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Chapter 1

Introduction

Modular forms act as a useful tool in various areas such as number theory, complex

analysis and mathematical physics. Their essential role in Andrew Wiles’ solving

Fermat’s Last Theorem has drawn public attentions, and it has become pivotal in

most contemporary research on number theory. Hecke operators are specific double

coset operators acting on important subsets of modular forms called cusp forms,

which will unveil interesting results about modular forms. My research will mainly

focus on the traces of Hecke operators.

By the help of the Selberg trace formula Selberg [1956], M. Eichler constructed a

trace formula Eichler [1973] to calculate the trace of a Hecke operator acting on cusp

forms of a given weight, for a given congruence subgroup of the modular group. This

is known as the Eichler-Selberg trace formula and it is our starting point for studies

on the traces of Hecke operators.

The main target of the thesis is to determine trace zero levels of Hecke operators.

J. Rouse in Rouse [2006] has offered an algorithm to find these trace zero levels for

cusp forms of a given weight and for a given congruence subgroup of the modular

group. In this thesis we will extend this algorithm to various circumstances.

This thesis is organised as follows. After introducing some necessary fundamentals

of number theory in Chapter 2, in Chapter 3 we will give a brief tour of our main

research objects: modular forms and Hecke operators. This part will end with a

short description of the spaces of modular forms.

Then in Chapter 4, we will come to the main topic of the thesis: trace formulas

of Hecke operators. After giving two different reformulations of the Eichler-Selberg
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2 Chapter 1 Introduction

trace formula, we will introduce some relevant trace formulas in the second half of

this chapter.

In Chapter 5, we will first describe Rouse’s algorithm in Section 5.2, and then extend

it to different circumstances in the rest of the chapter using the trace formulas in

Chapter 4.

Lastly, we will discuss some applications of traces of Hecke operators in Chapter 6.



Chapter 2

Fundamentals of Number Theory

In this Chapter, we will introduce some fundamental concepts and notions in number

theory to provide the necessary background for readers.

2.1 Arithmetic Functions

In number theory, various arithmetic functions are introduced to display arithmetic

properties of positive integers. Let Z+ denote all positive integers.

Definition 2.1 (Arithmetic Functions). An arithmetic function is a function f :

Z+ → C.

By convention, for any arithmetic function f , let f(x) = 0 if x is not an integer.

Definition 2.2 (Multiplicative). A function f : Z→ C is said to be multiplicative

if f(ab) = f(a)f(b) whenever (a, b) = 1. f is completely multiplicative if f(ab) =

f(a)f(b) for any a, b ∈ Z.

Here are several important examples of arithmetic functions; for their properties,

see [Ireland and Rosen, 2013, Section 2.2] or [Apostol, 2013, Chapter 2].

Definition 2.3 (Order of Prime Divisors). For any prime p and any integer n, define

ordpn to be the largest integer l such that pl | n.

Definition 2.4 (Euler φ-function). The Euler’s function φ(n) counts the number of

integers between 1 and n relatively prime to n. It satisfies:

φ(n) = n
∑
p|n

(
1− 1

p

)
,

3



4 Chapter 2 Fundamentals of Number Theory

where p runs through all positive prime divisors of n.

Definition 2.5 (Möbius Function). For n ∈ Z+, µ(n) is defined as:

µ(n) =


1 if n = 1

0 if n is not square-free

(−1)` if n = p1p2 . . . p`

where p1, . . . , p` are distinct positive primes.

Remark 2.6. It is easy to see that the Möbius function is multiplicative. So is the

Euler φ-function. See [Apostol, 2013, Theorem 2.5].

We have the following useful formula about the Möbius function.

Theorem 2.7 (Möbius Inversion theorem). For arithmetic functions f and g,

f(n) =
∑
d|n

g(d)

if and only if

g(n) =
∑
d|n

f(d)µ
(n
d

)
.

Proof. See [Apostol, 2013, Theorem 2.9] or [Ireland and Rosen, 2013, Theorem 2,

Chapter 2].

Definition 2.8 (Legendre Symbol). If (n,m) = 1, n is called a quadratic residue

mod m if the congruence x2 ≡ n mod m has a solution. Otherwise n is called a

quadratic nonresidue mod m. Then for odd prime p, the Legendre symbol is defined

to be: (
n

p

)
=


1 if n is a quadratic residue mod p

−1 if n is a quadratic nonresidue modp

0 if p | n.

It can be generalised to the Kronecker Symbol.

Definition 2.9 (Kronecker Symbol). Let
(
a
1

)
= 1 and

(a
2

)
=


0 if a is even

1 if a ≡ ±1 mod 8

−1 if a ≡ ±3 mod 8.
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If n > 2 is an integer with prime factorisation n = pe11 p
e2
2 . . . pekk and a ∈ Z, define

the Kronecker symbol (a
n

)
=

k∏
i=1

(
a

pi

)ei
,

where ( a
pi

) is the Legendre symbol when pi is an odd prime number.

Given any odd prime p, the Legendre symbol is an example of Dirichlet characters

modulo p.

Definition 2.10 (Dirichlet Character). A function χ : Z → C∗ is a Dirichlet char-

acter modulo m if it satisfies the following three conditions:

(i) χ(n+m) = χ(n) for all n ∈ Z

(ii) χ(kn) = χ(k)χ(n) for all k, n ∈ Z

(iii) χ(n) 6= 0 if and only if (n,m) = 1

By definition, Dirichlet characters are completely multiplicative, and χ(n) = 0 if n

is not an integer by convention. Since Dirichlet characters are important in modular

form theory, we then give some more definitions and properties about them.

Definition 2.11. The trivial Dirichlet character 1 modulo N is defined as

1(n) =

1 if (N, n) = 1

0 if (N, n) > 1.

For positive integers d | N and Dirichlet characters χ modulo N and χd modulo d,

if χ(n) = χd(n) for all n ∈ Z, then we say χd lifts to χ or χd is a restriction of χ.

The conductor f of a Dirichlet character χ modulo N is the smallest integer such

that there exists a Dirichlet character χf modulo f that can lift to χ. A Dirichlet

character χ modulo N is primitive if its conductor is N .

2.2 Quadratic Congruences

To solve a quadratic congruence x2 ≡ a mod N , we usually first solve the congru-

ences x2 ≡ a mod pordpN for each prime divisor p of N , and then combine the results
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by the Chinese remainder theorem. For each congruence x2 ≡ a mod pordpN , its so-

lutions may possibly be lifted from solutions to x2 ≡ a mod p by Hensel’s lemma,

and the number of solutions to the latter congruence can be represented by the

Legendre symbol (a
p
). In this section, we will state the theorems mentioned above.

Theorem 2.12 (Chinese Remainder Theorem). Suppose that N = m1m2 . . .mn

and (mi,mj) = 1 for i 6= j. Let a1, a2, . . . , an be integers and consider the following

system of congruences:

x ≡ ai mod mi for i = 1, . . . , n.

The solutions to the system exist, and are unique up to adding a multiple of N .

Proof. A proof can be found in [Ireland and Rosen, 2013, Section 3.4].

Lemma 2.13 (Hensel’s Lemma). Let f ∈ Z[x] and f ′ be its derivative. Consider

x, n, k ∈ Z such that 0 ≤ 2k < n, f(x) ≡ 0 mod pn, ordp(f
′(x)) = k. Then there

exists y ∈ Z such that

f(y) ≡ 0 mod pn+1, ordp(f
′(y)) = k, and y ≡ x mod pn−k.

Proof. This can be found in [Serre, 2012, Section 2.2].

In addition, one can use the quadratic reciprocity law to simplify the calculation of

Legendre symbols.

Theorem 2.14 (Quadratic Reciprocity Law). Let p, q be distinct odd prime num-

bers. Then (
p

q

)
=

(
q

p

)
(−1)

p−1
2

q−1
2 .

Proof. A proof can be found in [Serre, 2012, Section 3.3].

2.3 The Class Number

The target of this section is to define the class number h(D) for binary quadratic

forms of discriminant D > 0. This number appears in the trace formula of Hecke

operators, and the formula for it will be given at the end as Corollary 2.27.
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We start this section by introducing some terminology of integral quadratic forms

in two variables:

f(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z.

Definition 2.15 (Primitive). A quadratic form f(x, y) = ax2+bxy+cy2 is primitive

if a, b, c are relatively prime.

Definition 2.16 (Discriminant). Define the discriminant of a quadratic form f(x, y) =

ax2+bxy+cy2 to be D = b2−4ac. The form is called positive definite (resp. negative

definite) if D < 0 and a > 0 (resp. a < 0). The form is called indefinite if D > 0.

Definition 2.17 (Properly Equivalent). Two quadratic forms are properly equivalent

if there exist integers p, q, r, s such that f(x, y) = g(px+ qy, rx+ sy) and ps− qr =

1. Since det
(
p q
r s

)
= 1, we have that

(
p q
r s

)
∈SL2(Z) and proper equivalence is an

equivalent relation (see [Cox, 2011, Section 2.A]).

Definition 2.18 (Reduced Form). A primitive positive definite quadratic form

f(x, y) = ax2 + bxy + cy2 satisfying:

(i) |b| ≤ a ≤ c

(ii) b ≥ 0 when |b| = a or a = c

is called a reduced form.

Now we have enough ingredients to define the class number h(D) and offer a basic

way to calculate it.

Definition 2.19 (Class Number). For fixed D < 0, h(D) is defined to be the

number of proper equivalence classes of primitive positive definite quadratic forms

of discriminant D. By convention h(D) = 0 if D is not an integer.

The following theorem provides a way to calculate it.

Theorem 2.20. Every primitive positive definite quadratic form is properly equiva-

lent to a unique reduced form. Therefore, h(D) is finite and equal to the number of

reduced forms of discriminant D.

Proof. It can be found in [Cox, 2011, Section 2.A].
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By this theorem, we can thus calculate the class number by listing and counting all

the reduced forms of given discriminant D. By (i) in the definition of reduced forms,

we have that 0 ≤ b2 ≤ ac, so 4ac = b2−D =⇒ −D/3 ≥ ac ≥ −D/4. Consequently,

in order to list all reduced forms of discriminant D < 0, we can first list the finite set

of quadratic forms ax2 + bxy + cy2 satisfying −D/3 ≥ ac ≥ −D/4 and |b| ≤ a ≤ c,

and then screen out those that do not satisfy the definition of reduced forms. It

is possible to calculate the class number in this way, but the workload is growing

tremendous when |D| increases. We will therefore give a closed-form expression of

h(D).

To reach this, the bijection between classes of primitive positive definite quadratic

forms of discriminant D and the ideal class group of the imaginary quadratic order

O of discriminant D is used. Terminology and proof details can be found in [Cox,

2011, Section 7.A-7.C]. Before we give the formula of h(D), we first introduce some

ideas from algebraic number theory.

Definition 2.21 (Imaginary Quadratic Field). An imaginary quadratic field K is an

extension of Q of the form K = Q(
√
m) with square-free m < 0. The discriminant

of K is

dk =

m if m ≡ 1 mod 4

4m otherwise.

Definition 2.22 (Order). An order in an imaginary quadratic field K is a subring

O of K (containing 1) such that

(a) O is a finitely generated Z-module;

(b) O contains a Q-basis of K.

An example of an order is the ring of integers OK of K defined by

OK = Z
[
dK +

√
dK

2

]
.

In fact, we have the following lemma:

Lemma 2.23. Every order of K is of the form O = Z + fOK for some f ∈ Z+.

Proof. This is [Cox, 2011, Lemma 7.2].

Then the discriminant of an order O = Z + fOK is defined to be d = f 2dK .
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Proposition 2.24. Let µn be the group of nth roots of unity. Given an order O, its

group of units is

O∗ =


µ4 if O is an order of discriminant − 4

µ6 if O is an order of discriminant − 3

{±1} otherwise.

Proof. A proof can be seen in [Knightly and Li, 2006, Lemma 26.8].

Now we finally have the closed-form expression of h(D).

Theorem 2.25. For any OK the ring of integers of K, which is also an order of

discriminant dK, we have

h(dK) = − |O
∗
K|

2|dK |

|dK |−1∑
n=1

(
dK
n

)
n,

where (dK
n

) is the Kronecker symbol.

Proof. This formula can be proved by analytic methods, such as [Borevich and

Shafarevich, 1986, Section 5.4] or [Zagier, 1981, § 9]. An algebraic proof can be

found in Orde [1978].

Theorem 2.26. Let D ≡ 0, 1 mod 4 be negative and m ∈ Z+. Then

h(m2D) =
h(D)m

[O∗ : O′∗]
∏
p|m

(
1−

(
D

p

)
1

p

)
,

where O and O′ are the orders of discriminant D and m2D respectively, and O′ has

index m in O.

Proof. It can be found in [Cox, 2011, Section 7.D].

Combining Theorem 2.25 and Theorem 2.26, we can derive a method to calculate

h(D) where D < 0 and D ≡ 0, 1 mod 4. First, we can decompose D = m2d where

m ∈ Z+ and d is square-free. If d ≡ 1 mod 4, then we can calculate h(d) by

Theorem 2.25, and then calculate h(m2d) by Theorem 2.26. If d ≡ 2, 3 mod 4, then

since t2 ≡ 0, 1 mod 4 for any t ∈ Z, we have that m2 ≡ 0 mod 4. Therefore, we

can decompose D = (m/2)2(4d), and then calculate h(4d) by Theorem 2.25, and

calculate h((m/2)2(4d)) by Theorem 2.26. This can be stated as:
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Corollary 2.27 (Closed-Form Formula of h(D)). Let D ≡ 0, 1 mod 4 be negative.

Decompose D = m̃2d̃ where m̃ ∈ Z+ and d̃ is square-free. If d̃ ≡ 1 mod 4, then

m = m̃, d = d̃. Otherwise, m = m̃/2, d = 4d̃. Then

h(D) = − m|O∗|
2|d|[O∗ : O′∗]

|d|−1∑
n=1

(
d

n

)
n

∏
p|m

(
1−

(
d

p

)
1

p

)
,

where O and O′ are the orders of discriminant d and D respectively, and ( d
n
) is the

Kronecker symbol.



Chapter 3

Modular Forms and Hecke

Operators

In this chapter, we briefly introduce our main research objects: modular forms and

Hecke operators. After stating the definition of Hecke operators, we define newforms

and oldforms, and describe the structure of Mk(Γ). The main reference of this

chapter is Diamond and Shurman [2005].

3.1 Modular Forms and Cusp Forms

To define modular forms with respect to a congruence group, we first give some

background concepts. Let H be the upper half plane H = {τ ∈ C :Im(τ) > 0}.

Definition 3.1 (Congruence Subgroup). The modular group is the group SL2(Z).

Let N be a positive integer. The principal congruence subgroup of level N is

Γ(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
1 0

0 1

]
mod N

}
.

Moreover, Γ is a congruence subgroup of level N if Γ(N) ⊆ Γ ⊆ SL2(Z).

Each matrix in the modular group can be regarded as an automorphism of the

Riemann sphere Ĉ = C ∪ {∞} as the following:[
a b

c d

]
(τ) =

aτ + b

cτ + d
, τ ∈ Ĉ.

11



12 Chapter 3 Modular Forms and Hecke Operators

We give two important examples of congruence subgroups.

Definition 3.2 (Γ0(N) and Γ1(N)). Let N be a positive integer. We define

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
∗ ∗
0 ∗

]
mod N

}
;

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
1 ∗
0 1

]
mod N

}
.

We can see that

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Definition 3.3 (Factor of Automorphy). For any matrix γ =
(
a b
c d

)
∈ SL2(Z) and

τ ∈ H, the factor of automorphy j(γ, τ) ∈ C is

j(γ, τ) = cτ + d.

Let GL+
2 (Q) denote the group of 2 × 2 matrices with positive determinant and

rational entries.

Definition 3.4 (Weight-k Operator). For γ ∈ GL+
2 (Q) and integer k, we define the

weight-k operator [γ]k acting on functions f : H → C by

(f [γ]k)(τ) = (detγ)k−1j(γ, τ)−kf(γ(τ)), τ ∈ H.

Definition 3.5 (Weakly Modular of Weight k). A meromorphic function f on H is

weakly modular of weight k with respect to a congruence subgroup Γ if f [γ]k = f

for any γ ∈ Γ.

Each congruence subgroup Γ contains a translation matrix γ =
(

1 h
0 1

)
for some

minimal h ∈ Z+ by the definition of congruence subgroup. Thus, every weakly

modular function f : H → C with respect to Γ is hZ-periodic, so the function

g : D′ → C from the punctured unit disk to the complex plane is well defined as

g(q) = f(τ) where q = e2πiτ/h.

Definition 3.6 (Holomorphic at ∞). For a holomorphic weakly modular function

f : H → C with respect to Γ, it is holomorphic at ∞ if the function g : D′ → C
defined above can be extended to q = 0 holomorphically. Furthermore, such f has

a Fourier expansion

f(τ) =
∞∑
n=0

anq
n, q = e2πiτ/h.
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Now we can define modular forms and cusp forms.

Definition 3.7 (Modular Forms). Let Γ be a congruence subgroup of the modular

group and let k be an integer. A modular form of weight k with respect to Γ is a

function f : H → C such that

1. f is holomorphic on H,

2. f is weakly modular of weight k with respect to Γ,

3. f [γ]k is holomorphic at ∞ for all γ ∈ SL2(Z).

Let Mk(Γ) denote the set of modular forms of weight k with respect to Γ.

Definition 3.8 (Cusp Forms). A modular form f of weight k with respect to Γ is

a cusp form if the constant term a0 = 0 in the Fourier expansion of f [γ]k for all

γ ∈ SL2(Z). Let Sk(Γ) denote the set of cusp forms of weight k with respect to Γ.

We can check that Mk(Γ) and Sk(Γ) both form vector spaces over C.

The following subspaces ofMk(Γ1(N)) involving the Dirichlet characters are useful.

Definition 3.9 (χ-eigenspace ofMk(Γ1(N))). For each Dirichlet character χ mod-

ulo N , we can define

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f [γ]k = χ(dγ)f for any γ ∈ Γ0(N)}

where dγ is the lower right entry of γ.

Note that Mk(N,1) = Mk(Γ0(N)) and Mk(N,χ) = {0} unless χ(−1) = (−1)k.

[Diamond and Shurman, 2005, Section 4.3]

Here are some examples of modular forms.

Example 3.10. The reference for these examples is [Diamond and Shurman, 2005,

Section 1.1-1.2].

(a) The Eisenstein series of weight k with respect to SL2(Z) is defined as

Gk(τ) =
∑

(c,d)∈Z2

(c,d) 6=(0,0)

1

(cτ + d)k
, τ ∈ H.
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This sum is absolutely convergent and converges uniformly on compact subsets

of H, so it is holomorphic on H. It is a modular form of weight k with respect

to SL2(Z).

(b) Consider G2,N : H → C defined by

G2,N(τ) = G2(τ)−NG2(Nτ).

This is a modular form of weight 2 with respect to Γ0(N).

(c) The discriminant function ∆ : H → C defined by

∆(τ) = (60G4(τ))3 − 27(140G6(τ))2

is a cusp form of weight 12 with respect to SL2(Z).

On the other hand, the function

η24(τ) = q
∞∏
n=1

(1− qn)24, q = e2πiτ

is also a cusp form of weight 12 with respect to SL2(Z).

Since S12(SL2(Z)) is 1-dimensional, either ∆ or η24 spans this space. In fact,

∆ = (2π)12η24.

3.2 Hecke Operators

In this section we will give the definition of Hecke operators. Since Hecke operators

are double coset operators, we will first introduce them.

Definition 3.11 (Double Coset Operators). For congruence subgroups Γ and Γ′ of

SL2(Z) and α ∈ GL+
2 (Q), a double coset operator is a weight-k ΓαΓ′ operator taking

modular forms f ∈Mk(Γ) to:

f [ΓαΓ′]k =
∑
j

f [βj]k

where {βj} are orbit representatives which means that ΓαΓ′ = ∪jΓβj is a disjoint

union.
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To show that the double coset operator is well defined, we need to show the existence

of orbit representatives and its independence of how the orbit representatives are

chosen. These are proved in [Diamond and Shurman, 2005, Section 5.1].

We can also notice that [ΓαΓ′]k takesMk(Γ) toMk(Γ
′), and takes Sk(Γ) to Sk(Γ′).

See [Diamond and Shurman, 2005, Section 5.1] for detail.

Hecke operators are specific double coset operators with Γ = Γ′ = Γ1(N) for some

positive integer N . There are two types of Hecke operators, and we will focus on

the second type starting from Chapter 4.

Definition 3.12 (Hecke Operators 〈d〉 and Tp). The first type of Hecke operators

〈d〉 for d ∈ (Z/NZ)∗ is defined to be

〈d〉 = [Γ1(N)

[
a b

c d

]
Γ1(N)]k,

[
a b

c d

]
∈ Γ0(N).

This is well defined, i.e. the action of the operators is independent of the selection

of a, b, c ([Diamond and Shurman, 2005, Section 5.2]). The second type of Hecke

operators Tp for prime p is

Tp = [Γ1(N)

[
1 0

0 p

]
Γ1(N)]k.

We give a specific expression of both operators ([Diamond and Shurman, 2005,

Section 5.2]).

Proposition 3.13. For any f ∈Mk(Γ1(N)),

〈d〉f = f [α]k for any α =

[
a b

c δ

]
∈ Γ0(N), δ ≡ d mod N.

and

Tpf =



p−1∑
j=0

f

1 j

0 p


k

if p | N,

p−1∑
j=0

f

1 j

0 p


k

+ f

m n

N p

p 0

0 1


k

if p 6 |N , where mp− nN = 1.
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In addition, the Hecke operators commute ([Diamond and Shurman, 2005, Section

5.2]). Moreover, Hecke operators 〈d〉 and Tp can be extended to 〈n〉 and Tn for

n ∈ Z+.

Definition 3.14 (Hecke Operators 〈n〉 and Tn). For any integer n with prime fac-

torisation n = pe11 p
e2
2 . . . perr , we can define Hecke operators acting on Sk(Γ1(N)):

〈n〉 =

0 if (n,N) 6= 1

〈n〉 if (n,N) = 1,

and

Tn =

1 if n = 1∏
j Tpjej if n 6= 1,

where Tpe for prime p and 2 ≤ e ∈ Z is defined inductively

Tpe = TpTpe−1 − pk−1〈p〉Tpe−2 .

These are well defined. See [Diamond and Shurman, 2005, Section 5.3] for detail.

3.3 Atkin-Lehner theory

In this section we introduce newforms and oldforms. We start our topic by consid-

ering taking modular forms from lower levels M | N up to level N .

We can notice that for M | N we have Sk(Γ1(M)) ⊂ Sk(Γ1(N)), so the inclusion is

a trivial way to move modular forms in Sk(Γ1(M)) to Sk(Γ1(N)). There is another

way to embed Sk(Γ1(M)) into Sk(Γ1(N)). For d | (N/M), let αd =
(
d 0
0 1

)
, so [αd]k

takes Sk(Γ1(M)) to Sk(Γ1(N)). See [Diamond and Shurman, 2005, Section 5.6].

Now we can define the subspace of oldforms and newforms by distinguishing the

part of Sk(Γ1(N)) coming from lower level or not.

Definition 3.15 (Subspace of Oldforms). For every positive divisor d of N , let id

be

id : Sk(Γ1(N/d))× Sk(Γ1(N/d))→ Sk(Γ1(N))

defined by

(f, g) 7→ f + īd(g) := f + g[αd]k.
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The subspace of oldforms at level N is

Sk(Γ1(N))old =
∑
prime
p|N

ip((Sk(Γ1(N/p)))2).

We want to define the orthogonal complement of the subspace of oldforms to be the

subspace of newforms, so we first need to make the space of cusp forms of given

weight k be an inner product space.

Definition 3.16 (Petersson Inner Product). Let Γ be a congruence subgroup of

SL2(Z). The hyperbolic measure on H is

dµ(τ) =
dx dy

y2
, τ = x+ iy ∈ H.

Then the Petersson inner product 〈, 〉Γ : Sk(Γ)× Sk(Γ)→ C is given by

〈f, g〉Γ =
1

VΓ

∫
X(Γ)

f(τ)g(τ)(Im(τ))kdµ(τ)

where Im(τ) means the imaginary part of τ , X(Γ) is the modular curve with respect

to the congruence subgroup Γ, VΓ =
∫
X(Γ)

dµ(τ).

The modular curve X(Γ) = {Γs | s ∈ H ∪Q ∪ {∞}}. See [Diamond and Shurman,

2005, Chapter 2] for its further properties and [Diamond and Shurman, 2005, Section

5.4] for how to integrate over X(Γ). The Petersson inner product is a well defined

inner product. Again see [Diamond and Shurman, 2005, Section 5.4] for detail.

Now we can define the subspace of newforms.

Definition 3.17 (Subspace of Newforms). The subspace of newforms at level N is

the orthogonal complement of the space of oldforms with respect to the Petersson

inner product

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥.

The Hecke operators respect this decomposition of Sk(Γ1(N)).

Proposition 3.18. The subspaces Sk(Γ1(N))old and Sk(Γ1(N))new are stable under

the Hecke operators Tn and 〈n〉 for all n ∈ Z+. Furthermore, these two subspaces

have orthogonal bases of eigenforms for the Hecke operators at levels coprime to N ,

{Tn, 〈n〉 : (n,N) = 1}.
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Proof. See [Diamond and Shurman, 2005, Section 5.4].

The latter conclusion can be strengthened for Sk(Γ1(N))new.

Theorem 3.19. Consider the subspace of newforms Sk(Γ1(N))new:

(a) Let f ∈ Sk(Γ1(N))new be an eigenform for the Hecke operators Tn and 〈n〉 with

(n,N) = 1. Then f is an eigenform for Tn and 〈n〉 for all n ∈ Z+. If there is

another f̂ that satisfies the same condition and has the same Tn-eigenvalues as

f , then f̂ = cf for some constant c.

(b) The set of these eigenforms with Fourier coefficient a1 = 1 form an orthogonal

basis of Sk(Γ1(N))new, and each of them has Tn-eigenvalues equal to its Fourier

coefficient an(f), i.e. Tnf = an(f)f for all n ∈ Z+.

Proof. See [Diamond and Shurman, 2005, Section 5.8].

3.4 Structure of the Space of Modular Forms

For any congruence subgroup Γ of SL2(Z), we have the following decomposition:

Mk(Γ) = Sk(Γ)⊕ Ek(Γ),

where Ek(Γ) is the space of Eisenstein series for Γ. See [Diamond and Shurman,

2005, Chapter 4] for the definition and properties of Eisenstein series with respect

to a congruence subgroup of SL2(Z).

When Γ = Γ1(N) given N ∈ Z+, we can decomposeMk(Γ1(N)) into eigenspaces of

Hecke operators.

Consider the first type of Hecke operators 〈n〉. We have that Mk(N,χ) for any

Dirichlet character are precisely the eigenspaces of {〈n〉 : n ∈ Z+}

Mk(N,χ) = {f ∈Mk(Γ1(N)) : 〈n〉f = χ(n)f, ∀n ∈ Z+},

and thus there exists a decomposition

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ).
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The same results apply for Sk(N,χ) and Ek(N,χ). See [Diamond and Shurman,

2005, Section 4.3, 5.2] for detail.

Consider both two types of Hecke operators {Tn, 〈n〉 : n ∈ Z+}. For Sk(Γ1(N)), its

decomposition into the subspaces of newforms and oldforms

Sk(Γ1(N)) = Sk(Γ1(N))new ⊕
∑
prime
p|N

ip((Sk(Γ1(N/p)))2).

can be more precise: each of the summands can be decomposed into 1-dimensional

eigenspaces for Hecke operators {Tn, 〈n〉 : n ∈ Z+} by Theorem 3.19. Then we can

see that Sk(Γ1(N)) has a basis [Diamond and Shurman, 2005, Section 5.8]

Bk(N) = {f(nτ) : f ∈ Sk(Γ1(M))new and nM | N}

where f ∈ Sk(Γ1(M))new is any eigenform for the Hecke operators {Tn, 〈n〉 : n ∈ Z+}
with Fourier coefficient a1 = 1.

Additionally, there are similar decompositions of the Eisenstein series with respect

to the Hecke operators [Diamond and Shurman, 2005, Section 5.2].





Chapter 4

Trace Formulas of Hecke

Operators

In this chapter, we give trace formulas of Hecke operators acting on different sub-

spaces of modular forms. In the first half 4.1 - 4.2 we will focus on the Eichler-

Selberg trace formula, which considers Hecke operators Tn acting on Sk(N,χ) for

some k, n,N ∈ Z+ and a Dirichlet character χ modulo N , especially when χ = 1

and thus Sk(N,χ) = Sk(Γ0(N)). We will give two versions of the Eichler-Selberg

trace formula which were derived independently.

In the latter half 4.3 - 4.4, we will state more trace formulas for other subspaces of

Mk(N,χ), including Sk(Γ0(N))new, Wl acting on Sk(Γ0(N)) and Sk(Γ1(N)), where

Wl is the Atkin-Lehner operator to be introduced in Section ??.

4.1 Preliminaries

We begin by introducing some functions appearing in the trace formulas repeatedly.

Definition 4.1 (Kronecker delta function). For two objects i and j, define

δi,j =

1 if i = j;

0 otherwise.

21
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Definition 4.2. Denote the index of Γ0(N) in the modular group SL2(Z):

φ1(N) = [SL2(Z) : Γ0(N)] = N
∏
p|N

(1 +
1

p
)

where p ranges over all positive prime divisors of N .

Definition 4.3. Let D < 0 be an integer, and let O be an order of determinant D.

Denote

h0(D) =
2h(D)

|O∗|

where |O∗| is the number of units in O.

4.2 Two Versions of Eichler-Selberg Trace For-

mula

M. Eichler (Eichler [1973, 1957]) applied the Selberg trace formula (Selberg [1956])

to the trace of Hecke operators acting on cusp forms, and obtained the Eichler-

Selberg trace formula. The Eichler-Selberg trace formula can be used to calculate

the trace of a Hecke operator Tn acting on the vector space of cusp forms Sk(N,χ)

of a given weight k, for the congruence subgroup Γ1(N) of the modular group and

a Dirichlet character χ modulo N . However, his original paper only justified his

formula when N is square-free and (N, n) = 1.

Later, H. Hijikata (Hijikata [1974]) derived a trace formula of Hecke operators Tn

acting on Sk(N,χ), independent of Eichler’s original conclusion. This seemingly

different trace formula can also be applied to the case when N is not square-free.

After that, Eichler’s original work was also adapted to the case when N is not

square-free and (N, n) 6= 1. See Knightly and Li [2006] or Cohen [1977], Oesterlé

[1977] for detail.

We first introduce Eichler’s version of the Eichler-Selberg trace formula after clari-

fying some notations.

Definition 4.4. For s ∈ Z, N, n, f ∈ Z+ and χ a Dirichlet character modulo N ,

define

B(N,χ, f, s, n) =
φ1(N)

φ1(N/f)

∑
x∈SN (f,s,n)

χ(x),

where SN(f, s, n) = {α ∈ (Z/NZ)× : α2 − sα + n ≡ 0 mod Nf}.
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Definition 4.5. For N, a, d ∈ Z+ and χ a Dirichlet character modulo N , define

Φ(N,χ, a, d) =
∑
N=rs

(r,s)|(N/f,a−d)

φ((r, s))χ(α),

where r, s are positive divisors of N , α is an integer modulo N/(r, s) such that α ≡ a

mod r and α ≡ d mod s, f is the conductor of χ, and φ is the Euler’s function.

Now we can give the Eichler-Selberg trace formula.

Theorem 4.6. Let N, n ≥ 1 and k ≥ 2 be integers, and χ a Dirichlet character

modulo N with χ(−1) = (−1)k. Then the trace of the Hecke operator Tn acting on

Sk(N,χ) is:

Tr(Tn,Sk(N,χ)) =− 1

2

∑
s2<4n

pk−2(s, n)
∑
f

h0

(
s2 − 4n

f 2

)
B(N,χ, (N, f), s, n)

(4.2.1a)

+
φ1(N)

12
(k − 1)nk/2−1χ(

√
n) (4.2.1b)

− 1

2

∑
a|n

min(a, n/a)k−1Φ(N,χ, a, n/a) (4.2.1c)

+ δk,2δχ,1
∑

d|n, (N,d)=1

n

d
, (4.2.1d)

where d ranges over positive divisors of N , δ is the Kronecker delta function, h0 is

defined in Section 4.1 and pk−1 is defined as the coefficients of the following expan-

sion:
1

1− sx+ nx2
=
∑
w≥0

pw(s, n)xw.

Proof. See Popa [2014, 2017], Cohen [1977], Oesterlé [1977] or Knightly and Li

[2006].

Since h0(x) = 0 if x is not an integer by convention, there are finitely many nonzero

summands in the sum over f . The terms 4.2.1a with s2 − 4n < 0 are called the

elliptic terms, and 4.2.1b is called the identity term. As for the terms 4.2.1c, it is

called the unipotent term when a =
√
n, and the hyperbolic terms when a 6=

√
n.

Next we introduce Hijikata’s version of trace formula. We again first define some

notations.
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Definition 4.7. For fixed n ∈ Z+ and s ∈ Z such that s2 − 4n < 0 or s2 − 4n is a

square. Let t0 be the largest positive integer such that t0 | (s2 − 4n). Then define

t(s, n) =

t0 if (s2 − 4n)/t20 ≡ 1 mod 4

t0/2 if (s2 − 4n)/t20 ≡ 2, 3 mod 4.

Definition 4.8. For k, n ∈ Z+ and s ∈ Z such that s2 − 4n < 0 or s2 − 4n is a

square, let x1, x2 ∈ C be the two roots of Ψ(x) := x2 − sx+ n = 0. Then define

a(s, k, n) =

sgn(x)kmin(|x1|,|x2|)k−1

|x−y| if s2 − 4n > 0

xk−1
1 −xk−1

2

2(x1−x2)
if s2 − 4n < 0

Definition 4.9. For n ∈ Z+, s ∈ Z such that s2 − 4n < 0 or s2 − 4n is a positive

square, and f | t(s, n), define

b(s, f, n) =


1
2
φ
(√

s2−4n
f

)
if s2 − 4n > 0

h0

(
s2−4n
f2

)
if s2 − 4n < 0

The next definition is essential in the next chapter.

Definition 4.10. Suppose N, n > 1 is fixed such that (N, n) = 1, p is a prime, s ∈ Z
such that s2 − 4n is a square or is negative, f | t(s, n), and a Dirichlet character χ

modulo N. Let v =ordp(N) and b =ordp(f). Let χ =
∏

p|N χp where p ranges over

positive prime divisors of N and χq is a Dirichlet character modulo qordqN . Then let

Ψ(x) = x2 − sx+ n

Â(s, f,N, n, p) = {x ∈ Z/pv+bZ : Ψ(x) ≡ 0 mod pv+2b, 2x ≡ s mod pb}

B̂(s, f,N, n, p) = {x ∈ Z/pv+bZ : Ψ(x) ≡ 0 mod pv+2b+1, 2x ≡ s mod pb}

Also, we can let Ā(s, f,N, n, p) and B̄(s, f,N, n, p) be the sets of representatives of

Â(s, f,N, n, p) and B̂(s, f,N, n, p) respectively, and let B̄′(s, f,N, n, p) = {s − x :

x ∈ B̄(s, f,N, n, p)}. Now we can define

c(s, f,N, n, p, χ) =


∑

x χp(x) if (s2 − 4n)/f 2 6≡ 0 mod p∑
x χp(x) +

∑
y χp(x) if (s2 − 4n)/f 2 ≡ 0 mod p

where x ranges over Ā(s, f,N, n, p) and y ranges over B̄′(s, f,N, n, p).
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Furthermore, define

c(s, f,N, n, χ) =
∏
p|N

c(s, f,N, n, p, χ)

where p runs over positive prime divisors of N .

The solution sets Â(s, f,N, n, p) and B̂(s, f,N, n, p) have been calculated explic-

itly in [Hijikata et al., 1989, Lemma 2.5]. By the definition, c(s, f,N, n, χ) is a

multiplicative arithmetic function with respect to N , i.e. for any N = N1N2 with

(N1, N2) = 1, we have c(s, f,N, n, χ) = c(s, f,N1, n, χ) c(s, f,N2, n, χ)

Next we can give Hijikata’s version of the Eichler-Selberg trace formula.

Theorem 4.11. Let N, n ≥ 1 and k ≥ 2 be integers, and χ a Dirichlet character

modulo N with χ(−1) = (−1)k. Then for (N, n) = 1, the trace of the Hecke operator

Tn acting on Sk(N,χ) is:

Tr(Tn,Sk(N,χ)) =−
∑
s

a(s, k, n)
∑

f |t(s,n)

b(s, f, n)c(s, f,N, n, χ)

+
φ1(N)

12
(k − 1)nk/2−1χ(

√
n)

− nk/2−1χ(
√
n)

√
n

2

∏
`

par(`)

+ δk,2δχ,1
∑
d|n

n

d
,

where s runs over integers such that s2 − 4n is a positive square or is negative, d

ranges over positive divisors of n, δ is the Kronecker delta function, h0 is the class

number defined in Section 4.1, ` ranges over positive prime divisors of N and par(`)

is defined as

par(`) =


2`ν−e if e ≥ ρ+ 1

`ρ + `ρ+1 if e ≤ ρ and ν is even

2`ρ if e ≤ ρ and ν is odd

where ν = ord`N , ρ = bν
2
c, f is the conductor of χ` and then e = ord` f.

Proof. This was proved in a more general setting in Hijikata [1974]. A proof for

this more exact setting of the trace formula can be found in [Hijikata et al., 1990,

Theorem 2.2].
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4.3 Trace Formula of Hecke Operators Acting on

Newforms

By the Atkin-Lehner theory, the trace formula of Hecke operators acting on new-

forms can be derived from that on cusp forms. Consider the relation mentioned in

Section 3.4:

Bk(N) = {f(mτ) : f ∈Mk(Γ1(M))new and mM | N}.

If we assume that (N, n) = 1, then for any f ∈ Mk(Γ1(M))new and mM | N , f(τ)

and f(mτ) have the same Tn-eigenvalues [Diamond and Shurman, 2005, Proposition

5.8.4], so the traces of Hecke operators satisfy

Tr(Tn,Sk(Γ0(N))) =
∑
d|N

σ0(N/d)Tr(Tn,Sk(Γ0(d))new)

where σ0(m) denotes the number of positive divisors of m. In [Cohen and Strömberg,

2017, Theorem 13.5.5] we can find the complete relation without assuming (n,N) = 1

and χ = 1:

Theorem 4.12. Let k ≥ 2, N ∈ Z+, χ a Dirichlet character modulo N of conductor

f such that χ(−1) = (−1)k. Denote by χf the primitive character modulo f equivalent

to χ. Then

Tr(Tn,Sk(N,χ)) =
∑
f|d|N

σ0((N/d)(0))
∑

t|N/d,t2|n
(t,M)=1

µ(t)χf(t)t
k−1Tr(Tn/t2 ,Sk(d, χ)new)

where the function m(n) = m/(m,n∞).

Inverting this formula we can obtain the trace formula for newforms. Before giving

the trace formula, we first define an arithmetic function:

Definition 4.13. Define the multiplicative arithmetic function β(n) on prime pow-

ers by

β(pe) =


1 if e = 0 or 2;

−2 if e = 1;

0 if e ≥ 3.
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Then define βm(n) on prime powers by

βm(pe) =

β(pe) if p 6 |m;

µ(pe) if p | m.

Then we can give the trace formula of Hecke operators acting on the space of new-

forms.

Theorem 4.14. Keep the same notation and assumptions from Theorem 4.12. Let

N = N1N2 with (N1, N2) = 1, N1 square-free and ordpN2 ≥ 2 for all p | N2. Then

Tr(Tn,Sk(N,χ)new) =
∑
f|d|N

∑
t|(d/f,N1)
t2|n

χf(t)t
k−1βn/t2(N/d)Tr(Tn/t2 ,Sk(d/t, χf)).

Proof. See [Cohen and Strömberg, 2017, Theorem 13.5.7].

4.4 Trace Formula of Hecke Operators Acting on

Sk(Γ1(N))

By the relation mention in Section 3.4:

Sk(Γ1(N)) =
⊕
χ

Sk(N,χ),

we can sum up the trace formulas on Sk(N,χ) over all Dirichlet characters modulo

N to get the trace formula of Hecke operators acting on Sk(Γ1(N)). Therefore,

Theorem 4.11 gives us the following trace formula.

Theorem 4.15. Let N, n ≥ 1 and k ≥ 2 be integers. Then for (N, n) = 1 and n

not a square, the trace of the Hecke operator Tn acting on Sk(Γ1(N)) is:

Tr(Tn,Sk(Γ1(N))) =−
∑
s

a(s, k, n)
∑

f |t(s,n)

b(s, f, n)
∑
χ

c(s, f,N, n, χ)

+ δk,2
∑

d|n, (N,d)=1

n

d
,

where s runs over integers such that s2 − 4n is a positive square or is negative, χ

ranges over all Dirichlet characters modulo N , d ranges over positive divisors of N ,

δ is the Kronecker delta function, h0 is the class number defined in Section 4.1.
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However, the term
∑

χ c(s, f,N, n, χ) seems to be complicated to calculate. The

effect of summing over Dirichlet characters can be seen more easily if we derive the

trace formula from Theorem 4.6.

Theorem 4.16. Let N, n ≥ 1 and k ≥ 2 be integers. Then the trace of the Hecke

operator Tn acting on Sk(Γ1(N)) is:

Tr(Tn,Sk(Γ1(N))) =− φ(N)

2

∑
s≤4n

pk−2(s, n)
∑
f

h0

(
s2 − 4n

f 2

)
B̄(N, (N, f), s, n)

− 1

4

∑
a|n

min(a, n/a)k−1(Φ̄(N, a, n/a) + (−1)kΦ̄(N,−a,−n/a))

+ δk,2
∑

d|n, (N,d)=1

n

d
,

where d ranges over positive divisors of n, χ ranges over all Dirichlet characters

modulo N , B̄(N, (N, f), s, n) is defined as

B̄(N, f, s, n) =
1

φ(N)

∑
χ

B(N,χ, f, s, n) =


φ1(N)
φ1(N/f)

if Nf | s− n− 1

0 otherwise,

Φ̄(N, a, n/a) is defined to be

Φ̄(N, a, d) =
∑
N=rt

r|(a−1),t|(d−1)

φ((r, t))φ(N/(r, t)),

and δ, h0, φ1 and pk−1 are defined the same as in Theorem 4.6, and φ(N) is the

Euler φ-function.

Proof. This is [Popa, 2017, Theorem 5]. It can be done by applying the following

property of Dirichlet characters [Diamond and Shurman, 2005, Section 4.3]:

∑
χ

χ(n) =

φ(N) if n = 1,

0 if n 6= 1,

where χ ranges over all Dirichlet character modulo n.



Chapter 5

Vanishing of Traces of Hecke

Operators

In this chapter we focus on the vanishing of the trace of Hecke operators. After

introducing the topic, in Section 5.2 we will describe an algorithm found by J.

Rouse (Rouse [2006]) to give all levels N such that the trace of the Hecke operator

Tn acting on Sk(Γ0(N)) is zero for given k ≥ 2, n ∈ Z. After that, some extensions

of this algorithm will also be given and justified.

5.1 Introduction

The study of the trace of Hecke operators has a long history due to the importance

of Hecke operators in the research on modular forms, and there are still many open

problems in this area.

Consider Tr(Tn,Sk(N,1)) = Tr(Tn,Sk(Γ0(N))), the trace of the Hecke operator Tn

acting on Sk(Γ0(N)). In 1947, Lehmer conjectured in Lehmer et al. [1947] that

Ramanujan’s function τ(n), which is defined as the Fourier coefficients of the cusp

form η24: ∑
n≥1

τ(n)qn = η24 = q
∏
n≥1

(1− qn)24

with z ∈ H and q = e2πiz, is nonzero for any n ≥ 1. Since S12(Γ0(1)) has di-

mension 1 (see Example 3.10) and τ(n) is the Tn-eigenvalue by Theorem 3.19,

τ(n) = Tr(Tn,S12(Γ0(1))), this conjecture can be stated as

29
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Conjecture 5.1 (Lehmer’s Conjecture).

Tr(Tn,S12(Γ0(1))) 6= 0

for any n ∈ Z+.

Lehmer’s conjecture can be generalised as follows:

Conjecture 5.2 (Generalised Lehmer’s Conjecture). If n ≥ 1 is not a square,

(N, n) = 1 and k = 12 or k ≥ 16 is even, then

Tr(Tn,Sk(Γ0(N))) 6= 0.

The cases when the weight k is odd or equals 4, 6, 8, 10, 14 are excluded since the

set of cusp forms at those weights Sk(Γ0(1)) = Sk(SL2(Z)) = {0} (see [Zagier, 2008,

Section 1.3]). Apart from the nonvanishing cases, the case when the weight k = 2 is

different, and we have the following conjecture:

Conjecture 5.3. Suppose that n ≥ 1 is not a square. Then there exists infinitely

many N coprime to n such that

Tr(Tn,S2(Γ0(N))) = 0.

Since the object of study Tr(Tn,Sk(Γ0(N))) involves three independent variables:

n,N, k, we can fix two of them and focus on the third one. For example, the study

of Ramanujan’s function τ(n) can be seen as the study of the traces for fixed N = 1

and k = 12, and J-P. Serre found that the density of primes p for which τ(p) = 0 is

zero [Serre, 1981, Theorem 15].

In this chapter we will study the vanishing of traces of Hecke operators with the level

N of the congruence subgroup varying and the other variables fixed. Specifically, we

will first introduce an algorithm to find all the levels N of the congruence subgroup

Γ0(N) of SL2(Z) such that the trace of Hecke operators Tr(Tn,Sk(Γ0(N))) = 0 for

fixed k, n with k ≥ 2 and (N, n) = 1. Then some other situations will be studied

still with N as the only independent variable.
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5.2 Algorithm Determining Trace Zero Levels of

Hecke Operators on Sk(Γ0(N))

In this section, J. Rouse’s algorithm Rouse [2006] to find all zero-levelsN of Tr(Tn,Sk(Γ0(N)))

for fixed n, k with k ≥ 2 and (N, n) = 1 will be introduced and explained. Consider

Hijikata’s version of the Eichler-Selberg trace formula Theorem 4.11. We can see

that the only dependence on the level N in the trace formula is the constant term

c(s, f,N, n) := c(s, f,N, n,1), so the algorithm will center on this term. First of all

we define some concepts to better describe it.

Definition 5.4. For n,N ∈ Z+ with n not a square and (n,N) = 1, let V (n,N, χ)

be the row vector with entries c(s, f,N, n, χ) for all s2 < 4n and f | t(s, n), together

with c(n/d+d, f,N, n, χ) for all d | n, d <
√
n and f | (n/d−d). Denote V (n,N) :=

V (n,N,1).

Notice that for fixed n, the numbers of elements in V (n,N, χ) are equal for any

N ∈ Z+.

Example 5.5. Consider n = 5 and N = 13. Then

V (5, 13,1) =[c(0, 1, 13, 5), c(1, 1, 13, 5), c(−1, 1, 13, 5), c(2, 1, 13, 5), c(−2, 1, 13, 5),

c(2, 2, 13, 5), c(−2, 2, 13, 5), c(3, 1, 13, 5), c(−3, 1, 13, 5), c(4, 1, 13, 5),

c(−4, 1, 13, 5), c(6, 1, 13, 5), c(6, 2, 13, 5), c(6, 4, 13, 5)]

=[0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2].

Definition 5.6 (Projective Equivalence). We say that V (n,N1, χ) and V (n,N2, χ)

are projectively equivalent if there exists 0 6= λ ∈ Q such that V (n,N1, χ) =

λV (n,N2, χ).

Remark 5.7. If n ≥ 1 is not a square, N1, N2 are coprime to n, k > 2, and V (n,N1) =

λV (n,N2), then the trace formula indicates that

Tr(Tn,Sk(Γ0(N1))) = λTr(Tn,Sk(Γ0(N2))).

Furthermore, Tr(Tn,Sk(Γ0(N1))) = 0 if and only if Tr(Tn,Sk(Γ0(N2))).

Definition 5.8. For n ∈ Z+ not a square and p a prime, let

M(n, p) = max

{
max
s2<4n

(ordp(s
2 − 4n)), max

d|n, d<
√
n
(ordp(n/d− d))

}
+ 1
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if (n, p) = 1 and there exists an s such that p | (s2 − 4n) or a d <
√
n such that

p | (n/d− d). Otherwise, let M(n, p) = 0. Let M(n) =
∏

p p
M(n,p).

Then before we give the algorithm, we prove two lemmas 5.9 and 5.10 essential to

the effectiveness of the algorithm.

Lemma 5.9. If p is a prime and ordp(s
2 − 4n) = e, then for any j ≥ 1, we have

c(s, f, pe+1, n) = c(s, f, pe+j, n).

Proof. We can check out [Hijikata et al., 1989, Lemma 2.5] to see the solution sets

defined in Definition 4.10 explicitly.

In this case, we have c(s, f, pe+j, n) = c(s, f, pe+j, n, p,1) and ν = ordpp
e+j = e + j.

Denote b = ordpf . By the definition of e and f , we always have ν ≥ ordp(s
2− 4n)−

2b + 1. When s2 − 4n = p2ad2 with (p, d) = 1 and a a nonnegative integer, check

[Hijikata et al., 1989, Lemma 2.5] and we can find that

Ā(s, f,N, n, p) =

{
s± pad

2
+ zpν+2b−a : z ∈ Z/pa−bZ

}
B̄(s, f,N, n, p) =

{
s± pad

2
+ zpν+2b−a+1 : z ∈ Z/pa−b−1Z.

}
Here B̄(s, f,N, n, p) = ∅ if a = b.

Also in all other cases we have Ā(s, f,N, n, p) = B̄(s, f,N, n, p) = ∅.

We can see that in all cases c(s, f, pe+j, n, p,1) = |Â|+|B̂| is independent of ν = e+j,

so they have the same value for all integers j ≥ 1.

While Rouse’s proof [Rouse, 2006, Lemma 3.1] is more arithmetic, the proof given

here is straightforward by definition of c(s, f, pe+j, n). However, we will see that

giving explicit solution sets can make further extension more easily.

Lemma 5.10. For fixed N, n ∈ Z+ with n not a square and (N, n) = 1, there exists

N0 | M(n) and εs ∈ {0, 1} such that V (n,N) is projectively equivalent to a vector

whose entries are εsc(s, f,N0, n) followed by c(n/d+ d, f,N0, n).

Proof. This is Rouse’s [Rouse, 2006, Lemma 3.2]. Since it is crucial to the algorithm,

we will restate the proof below.
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First consider any p0 | N such that (p0,M(n)) = 1. Then by Hensel’s lemma

(Lemma 2.13) or by checking [Hijikata et al., 1989, Lemma 2.5] we have that

c(s, f,N, n, p0,1) = 1 +
(
s2−4n
p0

)
and c(n/d+ d, f,N, n, p0,1) = 2. Then let

εs =

0 if there exists p0 | N such that (p0,M(n)) = 1 and
(
s2−4n
p0

)
= −1

1 otherwise

Hence, if ordp0N = r, then εsc(s, f,N, n) = 2εsc(s, f,N/p
r
0, n) and c(n/d+d, f,N, n) =

2c(n/d+d, f,N/pr0, n). Equivalently, V (n,N) is projectively equivalent to the vector

with entries εsc(s, f,N/p
r
0, n) followed by c(n/d+ d, f,N/pr0, n).

Next we can assume that if p | N then p | M(n). If N 6 | M(n), then there exists

prime p | N such that ordp(N) > ordpM(n). Denote r = ordp(N) − ordpM(n).

By Lemma 5.9 we have c(s, f,N, n) = c(s, f,N/pr, n) and c(n/d + d, f,N, n) =

c(n/d+ d, f,N/pr, n), so we can assume that N |M(n) and finish the proof.

This Lemma 5.10 enables the establishment of the algorithm.

Algorithm 1 (Tr(Tn,Sk(Γ0(N))) with k > 2). For fixed n ∈ Z+ with n not a square

and for all N ∈ Z+ with (N, n) = 1,

Step I Determine all choices of N0 |M(n) and εs such that

0 =
∑
s2<4n

a(s, k, n)εs
∑

f |t(s,n)

b(s, f, n)c(s, f,N0, n)

+
∑
s′

a(s′, k, n)
∑

f |t(s′,n)

b(s′, f, n)c(s′, f, N0, n)

where s′ runs over integers such that s′2 − 4n is a positive square.

Step II For each pair of choices N0 and εs, find all levels N that are multiples

of N0 with (N,M(n)) = N0 such that V (n,N) is projectively equivalent

to the vector with entries εsc(s, f,N0, n) followed by c(n/d + d, f,N0, n).

Then those levels N are the zero-levels we want.

This can be done in the following way.

a For some s with c(s, f,N0, n) = 0 for all f | t(s, n), the choice of εs is

irrelevant.
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b For some s with εs = 0 and c(s, f,N0, n) 6= 0 for some f , c(s, f,N, n) = 0

implies that there exists a prime p | N such that (p,M(n)) = 1 and(
s2−4n
p

)
= −1.

c For some s with εs = 1 and c(s, f,N0, n) 6= 0 for some f , we have

c(s, f,N, n) 6= 0, so
(
s2−4n
p

)
= 0 or 1 for all p | N with (p,M(n)) = 1.

d Consider prime p such that M(n, p) > 0. Since we are looking for N

such that (N,M(n)) = N0, we have that ordpN = ordpN0 or when

ordpN0 = M(n, p) then ordpN can be any integers more than M(n, p)

by Lemma 5.9.

In conclusion, given a pair of choices N0 and εs, all N satisfy the require-

ments can be decomposed as N = N0N1N2 such that all prime divisors p

of N1 satisfy p | M(n) and all prime divisors q of N2 satisfy q 6 | M(n).

Then the set Ω(N0, εs) = {N = N0N1N2} of all N we want includes any

integer N = N0N1N2 such that

a Each prime divisor p of N1 satisfies ordpN0 = M(n, p);

b For all s satisfying εs = 0, if c(s, f,N0, n) 6= 0 for some f , then N2

includes a prime divisor such that
(
s2−4n
p

)
= −1;

c For all s satisfying εs = 1, if c(s, f,N0, n) 6= 0 for some f , then each

prime divisor p of N2 satisfies
(
s2−4n
p

)
= 1.

Next we talk about the algorithm in the case k = 2. The difference of this case

is that its trace formula has an extra term. As we assume (N, n) = 1, denote this

term:

σ1(n) =
∑
d|n

n

d
.

Since it does not include the term c(s, f,N, n), Remark 5.7 no longer holds. However,

by the following lemma, a similar algorithm is still available.

Lemma 5.11. Suppose that n ∈ Z+ is not a square. Then there exists an integer

m(n) such that if Tr(Tn,S2(Γ0(N))) = 0 with (N, n) = 1, then N has no more than

m(n) distinct prime divisors.

Proof. See [Rouse, 2006, Theorem 1.1].

Similar to Algorithm 1, given n ∈ Z+ with n not a square, all N such that

Tr(Tn,S2(Γ0(N))) = 0 with (N, n) = 1 can be decomposed as N = N0N1N2. This
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decomposition satisfies that N0 | M(n), all prime divisors p of N1 satisfy p | M(n)

and all prime divisors q of N2 satisfy q 6 | M(n).

Since by Lemma 5.11 the number of prime divisors of N has an upper bound m(n),

we can list all possibilities of the distribution of the number of prime divisors on N0,

N1 and N2. If N0 has M different prime divisors, then the number ` of prime divisors

of N2 satisfies 0 ≤ ` ≤ m(n)−M . Therefore, c(s, f,N, n) = 2`εsc(s, f,N0, n), where

εs = 0 when there is any prime divisor p of N2 such that
(
s2−4n
p

)
= −1, or otherwise

εs = 1.

Then we have the following algorithm.

Algorithm 2 (Tr(Tn,S2(Γ0(N)))). For fixed n ∈ Z+ with n not a square and for

all N ∈ Z+ with (N, n) = 1,

Step I Determine all choices of N0 |M(n), 0 ≤ ` ≤ m(n)−M and εs such that

σ1(n) =
∑
s2<4n

a(s, k, n)
∑

f |t(s,n)

b(s, f, n) · 2`εsc(s, f,N0, n)

+
∑
s′

a(s′, k, n)
∑

f |t(s′,n)

b(s′, f, n) · 2`c(s′, f, N0, n)

where s′ runs over integers such that s′2 − 4n is a positive square, and M

is the number of prime divisors of N0.

Step II For each choice of N0, ` and εs, find all levels N that are multiples of

N0 with (N,M(n)) = N0 such that V (n,N) is the vector with entries

2`εsc(s, f,N0, n) followed by 2`c(n/d + d, f,N0, n). Then those levels N

are the zero-levels we want.

This can be done in the following way.

Given any choice N0 and εs, all N we want can be decomposed as N =

N0N1N2 such that all prime divisors p of N1 satisfy p | M(n) and all

prime divisors q of N2 satisfy q 6 | M(n). Then the set Ω(N0, εs) = {N =

N0N1N2} of all N we want includes any integer N = N0N1N2 such that

a N2 has ` different prime divisors;

b Each prime divisor p of N1 satisfies ordpN0 = M(n, p);

c For all s satisfying εs = 0, if c(s, f,N0, n) 6= 0 for some f , then N2

includes a prime divisor such that
(
s2−4n
p

)
= −1;
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d For all s satisfying εs = 1, if c(s, f,N0, n) 6= 0 for some f , then each

prime divisor p of N2 satisfies
(
s2−4n
p

)
= 1.

5.3 Algorithm for Hecke Operators on Sk(N,χ)

In this section, we talk about the algorithm to find levels N such that the trace of

Hecke operators Tn acting on Sk(N,χ) is zero. This is a generalisation of the last

section where we focus on χ = 1.

However, since we fix all variables except the level N , for a fixed Dirichlet character

χ modulo N̄ , Sk(N,χ) is well defined only when N̄ | N and χ is interpreted as the

Dirichlet character modulo N induced by the given χ modulo N̄ . We fix a positive

integer Ñ and a Dirichlet character χ̃. We let N vary over all positive multiples of Ñ ;

for each such N we let χN denote a Dirichlet character modulo N induced from χ̃.

The next algorithm is used to find all such levels N such that Tr(Tn,Sk(N,χ)) = 0

for fixed k > 2, n ∈ Z+.

The next lemma is a generalisation of Lemma 5.9. Before giving the lemma, we first

define a generalisation of M(n).

Definition 5.12. For n ∈ Z+ not a square, a fixed Dirichlet character χ̃ modulo Ñ

and p a prime, let

M̄(n, p, χ̃) = max

{
2ordpÑ , max

s2<4n
(ordp(s

2 − 4n)), max
d|n, d<

√
n
(ordp(n/d− d))

}
+ 1,

if (n, p) = 1 and there exists an s such that p | (s2 − 4n), or a d <
√
n such that p |

(n/d− d), or ordpÑ > 0. Otherwise, let M̄(n, p, χ̃) = 0. Let M̄(n, χ̃) =
∏

p p
M̄(n,p,χ̃)

Lemma 5.13. If p is a prime, then for any j ≥ 0, we have

c(s, f, pM̄(n,p,χ̃), n) = c(s, f, pM̄(n,p,χ̃)+j, n).

Proof. Similar to the proof of Lemma 5.9, we can again check out [Hijikata et al.,

1989, Lemma 2.5] to see the explicit solution sets.

In this case, we have ν = ordpp
M̄(n,p,χ̃)+j = M̄(n, p, χ̃) + j. Denote b = ordpf . By

the definition of M̄(n, p, χ̃) and f , we always have ν ≥ ordp(s
2−4n)−2b+ 1. When
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s2 − 4n = p2ad2 with (p, d) = 1 and a a nonnegative integer, check [Hijikata et al.,

1989, Lemma 2.5] and we can find that

Ā(s, f,N, n, p) =

{
s± pad

2
+ zpν+2b−a : z ∈ Z/pa−bZ

}
B̄′(s, f,N, n, p) =

{
s± pad

2
+ zpν+2b−a+1 : z ∈ Z/pa−b−1Z.

}
Here B̄′(s, f,N, n, p) = ∅ if a = b.

Consider χp(
s±pad

2
+zpν+2b−a) where χN =

∏
p|N χp. Since ordpÑ ≤ M̄(n, p, χ̃)−a ≤

ν+2b−a, we have pordpÑ | pν+2b−a. By the periodicity of the Dirichlet character, we

have χp(
s±pad

2
+ zpν+2b−a) = χp(

s±pad
2

) for any z ∈ Z/pa−bZ, which is independent of

ν.

Similarly, since ordpÑ ≤ M̄(n, p, χ)− a < ν+ 2b− a+ 1, we have pordpÑ | pν+2b−a+1.

Thus, we have χp(
s±pad

2
+ zpν+2b−a+1) = χp(

s±pad
2

) for any z ∈ Z/pa−b−1Z, which is

also independent of ν.

Also in all other cases we have Ā(s, f,N, n, p) = B̄(s, f,N, n, p) = ∅.

We have seen that in all cases c(s, f, pM̄(n,p,χ̃)+j, n, χN) is independent of ν = M̄(n, p, χ̃)+

j, so they have the same value for all integers j ≥ 0.

For prime p | N with p 6 | M̄(n, χ̃), the restriction of the induced Dirichlet character

χN of χ̃ to Z/pordpN is the trivial character, so the same argument in the proof of

Lemma 5.10 applies.

Lemma 5.14. For fixed Ñ , n ∈ Z+ with n not a square, Ñ | N and (N, n) = 1, there

exists N0 | M̄(n, χ̃) and εs ∈ {0, 1} such that V (n,N, χN) is projectively equivalent

to a vector whose entries are εsc(s, f,N0, n, χN0) followed by c(n/d+d, f,N0, n, χN0).

Proof. First consider any p0 | N such that (p0,M(n, χ)) = 1. Since the restriction of

the induced Dirichlet character of χ to Z/pordpNZ is the trivial character, the same

argument in the first half of the proof of Lemma 5.10 applies. Therefore we can

again let

εs =

0 if there exists p0 | N such that (p0,M(n)) = 1 and
(
s2−4n
p0

)
= −1

1 otherwise
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Hence, if ordp0N = r, then εsc(s, f,N, n, χN) = 2εsc(s, f,N/p
r
0, n, χN) and c(n/d +

d, f,N, n, χN) = 2c(n/d + d, f,N/pr0, n, χN). Equivalently, V (n,N, χN) is projec-

tively equivalent to the vector with entries εsc(s, f,N/p
r
0, n, χN) followed by c(n/d+

d, f,N/pr0, n, χN).

Next we can assume that if p | N then p | M̄(n, χ̃). If N 6 | M̄(n, χ̃), then there

exists prime p | N such that ordp(N) > ordpM̄(n, χ̃). Denote r = ordp(N) −
ordpM̄(n, χ̃). By Lemma 5.13 we have c(s, f,N, n, χN) = c(s, f,N/pr, n, χN) and

c(n/d + d, f,N, n, χN) = c(n/d + d, f,N/pr, n, χN), so we can assume that N |
M̄(n, χ̃) and finish the proof.

With these ingredients we can give a generalisation of Algorithm 1.

Algorithm 3 (Tr(Tn,Sk(N,χ)) with k > 2 or χ not trivial). For fixed Ñ , n ∈ Z+

with n not a square and a Dirichlet character χ̃ modulo Ñ , and for all N ∈ Z+ with

(N, n) = 1 and Ñ | N , if k > 2 or χ̃ not trivial, we have the following algorithm to

find all N , multiples of Ñ , such that Tr(Tn,Sk(N,χN)) = 0 where χN is induced by

χ̃.

Step I Determine all choices of N0 | M̄(n, χ̃) and εs such that

0 =
∑
s2<4n

a(s, k, n)εs
∑

f |t(s,n)

b(s, f, n)c(s, f,N0, n, χN)

+
∑
s′

a(s′, k, n)
∑

f |t(s′,n)

b(s′, f, n)c(s′, f, N0, n, χN)

where s′ runs over integers such that s′2 − 4n is a positive square.

Step II For each pair of choices N0 and εs, find all levels N that are multiples of

N0 with (N, M̄(n, χ̃)) = N0 such that V (n,N, χN) is projectively equiv-

alent to the vector with entries εsc(s, f,N0, n, χN0) followed by c(n/d +

d, f,N0, n, χN0). Then those levels N are the zero-levels we want.

This can be done in the following way.

Given a pair of choices N0 and εs, all N satisfy the requirements can be

decomposed as N = N0N1N2 such that all prime divisors p of N1 satisfy

p | M̄(n, χ̃) and all prime divisors q of N2 satisfy q 6 | M̄(n, χ̃). Then the

set Ω(N0, εs) = {N = N0N1N2} of all N we want includes any integer

N = N0N1N2 such that

a N̄ | N ;
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b Each prime divisor p of N1 satisfies ordpN0 = M̄(n, p, χ̃);

c For all s satisfying εs = 0, if c(s, f,N0, n, χ) 6= 0 for some f , then N2

includes a prime divisor such that
(
s2−4n
p

)
= −1;

d For all s satisfying εs = 1, if c(s, f,N0, n, χ) 6= 0 for some f , then each

prime divisor p of N2 satisfies
(
s2−4n
p

)
= 1.

5.4 Algorithm for Hecke Operators on Newforms

Contrary to the case of cusp forms, we will see that the traces of Hecke operators

acting on newforms vanish in most cases when N varies. This is not surprising since

Lemma 5.9 shows the stability of traces when the order of any prime divisors of N

grows large enough, while the spaces of newforms can be understood as a measure

of the differences between different levels of spaces of cusp forms. Before we prove

the statements above, we first give the trace formula when (n,N) = 1, n is not a

square and χ = 1.

Corollary 5.15. Let k > 2, n,N ∈ Z+ such that (n,N) = 1 and n is not a square.

Then

Tr(Tn,Sk(Γ0(N))new) =
∑
d|N

β(N/d)Tr(Tn,Sk(Γ0(d)))

=−
∑
s

a(s, k, n)
∑

f |t(s,n)

b(s, f, n)
∑
d|N

β(d)c(s, f,N/d, n)

Proof. Apply Theorem 4.14 and Theorem 4.11 directly.

Then we use the same notations as Section 5.2 to prove the statements at the

beginning of this section.

Lemma 5.16. Suppose that k > 2, p is a prime, (n,N) = 1, n is not a square and

ordpN ≥ max(M(n, p) + 2, 3). Then Tr(Tn,Sk(Γ0(N))new) = 0.
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Proof. Denote ν := ordpN . By the trace formula Corollary 5.4 and Lemma 5.9, we

have the following for given s, f,N, n

∑
d|N

β(d)c(s, f,
N

d
, n) =

∑
d|(N/pν)

{β(d)c(s, f,
N

d
, n) + β(dp)c(s, f,

N

dp
, n)

+ β(dp2)c(s, f,
N

dp2
, n)}

=
∑

d|(N/pν)

(1− 2 + 1) β(d)c(s, f,
N

dp2
, n)

= 0.

Therefore,

Tr(Tn,Sk(Γ0(N))new) = −
∑
s

a(s, k, n)
∑

f |t(s,n)

b(s, f, n)
∑
d|N

β(d)c(s, f,N/d, n) = 0.

We can first give some definitions analogous to those in Section 5.2.

Definition 5.17. We can define the following functions.

M̃(n) =
∏

p|M(n)

pM(n,p)+2

c̃(s, f,N, n) =
∑
d|N

β(d)c(s, f,N/d, n)

and Ṽ (n,N) is defined to be the row vector with entries c̃(s, f,N, n) for all s2 < 4n

and f | t(s, n), together with c̃(n/d+d, f,N, n) for all d | n, d <
√
n and f | (n/d−d)

We then have a result similar to Lemma 5.10.

Lemma 5.18. For fixed N, n ∈ Z+ with n not a square and (N, n) = 1, there exists

N0 | M̃(n), ε̃′ ∈ {1, 0} and ε̃s ∈ {−1, 0, 1} such that Ṽ (n,N) is projectively equiv-

alent to a vector whose entries are ε̃sc̃(s, f,N0, n) followed by ε̃′c̃(n/d + d, f,N0, n)

satisfying that if one of ε̃s = 0 then ε̃′ = 0.

Proof. We can decompose N = N0N1N2 such that N0 = (N, M̃(n)), all prime

divisors p of N1 satisfy p | M̃(n) and all prime divisors q of N2 satisfy q 6 | M̃(n).

First, if N1 6= 1 or N2 is not cube-free, then Lemma 5.16 gives that the trace

Tr(Tn,Sk(Γ0(N))new) = 0.
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Next we can assume that the decomposition of N is N = N0N2 where N2 is cube-free.

Then for any prime p | N2 but p2 6 | N2:

∑
d|N

β(d)c(s, f,
N

d
, n)

=
∑

d|(N/p)

{β(dp)c(s, f,
N

dp
, n) + β(d)c(s, f,

N

d
, n)}

=
∑

d|(N/p)

{β(d)β(p)c(s, f,
N

dp
, n) + β(d)c(s, f,

N

dp
, n)(1 +

(
s2 − 4n

p

)
)}

=
∑

d|(N/p)

β(d)c(s, f,
N

dp
, n)(

(
s2 − 4n

p

)
− 1)

Thus, in this case V (n,N) is projectively equivalent to the vector with entries

ε̃sc̃(s, f,N/p, n) followed by ε̃′c̃(n/d+ d, f,N/p, n) = 0 where ε̃s ∈ {1, 0} and ε̃′ = 0.

On the other hand, for any prime p2 | N2:

∑
d|N

β(d)c(s, f,
N

d
, n)

=
∑

d|(N/p2)

{β(dp2)c(s, f,
N

dp2
, n) + β(dp)c(s, f,

N

dp
, n) + β(d)c(s, f,

N

d
, n)}

=
∑

d|(N/p2)

β(d)c(s, f,
N

dp2
, n)

{
1− 2(1 +

(
s2 − 4n

p

)
) + (1 +

(
s2 − 4n

p

)
)

}

=
∑

d|(N/p2)

β(d)c(s, f,
N

dp2
, n)(−

(
s2 − 4n

p

)
)

Therefore, in this case V (n,N) is projectively equivalent to the vector with entries

ε̃sc̃(s, f,N/p
2, n) followed by ε̃′c̃(n/d + d, f,N/p2, n) = 0 where ε̃s ∈ {1,−1} and

ε̃′ = 1.

Since n/d+ d is a positive square,
(
n/d+d
p

)
= 1 for any prime p | N2.

In conclusion, denote P1 = {prime p : ordpN2 = 1} and P2 = {prime p : ordpN2 =

2}, and then V (n,N) is projectively equivalent to the vector with entries ε̃sc̃(s, f,N0, n)
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followed by ε̃′c̃(n/d+ d, f,N0, n) as follows:

ε̃′ =

0 if P1 6= ∅

1 if P1 = ∅

ε̃s =

(∏
p∈P1

−1

2
(

(
s2 − 4n

p

)
− 1)

)(∏
p∈P2

(
s2 − 4n

p

))
∈ {1, 0,−1}.

This finishes the proof.

Then we can give the algorithm to find vanishing traces of Hecke operators acting

on newforms.

Algorithm 4 (Tr(Tn,Sk(Γ0(N))new) with k > 2). For fixed n ∈ Z+ with n not a

square and for all N ∈ Z+ with (N, n) = 1, if k > 2, we have the following algorithm

to find all N such that Tr(Tn,Sk(Γ0(N))new) = 0

Step I Determine all choices ofN0 | M̃(n) ε̃′ ∈ {1, 0} and ε̃s ∈ {−1, 0, 1} satisfying

that if one of ε̃s = 0 then ε̃′ = 0. These choices should also satisfy that

0 =
∑
s2<4n

ε̃sa(s, k, n)
∑

f |t(s,n)

b(s, f, n)c(s, f,N0, n)

+
∑
s′

ε̃′a(s′, k, n)
∑

f |t(s′,n)

b(s′, f, n)c(s′, f, N0, n)

where s′ runs over integers such that s′2 − 4n is a positive square.

Step II Given a choice of N0, ε̃s and ε̃′, all N satisfy the requirements can be

decomposed as N = N0N1N2 such that all prime divisors p of N1 satisfy

p | M̃(n, χ) and all prime divisors q of N2 satisfy q 6 | M̃(n). Again denote

P1 = {prime p : ordpN2 = 1} and P2 = {prime p : ordpN2 = 2}. Then

the set Ω̃(N0, ε̃s, ε̃
′) = {N = N0N1N2} can be defined to be any integer

N = N0N2 with (N, n) = 1 satisfying all the following criteria:

a N2 is cube-free;

b ε̃′ = 0 if and only if P1 6= ∅;

c For all s satisfying ε̃s = 0, there exists a prime p ∈ P1 such that(
s2−4n
p

)
= 1;

d For all s satisfying ε̃s = −1, P2 includes an odd number of prime divisors

p such that
(
s2−4n
p

)
= −1, and there is no p ∈ P1 such that

(
s2−4n
p

)
= 1;
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e For all s satisfying ε̃s = −1, P2 includes an even number of prime divisors

p such that
(
s2−4n
p

)
= −1, and there is no p ∈ P1 such that

(
s2−4n
p

)
= 1.

Step III Consequently, the set of all zero-levels N with (N, n) = 1 is the union

of Ω̃(N0, ε̃s, ε̃
′) for all choices N0, ε̃s and ε̃′, and all N = N0N1N2 with

decomposition components N1 6= 1 or N2 not cube-free.

5.5 Algorithm for Hecke Operators on Sk(Γ1(N))

Although finding zero-levels of traces of Hecke operators Tn acting on Sk(N,χ)

requires a novel algorithm, the zero-levels of those on Sk(Γ1(N)) is surprisingly

straightforward.

Observe its trace formula Theorem 4.16. We can find that when k > 2, there are

only finitely many N such that the trace is possibly not vanishing. Specifically, the

term B̄(N, (N, f), s, n) can be nonzero only when N(N, f) | (s − n − 1), and the

term Φ̄(N, a, n/a) can possibly be nonzero only when N ≤ (a − 1)(d − 1) by the

summing conditions. Consequently, we can find all zero-levels by enumeration.

Algorithm 5 (Tr(Tn,Sk(Γ1(N)))). For fixed N̄ , n ∈ Z+ with n not a square and

for all N ∈ Z+ with (N, n) = 1, if k > 2, we have the following algorithm to find all

N such that Tr(Tn,Sk(Γ1(N))) = 0

Step I For any pair of s, f such that s2 < 4n and f | t(s, n), determine all N such

that (N, f)N | (s− n− 1). Let Ω1 denote the set of all such N .

Step II For each a ∈ Z with a | n, find all 1 ≤ N ≤ (a − 1)(n/a − 1) such that

Φ̄(N, a, n/a) 6= 0. Let Ω2 denote the set of all such N .

Step III Enumerate each N ∈ Ω1 ∪ Ω2, and see whether Tr(Tn,Sk(Γ1(N))) 6= 0. If

Ω0 = {N ∈ Ω1∪Ω2 : Tr(Tn,Sk(Γ1(N))) 6= 0}, then the set of all zero-levels

is {N ∈ Z+ : (N, n) = 1, N 6∈ Ω0}.
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Applications of Traces of Hecke

Operators

In this chapter, some applications of traces of Hecke operators are introduced in brief.

Most proofs will be skipped and further developments can be seen in references.

6.1 Dimension Formulas

The dimension of Sk(N,χ) can be calculated by the Riemann-Roch theorem as in

[Shimura, 1971, Section 2.6]. Apart from this geometric approach, we can also

calculate the dimension by the trace formula using the fact that the Hecke operator

T1 is the identity map on Sk(N,χ) and thus we have the following [Knightly and Li,

2006, Proposition 27.1]:

Proposition 6.1. dimSk(N,χ) = Tr(T1,Sk(N,χ)).

A dimension formula of Sk(N,χ) simplified from the trace formula with n = 1 can be

found in [Ross, 1992, Corollary 8]. We give an example to illustrate computing the

dimension directly from the first version of the Eichler-Selberg formula, and more

examples can be found in [Knightly and Li, 2006, Section 27].

Example 6.2. Consider S16(SL2(Z)). Let n = 1, N = 1 and k = 16, and then by

the Eichler-Selberg trace formula we have the following calculation sheet:

s s2 − 4n f pk−2 h0 B

0 −4 1 −1 1
2

1

±1 −3 1 0 1
3

1

45
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Thus, the terms in Theorem 4.6 can be computed as follows:

(4.2.1a) = −1

2
· (−1) · 1

2
=

1

4
;

(4.2.1b) =
1

12
· (16− 1) =

5

4
;

(4.2.1c) = −1

2
;

(4.2.1d) = 0.

Consequently,

dimS16(SL2(Z)) = Tr(T1,S16(Γ0(1))) =
1

4
+

5

4
− 1

2
= 1,

consistent with the result calculated by the dimension formula in [Shimura, 1971,

Proposition 2.26]:

dimS16(SL2(Z)) =

⌊
k

12

⌋
= 1.

6.2 Computing Hecke Eigenvalues

For any finite-dimensional linear operator T , let a1, · · · , an be its eigenvalues, and

suppose the characteristic polynomial is

n∏
i=1

(X − ai) :=
n∑
j=0

(−1)jσjX
n−j

where σ0 = 1. By the definition of traces, we have σ1 = TrT . Moreover, if we denote

the power sum of eigenvalues Sm =
∑n

i=1 a
m
i = TrTm, then the following classic

result gives the connection between coefficients of the characteristic polynomial and

the traces:

Proposition 6.3 (Newton-Girard Formula). For any m ≥ 1,

mσm = −
m−1∑
i=0

(−1)m−iσiSm−i.

Proof. A proof can be found in [Knightly and Li, 2006, Proposition 28.1].

By this inductive relation and the trace formula of Hecke operators, we can recover

the characteristic polynomial of Hecke operators and then the Hecke eigenvalues
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without giving an explicit matrix expression of the Hecke operators. See [Knightly

and Li, 2006, Section 28].

6.3 The Trace Form of Modular Forms

Consider the Fourier expansion of Tk,χ,N : H → C,

Tk,χ,N(τ) =
∑
n≥1

Tr(Tn,Sk(N,χ))qn

where k ≥ 2, N ∈ Z+, q = e2πiτ/N , χ a Dirichlet character modulo N and χ(−1) =

(−1)k. We call them “trace forms”. H. Cohen conjectured in Cohen [1975] that

when N = 4, Tk,χ,N is a modular form. M. Mertens proves in Mertens [2014] that

when k is even and χ is trivial, it is in Sk(Γ0(4)), while H. Cohen gives the following

general statement.

Theorem 6.4. Tk,χ,N is defined above, and let s =
⌊
k
12
φ1(N)

⌋
+1 where φ1 is defined

in Section 4.1. Then:

(a) Tk,χ,N ∈ Sk(N,χ);

(b) The trace forms Tj(Tk,χ,M) and īN/M ◦Tj(Tk,χ,M) for all M | N such that f(χ) |M
and a ≤ j ≤ s/(N/M) form a generating set of Sk(N,χ), where ī is defined in

Section 3.3 and f(χ) is the conductor of χ.

Proof. See [Cohen and Strömberg, 2017, Section 13.5.3].

Thus, trace forms are not only cusp forms, but they can also form generating sets

of their corresponding space of cusp forms.
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Epilogue

7.1 Review

In this thesis, beyond Rouse’s algorithm we give the algorithms to find levels N such

that the traces of Hecke operators Tn acting on Sk(N,χ), Sk(Γ0(N))new or Sk(Γ1(N))

vanish for fixed n, k, χ when (n,N) = 1 and n is not a square.

In future research, it is promising to find a similar algorithm for the case when the

Hecke operator Tn is replaced by Tn ◦W` where W` is the Atkin-Lehner operator,

since Tn ◦W` has a similar trace formula as Tn. See [Cohen and Strömberg, 2017,

§6.6] for the definition and properties of Atkin-Lehner operators, and [Popa, 2017,

Theorem 4] for its trace formula.

Moreover, it is worth trying to adapt the algorithm to the cases when (n,N) 6= 1

or n is a square. However, either case introduces some extra term dependent on N ,

and therefore it fails to satisfy the requirements to apply our algorithms directly.

Algorithm 2 offers an example to deal with the extra term.
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