MAST90136 Algebraic Number Theory 2022

Assignment 1

1. Let R be a Dedekind domain and let I # 0 be an ideal of R.
(a) If I = py...p, is the factorisation of I into prime ideals, then I=* =p;'.. . p-t.
By Proposition 2.26, pj_lpj =Rforj=1,...,n. So (p7*...p;")(p1...pn) = R, which

tells us that p;'...pot C I
Conversely, suppose # € I~ !, then x € K and 2/ C R, that is

xp1...pn C R.
Now we appeal to Proposition 2.26 once more and multiply both sides of this equality by
prtoprttoget aRCpyt. . prt, hence z € pit .. pot.
(b) Show that IT~! = R.

This follows directly from part (a) and Proposition 2.26.

2. Let Ok be the ring of integers in a number field K and let p be a nonzero prime ideal of Ok.
Prove that there exists a unique prime number p € Z such that p € p.

As we have seen before, p contains a nonzero integer: take any v € p, v # 0, and consider
¢ = N(7v), then c € I and ¢ # 0. If ¢ = £1 then p = Ok, contradicting primality. Writing c
as a product of prime numbers, we deduce that at least one of these prime numbers, call
it p, is in p. Suppose that there is another prime, call it ¢ # p, such that ¢ € p. Then
1 = ged(q, p) € p, contradicting primality.

3. Let 0 be an algebraic integer, let f denote its minimal polynomial over @, and let n = deg f.
Assume that n > 1. Let K = Q(f) and let o4, ..., 0, be the embeddings of K into C.

Prove that

A(L,6,...,07") = (=1)() Hf’(aj(e)).

Jj=1

For readability, set 6; = 0;(#). The elements 6y, ...,0, are the conjugates of #, in other

words the (complex) roots of the minimal polynomial f, that is
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Therefore

In the special case of f(z) = 2™ + ax + b for fixed a,b € Q, show that

A(L,0,...,0" ") = (—1)(2) (n"b" ' +a"(1—n)"").

We have .
fl(x) =na"' +a= e
T
therefore
(0, = nfj +ab;  —n(ab; +b)+af; (1 -n)a nb 0.
J) Qj o 9]- B Hj (1 - n)a il -

Plugging this into the formula we proved above we have (using 0 ...0, = (—1)"b):

b

A7) = () U () ) (1),

(a)

1 —n)a

Prove that any number field of degree 2 is of the form Q(v/d) for some squarefree d € Z.

Let K be a number field of degree 2 and let {1,a} be a Q-basis for K. Write o € K in
terms of this basis:
o =c+ba,

then « is a root of the polynomial 2% — bx — ¢, in other words o = @ € Q(Vd),
where d is the squarefree part of b + 4c.

So K C Q(v/d), but the latter has degree 2 over Q so must have degree 1 over K, in
other words K = Q(V/d).

Prove that if d; # dy € Z are squarefree, then the fields Q(v/d;) and Q(v/ds) are not

isomorphic.

Let’s say that a rational number d # 0, 1 is squarefree if, when written in lowest terms,
neither its numerator nor its denominator are divisible by the square of a prime number.
Certainly v/d ¢ Q for any squarefree rational number d.

Now suppose we have an isomorphism ¢: Q(v/d1) — Q(v/d3) and let a+ b\/dy = p(\/dy).
Then we must have (a + b\/@)2 = dy, in other words

a® 4 2ab\/dy + b*dy = d;.

Since \/dy ¢ Q, this implies ab = 0.

If @ = 0 then b?dy = d; so b? = Z‘—;, which is only possible if d; = dy, but that is false by
hypothesis.

If b = 0 then a® = d,, also a contradiction.
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()

Fix d squarefree and let K = (@(\/3) Compute the discriminant of the ring of integers
Ok.

We have seen in the lectures that an integral basis for Ok is given by

{1, Vd ifd=23 (mod4)

1, l%ﬂ ifd=1 (mod 4).

In the first case the minimal polynomial of § = v/d is 22 — d, so by Question 3 above we
get Ax = A(1,0) = 4d.
In the second case the minimal polynomial of § = LiVd jg 02 g %

2
A = A(L,0) = d.

, SO we get

5. The following is an alternative construction of the ideal class group of a Dedekind ring R.

(a)

We say that two ideals I and J of R are equivalent if al = bJ for some nonzero a,b € R.
Prove that this is indeed an equivalence relation.

Clearly 11 =11 so I ~ I.
If [] ~ [2 SO (11[1 — (12[2 then (12]2 - (11[1 SO [2 ~ [1.
Suppose I ~ I, say a1l; = aslo. Suppose also that I, ~ I3, say byls = b3l3. Then

(a1b2)—71 = 52(a1]1) = 62(a212) = 62(52]2) = a2(53]3) - (@253)]3,
SO [1 ~ ]3.
Suppose I; ~ I, and J; ~ J5. Prove that I;J; ~ I Js.

Say CL111 = a2_[2 and b1J1 = bQJQ. ThGIl (albl)(llJl) = (alll)(bljl) = (CLQIQ)(bQJQ) =
(agbg)(lgjg), SO ]1J1 ~ IQJQ.

Use this to show that ideal multiplication defines an abelian group structure on the set
CI(R) of equivalence classes of nonzero ideals of R.

We define the group operation by [I]|[.J] := [IJ]. The property proved above shows that
this operation is well-defined (independent of choice of representatives of the equivalence
classes).

The associativity and commutativity follow from the corresponding properties of multipli-
cation of ideals, which in turn follow from the corresponding properties of multiplication
of elements of R.

The identity element is the class [R], as IR = I for all ideals I.

Checking that every class is invertible uses some nontrivial results. Consider a class [/].
We know that I~! is a fractional ideal of R, so there exists d € R such that J := dI~!
is an ideal in R. We also know that I/=' = R, so IJ = dII~! = dR, in other words
][] = [R].

Prove that CI(R) is isomorphic to CI(R) as groups.

Just for the duration of this solution, write {J} for the coset of the fractional ideal J in
CI(R). Consider the map ¢: CI(R) — CL(R) given by o([I]) = {I}.

This is well-defined: if J ~ I so that bJ = al, then {J} = {31} = {$ R}{I} = {I}.

It is a group homomorphism by the definition of multiplication of (fractional) ideals.

It is surjective: given a class {J} for some fractional ideal .J, there exists d € R such
that I :=dJ is an ideal of R, and ¢([I]) = {I} = {dJ} = {dR}{J} = {J}.

It is injective: suppose I, I are ideals of R such that {I;} = {lo}. Then there exists
Z—f € K = Frac(R) such that [} = Z—j 15 as fractional ideals. Therefore a;ly = aslo, which
is now an identity of ideals and says that [I1] = [I5].
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6. Let R be a Noetherian integral domain with fraction field K. Prove that J C K is a fractional
ideal of R if and only if it is a finitely-generated R-submodule of K.

If J is a fractional ideal of R then there exists a nonzero d € R such that dJ C R. Let I = dJ,
then [ is an ideal of R, and since R is Noetherian we know that I is finitely generated as an
ideal, say

I=aR+---+a,R, a; € R.

But then ]
aq Ap
pe—— I P DY —
J g y R+---+ 7 R
is a finitely-generated R-submodule of K.
Conversely, suppose
J—b—RJr +Z—”R, a; € R,b; € R\ {0}.
1 n
Let d=10;...0, € R, thendJ Ca1R+---+a,R C R. So J is a fractional ideal.

7. Let K be a number field and 8 € K. Let mg: K — K denote the Q-linear transformation
given by mg(z) = fz. Prove that

IN(B)| = | det(myg)].

Take a Q-basis wy, ..., w, for K. Let Mz be the matrix representation of mgz with respect to
this basis, then

Pwy w1

= Mj

/6wa wTL

Therefore
A(Bwi, . .., Bwy) = det(Mg)*Alwy, . . ., wy).

On the other hand

A(Bwy, ..., Pw,) = det ai(ﬁwj))Q

So |N(8)] = | det(M3)].

8. Let R=C[X,Y]/(Y? — X?). Is R a Dedekind domain?

No, R is not a Dedekind domain because it is not integrally closed.
Let € R be the image of X and let y € R be the image of Y. Consider t = £ € K = Frac R.
Suppoq(‘ t € R, then t can be represented as a polynomial of degree 1 in y (uslng the relation
y? = 1%), so

t=f@y+g(x) = y=[fl@)wy+gl@).
Lifting this to C[X, Y], we get

Y — f(X)XY - g(X)X = h(X,Y)(Y* - X?),

which is contradictory because (modulo some trivial corner cases) the degree in Y on the left
is 1, while the degree in Y on_ the right is 2.

So t ¢ R. However t*> —x = ;/—2 —x = yx;f; = 0, which is a monic equation with coefficients
in R, so t is integral over R.



