considerably when evaluated at x = ζ, since ζp
r
= 1 and ζp

r−1 = ζ−1:

f ′(ζ) =
pr

(
ζp

r−1−1 − ζ−1
)

(ζpr−1 − 1)
2 =

pr

ζ (ζpr−1 − 1)
.

Next we compute the norm:

NK
Q (f ′(ζ)) =

(pr)n

NK
Q (ζpr−1 − 1)

.

Letting ω = ζp
r−1

, we have ωp = 1 and (seen in the lectures):

N
Q(ω)
Q (ω − 1) = p,

therefore

NK
Q (ω − 1) =

(
N

Q(ω)
Q (ω − 1)

)pr−1

= pp
r−1

,

and finally

∆K = (−1)(
n
2)NK

Q (f ′(ζ)) =
(−1)(

n
2)mn

pm/p
.

2. Let K be a number field and consider its embeddings σ1, . . . , σn : K → C. Let r1 denote
the number of embeddings whose image is actually contained in R. The remaining n− r1
embeddings come in pairs σ, σ, where σ is the composition of σ and the complex conjugation
automorphism of C. Let r2 be the number of such pairs, so that n = r1 + 2r2.

Prove that the sign of ∆K is (−1)r2 .

Let ω1, . . . , ωn be a Z-basis for OK , then

∆K = det(σi(ωj))
2.

Consider the effect of complex conjugation; it leaves the r1 rows corresponding to the real
embeddings, and interchanges each pair of r2 rows corresponding to the conjugate pairs of
non-real embeddings. Therefore

det(σi(ωj)) = (−1)r2 det(σi(ωj)).

If r2 is even, then det(σi(ωj)) is real, so its square ∆K > 0.
If r2 is odd, then det(σi(ωj)) is purely imaginary, so its square ∆K < 0.
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3. Fix g, n ∈ Z>1 with n odd such that d := ng − 1 is squarefree. Show that the ideal class
group of K = Q(

√
−d) contains an element of order equal to g.

As d is even and squarefree, it must be ≡ 2 (mod 4), so OK = Z[
√
−d]. As ideals of OK we

have
(n)g = (ng) = (1 + d) = (1 +

√
−d)(1−

√
−d).

Consider the ideal (1 +
√
−d) + (1 −

√
−d). It contains 2 = 1 +

√
−d + 1 −

√
−d. It also

contains the odd number ng = (1 +
√
−d)(1−

√
−d). Therefore it contains 1 = gcd(2, ng),

so (1 +
√
−d) and (1−

√
−d) are coprime ideals. As their product is the g-th power of the

ideal (n), each of these ideals must be a g-th power, so there exist ideals I, J such that
Ig = (1 +

√
−d) and Jg = (1−

√
−d) and IJ = (n).

Clearly the order of I in the ideal class group divides g.
Suppose Ik = (a + b

√
−d) for some k ∈ N, a, b ∈ Z. We cannot have b = 0: otherwise

Ik = (a) = Jk, but I and J are coprime, so (a) = OK , therefore N(I)k = N(J)k = 1,
contradicting the fact that N(IJ) = N(n) > 1.
Taking norms in Ik = (a+ b

√
−d) we have

nk = a2 + b2d ≥ d = ng − 1,

which forces k ≥ g.

4. Find the class number of K = Q(
√
−19).

Since −19 ≡ 1 (mod 4), we have ∆K = −19 and OK = Z[θ] where θ = 1+
√
−19
2

. Note that
θ2 − θ + 5 = 0. The Hurwitz bound is

BK = (1 + |θ|)(1 + |θ̄|) ≈ 10.472 . . .

It suffices then to consider the decomposition of the primes 2, 3, 5, 7 to determine the prime
ideals with norm ≤ 10.
The polynomial x2 − x+ 5 is irreducible modulo 2 and 3, so these are inert and 2OK , 3OK

are prime ideals.
The polynomial x2−x+5 = x(x− 1) modulo 5, so 5OK = (5, θ)(5, θ− 1). But θ(θ− 1) = −5
implying that 5 ∈ (θ) and 5 ∈ (θ − 1) and hence the two prime ideals (5, θ) = (θ) and
(5, θ − 1) = (θ − 1) of norm 5 are principal.
Finally, the polynomial x2 − x + 5 = x2 − x − 2 = (x + 1)(x − 2) modulo 7, so 7OK =
(7, θ + 1)(7, θ − 2). Since (θ + 1)(θ − 2) = −7, we get that (7, θ + 1) = (θ + 1) and
(7, θ − 2) = (θ − 2) are also principal.
We conclude that the class number is one.

5. Let p be a prime number that is congruent to 13 or 17 modulo 20.

a) Show that the congruence x4 ≡ 25 (mod p) has no solutions.

Since x4 − 25 = (x2 − 5)(x2 + 5) and p is prime, if the congruence has a solution then

1 =

(
±5

p

)
=

(
±1

p

)(
5

p

)
=

(p
5

)
=

(
±3

5

)
= −1,

which is a contradiction. In the process we used the fact that p ≡ 1 (mod 4) in two
places (to get that −1 is a quadratic residue mod p, and in applying the Law of Quadratic
Reciprocity).
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b) Show that the equation x4 + py4 = 25z4 has no integer solutions other than (0, 0, 0).
Suppose (x, y, z) is a non-zero integer solution.
Without loss of generality gcd(x, y, z) = 1 (otherwise divide through by the gcd to
reduce to this case). Also gcd(p, z) = 1, as otherwise p | x and p | y and gcd(x, y, z) ≥ p.
Reducing the equation modulo p, we get x4 ≡ 25z4 (mod p), which has no solutions by
part (a).

6. Let K = Q(
√
−6). Determine which prime numbers p split, ramify, respectively remain inert

in K, expressing your answer in terms of congruence conditions on p.

Since −6 ≡ 2 (mod 4) we have ∆K = −24.
Therefore 2 and 3 are the primes that ramify in OK .
For p ̸= 2, 3 we have that p splits in OK if and only if

1 =

(
−24

p

)
=

(
−6

p

)
=

(
2

p

)(
−3

p

)
.

We know that (for p ̸= 2, 3)(
2

p

)
= (−1)(p

2−1)/8 =

{
1 if p ≡ 1, 7 (mod 8)

−1 if p ≡ 3, 5 (mod 8)(
−3

p

)
=

(p
3

)
=

{
1 if p ≡ 1 (mod 3)

−1 if p ≡ 2 (mod 3),

where
(
p
3

)
=

(
3∗

p

)
=

(
−3
p

)
comes from the Quadratic Reciprocity Law.

The conditions can be combined into

• p splits in OK if and only if p ≡ 1, 5, 7, 11 (mod 24);

• p is inert in OK if and only if p ≡ 13, 17, 19, 23 (mod 24);

• p is ramified in OK if and only if p = 2, 3.
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