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Assignment 1

1. Let R be a Dedekind domain and let I ̸= 0 be an ideal of R.

(a) If I = p1 . . . pn is the factorisation of I into prime ideals, then I−1 = p−1
1 . . . p−1

n .

By Proposition 2.26, p−1
j pj = R for j = 1, . . . , n. So (p−1

1 . . . p−1
n )(p1 . . . pn) = R, which

tells us that p−1
1 . . . p−1

n ⊆ I−1.
Conversely, suppose x ∈ I−1, then x ∈ K and xI ⊆ R, that is

xp1 . . . pn ⊆ R.

Now we appeal to Proposition 2.26 once more and multiply both sides of this equality by
p−1
1 . . . p−1

n to get xR ⊆ p−1
1 . . . p−1

n , hence x ∈ p−1
1 . . . p−1

n .

(b) Show that II−1 = R.

This follows directly from part (a) and Proposition 2.26.

2. Let OK be the ring of integers in a number field K and let p be a nonzero prime ideal of OK .
Prove that there exists a unique prime number p ∈ Z such that p ∈ p.

As we have seen before, p contains a nonzero integer: take any γ ∈ p, γ ̸= 0, and consider
c = N(γ), then c ∈ I and c ̸= 0. If c = ±1 then p = OK , contradicting primality. Writing c
as a product of prime numbers, we deduce that at least one of these prime numbers, call
it p, is in p. Suppose that there is another prime, call it q ̸= p, such that q ∈ p. Then
1 = gcd(q, p) ∈ p, contradicting primality.

3. Let θ be an algebraic integer, let f denote its minimal polynomial over Q, and let n = deg f .
Assume that n > 1. Let K = Q(θ) and let σ1, . . . , σn be the embeddings of K into C.
Prove that

∆
(
1, θ, . . . , θn−1

)
= (−1)(

n
2)

n∏
j=1

f ′(σj(θ)
)
.

For readability, set θj = σj(θ). The elements θ1, . . . , θn are the conjugates of θ, in other
words the (complex) roots of the minimal polynomial f , that is

f(x) =
n∏

i=1

(
x− θi)

)
.

We can write the derivative of this as

f ′(x) =
n∑

i=1

f(x)(
x− θi

) ,
so that for any j = 1, . . . , n we have

f ′(θj) =
∏
i ̸=j

(
θj − θi

)
.
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Therefore

n∏
j=1

f ′(θj) =
n∏

j=1

∏
i ̸=j

(
θj − θi

)
=

∏
j<i

(
θj − θi

)(
θi − θj

)
= (−1)(

n
2)
∏
j<i

(
θj − θi

)2
= (−1)(

n
2)∆(1, θ, . . . , θn−1).

In the special case of f(x) = xn + ax+ b for fixed a, b ∈ Q, show that

∆
(
1, θ, . . . , θn−1

)
= (−1)(

n
2)
(
nnbn−1 + an(1− n)n−1

)
.

We have

f ′(x) = nxn−1 + a =
nxn + ax

x
,

therefore

f ′(θj) =
nθnj + aθj

θj
=

−n(aθj + b) + aθj
θj

= −(1− n)a

θj

(
nb

(1− n)a
− θj

)
.

Plugging this into the formula we proved above we have (using θ1 . . . θn = (−1)nb):

∆(1, θ, . . . , θn−1) = (−1)(
n
2) (1− n)nan

b
f

(
nb

(1− n)a

)
= (−1)(

n
2)
(
nnbn−1 + (1− n)n−1an

)
.

4.

(a) Prove that any number field of degree 2 is of the form Q(
√
d) for some squarefree d ∈ Z.

Let K be a number field of degree 2 and let {1, α} be a Q-basis for K. Write α2 ∈ K in
terms of this basis:

α2 = c+ bα,

then α is a root of the polynomial x2 − bx − c, in other words α = b±
√
b2+4c
2

∈ Q(
√
d),

where d is the squarefree part of b2 + 4c.
So K ⊆ Q(

√
d), but the latter has degree 2 over Q so must have degree 1 over K, in

other words K = Q(
√
d).

(b) Prove that if d1 ̸= d2 ∈ Z are squarefree, then the fields Q(
√
d1) and Q(

√
d2) are not

isomorphic.

Let’s say that a rational number d ̸= 0, 1 is squarefree if, when written in lowest terms,
neither its numerator nor its denominator are divisible by the square of a prime number.
Certainly

√
d /∈ Q for any squarefree rational number d.

Now suppose we have an isomorphism φ : Q(
√
d1) → Q(

√
d2) and let a+ b

√
d2 = φ(

√
d1).

Then we must have
(
a+ b

√
d2
)2

= d1, in other words

a2 + 2ab
√
d2 + b2d2 = d1.

Since
√
d2 /∈ Q, this implies ab = 0.

If a = 0 then b2d2 = d1 so b2 = d1
d2
, which is only possible if d1 = d2, but that is false by

hypothesis.
If b = 0 then a2 = d1, also a contradiction.
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(c) Fix d squarefree and let K = Q(
√
d). Compute the discriminant of the ring of integers

OK .

We have seen in the lectures that an integral basis for OK is given by{
1,
√
d if d ≡ 2, 3 (mod 4)

1, 1+
√
d

2
if d ≡ 1 (mod 4).

In the first case the minimal polynomial of θ =
√
d is x2 − d, so by Question 3 above we

get ∆K = ∆(1, θ) = 4d.

In the second case the minimal polynomial of θ = 1+
√
d

2
is x2 − x − d−1

4
, so we get

∆K = ∆(1, θ) = d.

5. The following is an alternative construction of the ideal class group of a Dedekind ring R.

(a) We say that two ideals I and J of R are equivalent if aI = bJ for some nonzero a, b ∈ R.
Prove that this is indeed an equivalence relation.

Clearly 1I = 1I so I ∼ I.
If I1 ∼ I2 so a1I1 = a2I2 then a2I2 = a1I1 so I2 ∼ I1.
Suppose I1 ∼ I2, say a1I1 = a2I2. Suppose also that I2 ∼ I3, say b2I2 = b3I3. Then

(a1b2)I1 = b2(a1I1) = b2(a2I2) = a2(b2I2) = a2(b3I3) = (a2b3)I3,

so I1 ∼ I3.

(b) Suppose I1 ∼ I2 and J1 ∼ J2. Prove that I1J1 ∼ I2J2.

Say a1I1 = a2I2 and b1J1 = b2J2. Then (a1b1)(I1J1) = (a1I1)(b1J1) = (a2I2)(b2J2) =
(a2b2)(I2J2), so I1J1 ∼ I2J2.

Use this to show that ideal multiplication defines an abelian group structure on the set
C̃l(R) of equivalence classes of nonzero ideals of R.

We define the group operation by [I][J ] := [IJ ]. The property proved above shows that
this operation is well-defined (independent of choice of representatives of the equivalence
classes).
The associativity and commutativity follow from the corresponding properties of multipli-
cation of ideals, which in turn follow from the corresponding properties of multiplication
of elements of R.
The identity element is the class [R], as IR = I for all ideals I.
Checking that every class is invertible uses some nontrivial results. Consider a class [I].
We know that I−1 is a fractional ideal of R, so there exists d ∈ R such that J := dI−1

is an ideal in R. We also know that II−1 = R, so IJ = dII−1 = dR, in other words
[I][J ] = [R].

(c) Prove that C̃l(R) is isomorphic to Cl(R) as groups.

Just for the duration of this solution, write {J} for the coset of the fractional ideal J in

Cl(R). Consider the map φ : C̃l(R) → Cl(R) given by φ([I]) = {I}.
This is well-defined: if J ∼ I so that bJ = aI, then {J} = {a

b
I} = {a

b
R}{I} = {I}.

It is a group homomorphism by the definition of multiplication of (fractional) ideals.
It is surjective: given a class {J} for some fractional ideal J , there exists d ∈ R such
that I := dJ is an ideal of R, and φ([I]) = {I} = {dJ} = {dR}{J} = {J}.
It is injective: suppose I1, I2 are ideals of R such that {I1} = {I2}. Then there exists
a2
a1

∈ K = Frac(R) such that I1 =
a2
a1
I2 as fractional ideals. Therefore a1I1 = a2I2, which

is now an identity of ideals and says that [I1] = [I2].
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6. Let R be a Noetherian integral domain with fraction field K. Prove that J ⊆ K is a fractional
ideal of R if and only if it is a finitely-generated R-submodule of K.

If J is a fractional ideal of R then there exists a nonzero d ∈ R such that dJ ⊆ R. Let I = dJ ,
then I is an ideal of R, and since R is Noetherian we know that I is finitely generated as an
ideal, say

I = a1R + · · ·+ anR, aj ∈ R.

But then

J =
1

d
I =

a1
d
R + · · ·+ an

d
R

is a finitely-generated R-submodule of K.
Conversely, suppose

J =
a1
b1

R + · · ·+ an
bn

R, aj ∈ R, bj ∈ R \ {0}.

Let d = b1 . . . bn ∈ R, then dJ ⊆ a1R + · · ·+ anR ⊆ R. So J is a fractional ideal.

7. Let K be a number field and β ∈ K. Let mβ : K → K denote the Q-linear transformation
given by mβ(x) = βx. Prove that

|N(β)| = | det(mβ)|.

Take a Q-basis ω1, . . . , ωn for K. Let Mβ be the matrix representation of mβ with respect to
this basis, then βω1

...
βωn

 = Mβ

ω1
...
ωn


Therefore

∆(βω1, . . . , βωn) = det(Mβ)
2∆(ω1, . . . , ωn).

On the other hand

∆(βω1, . . . , βωn) = det
(
σi(βωj)

)2
= det

(
σi(β)σi(ωj)

)2
= σ1(β)

2 . . . σn(β)
2 det

(
σi(ωj)

)2
= N(β)2∆(ω1, . . . , ωn).

So |N(β)| = | det(Mβ)|.

8. Let R = C[X, Y ]/(Y 2 −X3). Is R a Dedekind domain?

No, R is not a Dedekind domain because it is not integrally closed.
Let x ∈ R be the image of X and let y ∈ R be the image of Y . Consider t = y

x
∈ K = FracR.

Suppose t ∈ R, then t can be represented as a polynomial of degree 1 in y (using the relation
y2 = x3), so

t = f(x)y + g(x) ⇒ y = f(x)xy + g(x)x.

Lifting this to C[X, Y ], we get

Y − f(X)XY − g(X)X = h(X, Y )(Y 2 −X3),

which is contradictory because (modulo some trivial corner cases) the degree in Y on the left
is 1, while the degree in Y on the right is 2.
So t /∈ R. However t2 − x = y2

x2 − x = y2−x3

x2 = 0, which is a monic equation with coefficients
in R, so t is integral over R.
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