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1 Introduction: (Elliptic) Modularity

With the intent of getting ourselves properly oriented (and also of motivating the
theory which is to come) we begin with a rapid introduction to the basic objects and
phenomena of the Modularity Theorem of Taylor-Wiles and Taylor-Breuil-Conrad-
Diamond.

1.1 Classical modular forms

Let H = {z ∈ C | Im(z) > 0} denote the upper half complex plane, and recall
that SL2(R) acts on H by fractional linear transformations. Let Γ be a congru-
ence subgroup of SL2(Z) ie. a subgroup containing the kernel of the (surjective)
homomorphism SL2(Z)→SL2(Z/NZ) for some natural number N .

Definition 1.1. Let k be a positive integer. A modular form of weight k and level
Γ is a holomorphic function f : H→ C satisfying the following two conditions.

(a) For all γ =

(
a b
c d

)
∈ Γ, f(γz) = (cz + d)kf(z).

(b) f is “holomorphic at the cusps” of Γ.

A meromorphic function satisfying condition (a) is called a weakly-modular
function of weight k and level Γ. Condition (b) requires some explanation. Since Γ
is by assumption a congruence subgroup of SL2(Z), it contains a matrix of the form

Tm =

(
1 m
0 1

)
which acts as z 7→ z+m on H. Moreover, one has f(Tmz) = f(z) for all z ∈ H and
it follows that f possesses a Fourier expansion of the form

f(z) =
∑
n∈Z

ane
2πin/m.

One says that f is holomorphic at infinity if an = 0 for n < 0, ie. if the limit

lim
y→∞

f(iy)

exists. In general, a cusp of Γ is a Γ-orbit of points in P1(Q) = Q ∪ {∞}1.
Since [SL2(Z) : Γ] < ∞ for any congruence subgroup Γ the set of cusps is al-
ways finite. One says that f is holomorphic at the cusps of Γ if the function
f |γ(z) = f(γz)(cz + d)−k (which is holomorphic and a priori weakly modular for

γ−1Γγ) is holomorphic at infinity for each γ =

(
a b
c d

)
∈ SL2(Z).

The set of all modular forms of fixed weight k and level Γ is naturally a vector
space over C. We denote this space byMk(Γ) and remark that, by the Riemann-Roch
theorem, such a space is always finite dimensional. Under pointwise addition and
multiplication, the space

⊕
k≥0Mk(Γ) becomes a Z-graded commutative C-algebra.

1The action of SL2(Z) on H by fractional linear transformations extends continuously to H ∪
P1(Q), preserving each piece of this union and acting transitively on the latter.
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Definition 1.2. A modular form f of level Γ which vanishes at all cusps of Γ is
called a cusp form. The set of cusp forms of weight k and level Γ forms a subspace
Sk(Γ) of Mk(Γ).

We are principally interested in modular forms for the family of congruence
subgroups Γ0(N), N ∈ Z≥1 defined by

Γ0(N) =
{(a b

c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
.

If f is a cusp form for Γ0(N), the vanishing condition at ∞ (together with the fact

that the matrix

(
1 1
0 1

)
belongs to Γ0(N) ) implies that f has a Fourier expansion

of the shape

f(z) =
∞∑
n=1

anq
n where q = e2πiz.

Notice that whenever M ∈ Z≥1 divides N we have Γ0(N) ⊆ Γ0(M). Consequently,
we have an inclusion Mk(Γ0(M)) ↪→ Mk(Γ0(N). It will turn out to be important
to distinguish modular forms (especially cuspforms) which truly live at level Γ0(N)
from those which appear as flotsam from lower levels.

Definition 1.3. A cusp form of level Γ0(N) which is also a cusp form for Γ0(M)
for some M dividing N is called an oldform.

Remark: The oldforms generate a subspace of the space of cusp forms. We shall

refer to this subspace as the oldspace of Sk(Γ0(N)) and denote it by Sold
K (Γ0(N)).

There exists a certain inner product on Sk(Γ0(N)) called the Petersson inner

product.2 The orthogonal complement of Sold
k (Γ0(N)) with respect to the Petersson

inner product is called the newspace of Sk(Γ0(N)) and is denoted by Snew
k (Γ0(N)).

Central to the classical theory of modular forms are certain families of weight
and level preserving linear operators collectively known as Hecke-operators. We shall
define them via their action on Fourier expansions.

Definition 1.4. Fix positive integers k and N . For each prime number p the Hecke-
operator Tp on Mk(Γ0(N)) is defined by the formula

Tp

(∑
n≥0

anq
n
)

=

{∑
n≥0 anpq

n + pk−1
∑

n≥0,p|n an/pq
n if p - N ,∑

n≥0 anpq
n if p | N .

A straightforward computation shows that the family of prime Hecke operators
is commutative, ie. that if p and l are primes then TpTl = TlTp. The remaining
operators are defined recursively according to the rules

• T1 is the identity operator;

• if gcd(m,n) = 1 then Tmn := TmTn;

2The one ad only thing we need to know about the Petersson inner product is that it exists.
See [Van Der Geer, §5] for its definition and basic properties.
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• For r ≥ 2, Tpr := TpTpr−1 − pk−1Tpr−2 .

The algebra generated by the full set {Tn}n∈N of Hecke operators is called the
Hecke algebra. For each n and k the operator Tn preserves both the space
Sk(Γ0(N)) and its newspace. Furthermore, it can be shown that each Tn is self
adjoint on Snew

k (Γ0(N)) with respect to the Petersson inner product, and it follows
(from the spectral theorem for commuting families of self adjoint operators) that
Snew
k (Γ0(N)) admits a basis of simultaneous eigenvectors for this family.

Definition 1.5. A Hecke-eigenform is a modular form that is a simultaneous
eigenvector for the full family {Tn}n∈N of Hecke operators.

We remark that if f =
∑

n≥1 anq
n is an eigenvector of Tn with eigenvalue λn

then a consideration of the coefficient of q in Tnf leads to the identity an = λna1.
Two immediate condquences are

1. if f =
∑

n≥1 anq
n is a simultaneous eigenvector of all the Hecke operators then

a1 6= 0;

2. if we normalise f so that a1 = 1 then the Fourier coefficients of f are identical
with its Hecke eigenvalues.

Definition 1.6. A newform is a Hecke-eigenform in Snew
k (Γ0(N)) with the nor-

malisation a1 = 1.

1.2 Elliptic curves

Let K be a field and consider a cubic plane curve E over K (ie. the zero locus
in P2(C) of a polynomial in K[X, Y, Z] of homogeneous degree 3) defined by an
equation of the form

E : Y 2 + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Such an equation is called a Weierstraß equation. Note that such a curve always
contains the k-rational point [0 : 1 : 0] ie. the point at infinity with respect to the
affine patch (x, y) 7→ [x : y : 1]. If char(K) 6= 2, 3 then it is always possible to make
change of projective coordinates that puts the Wierstraß equation in the form

E : Y 2Z+ = X3 + AXZ2 +BZ3.

By an elliptic curve we mean a curve E of the above type such that the discrim-
inant

∆(E) = −16(4A3 + 27B2)

of E does not vanish. If there exists a change of projective coordinates such that E
is defined by a polynomial with coefficients in some subfield K ′ of K then one may
equally say that E is an elliptic curve over K ′.

Let us now specialise to the case K = Q. If E is an elliptic curve over Q then it
is a more or less trivial fact that (with respect to an appropriate set of coordinates
on P2(Q)) E can be defined by an integral Weierstraß equation, ie.

E : Y 2Z = X3 + AXZ2 +BZ3 where A,B ∈ Z.
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For any prime number p 6= 2, 3, the reduction of E at p is the cubic plane curve
over the finite field Fp defined by reducing A and B mod p. 3 This will be an
elliptic curve over Fp so long as p does not divide the discriminant ∆(E) of E.

Certain heuristic arguments (which we forego reproducing) lead one to the fol-
lowing näıve estimate of the number of points on a reduced curve: the reduction
mod p of a generic Weierstraß equation should have p+ 1 solutions in P2(Fp).

1.3 The (elliptic) modularity theorem

We are now (almost4) equipped to give a precise statement of the modularity theo-
rem.

Theorem 1. (Taylor-Wiles, Taylor-Breuil-Conrad-Diamond) Let E be an
elliptic curve over Q of conductor NE. Define a sequence (an)n∈Z≥1

according to the
recipe

1. a1 := 1;

2. for p a prime number set ap := p+ 1−#E(Fp);

3. for r ≥ 2 set apr := apapr−1 − pk−1apr−2

4. for gcd(m,n) = 1 set amn := aman.

Then
∑

n≥1 anq
n is the Fourier expansion of a newform of weight 2 and level Γ0(NE).

�

1.4 A Mission Statement and a Roadmap.

The relationship between elliptic curves and modular forms established by the stun-
ning theorem 1 is an instance of a phenomenon called modularity. The first goal of
this thesis is to explain what modular forms and elliptic curves are and where they
come from in a way that makes the modularity theorem (marginally!) less shocking.
The second goal is to instil in the reader some degree of optimism (however guarded)
that – in light of the theorem 1 – a kind of “generalised” modularity theorem (or
perhaps several theorems) might actually exist. We do this by introducing natu-
ral generalisations of modular forms and elliptic curves and arguing that the deep
connections that exist between elliptic curves and modular forms exist also between
their respective generalisations.

In §2 we introduce abelian varieties as higher dimensional analogues of elliptic
curves, first over general fields and then over the complex numbers. In §3 we begin
by establishing a connection between abelian varieties and symplectic groups and
then show how to interpret modular forms as line bundles on symmetric spaces for
these same groups. §4 is devoted to developing a group theoretical definition of
Hecke algebras and explaining the central role played by of Hecke eigenforms with
respect to any (real or putative) modularity phenomenon. In §5 we discuss some

3The issue with 2 and 3 is the same one already alluded to. In this case one considers a reduction
mod p of a general Weierstraß equation for E.

4The definition of the conductor NE of an elliptic curve E is rather non-elementary. We defer
the definition to §2.5
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of the inherent difficulties in formulating a coherent “generalised modularity con-
jecture” for Abelian varieties, and give an all too brief survey of known (or merely
observed and dearly hoped for) instances of modularity phenomena beyond theorem
1.

At the end of the text can be found a trio of appendices in which we cover some
necessary theory which did not find a comfortable home in the body of the text.

2 Abelian varieties

Throughout this section K will denote a field.

Definition 2.1. An algebraic group scheme over a commutative ring R is a
R-scheme G → Spec(R) with (i) a section e : Spec(R) → G, (ii) an R-morphism
µ : G ×R G → G, and (iii) an R-morphism −1 : G → G such that the following
diagrams

G×R G×R G G

G×R G G×R G G×R G Spec(R) G×R G

G G

µ× 1 1× µ

µ µ

1×−1 −1× 1

eµ µ

commute and such that for each R-algebra A the set G(A) of A-points of G
is a group with multiplication G(A) × G(A) → G(A), (g, h) 7→ gh and inversion
G(A)→ G(A), g 7→ g−1 and identity induced by µ,−1 and e respectively.

Examples 2.1.

Let R be a commutative ring.

1. The multiplicative group scheme is the Z-scheme Gm whose set of R points
is

Gm(R) = R×

ie. the multiplicative group of units in R. It is easy to see that R× is in
bijection with the set of ring homomorphisms Hom(Z[t, t−1], R) since (i) any
homomorphism must send t to a unit in R, and conversely (ii) every unit
u ∈ R determines a unique homomorphism ϕu : Z[t, t−1]→ R with ϕu(t) = u.
Thus Gm = Spec(Z[t, t−1]) ie. Gm is affine and we may identify the inversion
and multiplication morphisms of Gm with homomorphisms in the category
of rings. The inversion morphism −1 : Z[t, t−1] → Z[t, t−1] is the homomor-
phism interchanging t and t−1, and the multiplication morphism µ is the ring
homomorphism

µ : Z[t, t−1] → Z[t, t−1]⊗Z Z[t, t−1]

t 7→ t⊗ t.

To see why, note that (i) Spec(R ⊗Z S) = Spec(R) ×Z Spec(S) for all com-
mutative rings R and S and that (ii) each pair of homomorphisms ϕa, ϕb ∈
Hom(Z[t, t−1], R) induces a homomorphism ϕa⊗ϕb ∈ Hom(Z[t, t−1]⊗ZZ[t, t−1], R)
such that ϕab = (ϕa ⊗ ϕb) ◦ µ.
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2. The general linear group scheme (of degree n) is the Z-scheme GLn whose
set of R-points is the group of invertible n by n matrices over R:

GLn(R) = {X ∈ Matn(R) | detX ∈ R×}.

It turns out that GLn is affine: explicitly we have GLn = Spec
(
O(GLn)

)
where

O(GLn) := Z[{xij}1≤1,j≤n, y]/〈det
(
xij
)
y − 1〉

and where det is the familiar determinant mapping thought of as a polynomial
function of n2 variables. The multiplication morphism is

µ : O(GLn) → O(GLn)⊗Z O(GLn),

xij 7→
n∑
k=1

xik ⊗ xkj,

y 7→ y ⊗ y.

To see why, suppose that for each R-point S ∈ GLn(R) we let ϕS : O(GLn)→
R be the corresponding homomorphism in the category of rings. Then given
a pair of R points S, T there is an induced homomorphism

ϕS ⊗Z ϕT : O(GLn)⊗Z O(GLn)→ R

which is defined on “simple” tensors by

ϕS ⊗Z ϕT (f ⊗ g) = ϕS(f)ϕT (g).

It is now easy to check that ϕST = (ϕS ⊗Z ϕT ) ◦µ. With enough patience, the
inversion morphism can be written down as an explicit polynomial function.5

3. The additive group scheme Ga over Z represents the forgetful functor from
the category of rings to the category of abelian groups. It can be realised as a
subgroup scheme6 of GL2 by declaring its set of R points to be

Ga(R) =
{(1 r

0 1

)
| r ∈ R

}
.

Definition 2.2. An algebraic group (or group variety) is a group scheme G
over a field K such that G is also a smooth variety over K.

Remark: Each of the above group schemes over Z becomes an algebraic group over
K after base change to K. Each is also an example of a linear algebraic group
ie. a subgroup variety of GLn for some n. In fact it is a theorem that every affine
algebraic group is linear.7

Definition 2.3. An abelian variety is a connected and projective algebraic group.

5It is easy to see that inversion morphism really is polynomial: for instance, invoke Cramer’s
rule and the polynomiality of the determinant map.

6A subgroup scheme of a group scheme (G,µ, (·)−1) is a subscheme ι : X ↪→ G such that
(X, ι∗µ, ι∗(·)−1) is itself a group scheme.

7This applies to the additive group variety Ga×Z Spec(K) over K since it is a subvariety of the
affine variety GL2 ×Z Spec(K) and thus itself affine.
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Remark: Despite the fact that abelian varieties are groups (or at least are
group-like8), the adjective “abelian” has (a priori) nothing at all to do with abelian
groups. The adjective instead indicates a historical connection to the classical theory
of abelian integrals/functions. It would take a monumental effort of will to maintain
this semantic distinction in the face of the following theorem.

Theorem 2. The group law on an abelian variety is commutative. That is, if A is an
abelian variety over a field K then A(R) is an abelian group for every commutative
K-algebra R.

Proof. See [Milne, §2, corollary 2.4].

�

A morphism ϕ : A→ B of abelian varieties over K is a morphism of K-varieties
which induces a group homomorphism A(R)→ B(R) for all K-algebras R.

Definition 2.4. An isogeny is a morphism of abelian varieties with finite kernel.

Example 2.1.

Let A be an abelian variety over K. For all natural numbers N the multipli-
cation by N isogeny is the composition

A→ A×K A×K . . .×K A︸ ︷︷ ︸
N times

→ A

where the first arrow is the diagonal mapping x 7→ (x, . . . , x) and the second ar-
row consists of an N -fold iteration of the multiplication morphism µ : A×KA→ A.9

Proposition 2.1. If ϕ : A → B is an isogeny then there exists an isogeny ϕ∧ :
B → A.

Proof. See [Rosen, §2, page 81].

�

Corollary 2.1. The relation “there exists an isogeny from A to B” is an equivalence
relation on the set of abelian varieties over a field K.

The following theorem tells us that under mild assumptions on the field K one
can (almost!) understand the whole category of algebraic groups over K by under-
standing two a priori special species of algebraic groups over K.

Theorem 3. (Chevalley’s structure theorem) Let K be a perfect field10 and let G be
an algebraic group over K. Then there exists a canonical exact sequence of algebraic
groups

1→ H → G→ A→ 1

where H is a closed affine algebraic subgroup of G and where A is an abelian variety.

8Abelian varietie over K are precisely the (connected) group objects in the category of pro-
jective varieties over K.

9We can afford to be vague about the precise definition of the latter map since µ is associative.
10A field K is perfect if either (i) char(K) = 0 or else (ii) char(K) = p and x 7→ xp is an

automorphism of K.
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2.1 Elliptic curves

Let K be an algebraically closed field of characteristic different from 2 or 3. In the
introduction we defined an elliptic curve E over K as the solution set in P2(K) of a
non-singular Weierstraß equation, eg. a homogeneous cubic equation of the form

E : Y 2Z = X3 + AXZ2 +BZ3

with discriminant ∆(E) = −16(4A3 + 27B2) 6= 0. Our immediate aim is to redefine
elliptic curves in the following way:

Definition 2.5. An elliptic curve is an abelian variety of dimension one.

We begin with some necessary definitions.

Definition 2.6. Let C be a smooth algebraic curve over an algebraically closed field
K. The group Div(C) of divisors on C is the free abelian group on the K-points of
C. Thus an element D of Div(C) is a formal D =

∑
P∈C(K) aPP where each aP is an

integer and aP = 0 for all but finitely many P . The degree of D =
∑

P∈C(K) aPP

is deg(D) :=
∑

P∈C(K) aP . A divisor D is said to be effective if aP ≥ 0 for all

P ∈ C(K).

Let K(C) be the function field of C ie. the stalk of the structure sheaf OC at
the generic point. If P ∈ C(K) and x is a coordinate function in a neighbourhood
of P with x(P ) = 0 then every f ∈ K(C) is (locally) of the form f(x) = p(x)/q(x)
where p, q ∈ K[x] are polynomials of the same degree. Without loss of generality,
p and q are relatively prime in K[X], under which assumption the representation
f = p/q is (for all intents and purposes) unique with respect to the coordinate
function x.

Definition 2.7. Let P , x and f = p(x)/q(x) be as above.

1. One says that f has a zero of order n at P if q(x) = xnr(x) where r(x) 6= 0.

2. One says that f has a pole of order n at P if p(x) = xns(x) where s(x) 6= 0.

Using the same definitions, one may associate a divisor D(ω) to each differential
ω ∈ Ω1

C .11

Definition 2.8. A principal divisor on C is a divisor of the form

D(f) :=
∑

P∈C(K)

ordP (f)P

where f ∈ K(C) and where

ordP (f) :=


n, if f has a zero of order n at P ;

−n, if f has a pole of order n at P ;

0, otherwise.

The subgroup of Div(C) of principal divisors is denoted Div0(C).

11In the stalk of Ω1
C at P ∈ C(K) and x as above, ω has a unique representation ω = f(x)dx

in a neighbourhood of p and one defines ordP (ω) = ordP (f). This definition is independent of the
choice of coordinate function x.
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Remark: Since K is algebraically closed and every f ∈ K(C) is locally p/q for
coprime polynomials p, q of equal degree it follows that deg(D(f)) = 0.

Definition 2.9. The quotient Div(C)/Div0(C) of the divisor group of C by its sub-
group of principal divisors is called the Picard group Pic(C) of C. Pic0(C) denotes
the subgroup of the Pic(C) consisting of divisor classes of degree 0.

Remark: One can show that D(ω)−D(θ) is principal for all ω, θ ∈ Ω1
C and so

there is a unique class in Pic0(C) containing the divisors of all differential 1-forms on
C. We will denote this divisor class by KC and refer to it as the canonical divisor
of C.

Definition 2.10. The genus of an algebraic curve C is the dimension of the vector
space H1(C,Ω1

C).

For D =
∑

P∈C(K) aPP ∈ Div(C) we define a vector space L(D) over K as
follows:

L(D) := {f ∈ K(C) | D +D(f) is effective} ∪ {0}.

Thus a (non-zero) element of L(D) is a function f ∈ K(C) such that

• if aP < 0 then f has a zero of order ≥ aP at P ;

• if aP ≥ 0 then f has a pole of order ≤ aP at P .

It is easy to see that if D − D′ is principal then L(D) and L(D′) are isomorphic.
Indeed, if D−D′ = D(g) for some g ∈ K(C) then f 7→ gf is a K-linear isomorphism
L(D′)

∼−→ L(D). Additionally, since every non constant f ∈ K(C) has a pole it
follows that L(−D) = 0 whenever D is an effective divisor.

Theorem 4. (Riemann-Roch theorem) Let K be an algebraically closed field and let
C be a smooth algebraic curve of genus g over K . Let KC be the canonical divisor
of E. Then for all divisors D on C,

dimK L(D)− dimK L(KC −D) = deg(D)− g + 1.

Before we move on we pause to record the following fact.

Proposition 2.2. A smooth algebraic curve C of genus 1 possesses a differential
1-form without zeroes or poles. Consequently, the canonical divisor KC is trivial.

Proof. See [Husemöller, §2, page 68.]

�

Let E be a smooth algebraic curve of genus 1 over an algebraically closed field
K and fix a point O ∈ E(K). Since D(KE) = 0 in Pic0(E), the Riemann-Roch
theorem for divisors D on E simplifies to

dimK L(D)− dimK L(−D) = deg(D).

In the case that D is effective this simplifies yet further to dimK L(D) = deg(D).

Consider now the sequence of effective divisors {nO | n ∈ N}.



Robert Sayer 11

1. By construction, L(nO) is a subspace of L((n+ 1)O) for all n ∈ N.

2. Since dimK L(O) = 1 and we know constant functions K ⊆ K(E) certainly
belong to L(O) we conclude that L(O) = K. We take 1 ∈ K as our generator
for this space.

3. Since dimK L(2O) = 2 we may conclude that there exists a one dimensional
space of functions on E with a double pole at O and no other poles on E. Let
x be a generator for this space of functions.

4. Similarly, we conclude that there exists a function y on C with a triple pole
at O and no poles elsewhere on E.

Starting with the functions 1, x, y we may can construct seven elements of L(6O),
namely 1, x, y, x2, xy, x3 and y2. As the space L(6O) is only six dimensional we
conclude that there exists an equation of linear dependence over K between these
seven functions. We arrive at the punchline: said equation of linear dependence
is (once homogenised to a cubic polynomial with a third varible z) a Weierstraß
equation12 satisfied by the coordinate functions x and y, and the map

E(K)→ P2(K), P 7→ [x(P ) : y(p) : 1]

is an embedding of E into P2(K) as the zero locus of that equation. Thus every
datum (E,O) with E a smooth algebraic curve over K of genus 1 and O ∈ E(K) a
choice of point in E determines an elliptic curve over K.

Proposition 2.3. The function

E(K) → Pic0(E),

P 7→ P −O

is a bijection.

Proof. A general degree zero divisor on E is of the form

D =
n∑
i=1

Pi −Qi

where Pi 6= Qj for all i, j but where we allow for the possibility that Pi = Pj and/or
Qi = Qj without restriction. For n = 1, Riemann-Roch tells us that a function in
K(E) can never have exactly one pole (counted with multiplicity), so

dimK L(P1 −Q1 +O) = deg(P1 −Q1 +O) = 1

12That the discriminant of this cubic equation is non-zero follows from the smoothness of E.
Indeed, recall that when the characteristic of K is neither 2 nor 3 then any cubic equation in two
variables over K can be put in the form y2 = x3 + Ax + B. The algebraic plane curve described
by this equation is smooth so long as the partial derivatives (with respect to the coordinates x and
y) of this equation never simultaneously vanish on the curve. By direct computation the partial
derivative with respect to y vanishes if and only if y = 0 whereas the partial derivative with respect
to x vanishes if and only if x = ±

√
−A/3. By evaluating the defining equation of the curve at the

potentially bad points (x, y) = (±
√
−A/3, 0) we conclude that the curve is singular precisely when

4A3 + 27B2 = 0 ie. precisely when the discriminant −16(4A3 + 27B2) of the equation vanishes.
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Thus (up to scaling) there exists a unique f ∈ K(E) whose divisor is D(f) =
Q1−P1−O+R1 for a unique R1 ∈ E(K) which means that P1−Q1 is equivalent to
R1−O in the Picard group. When n = 2, an entirely similar argument implies that
there exists a function g ∈ K(E) (unique up to scaling) whose divisor is D(g) =
S + Q1 − P1 − P2 for a (unique) point S ∈ E(K) and we are back in the case
n = 1. By induction we find that E(K) surjects onto Pic0(E). A final application
of Riemann-Roch shows us that no function in K(E) can have a divisor of the form
P −Q for P,Q ∈ E(K), whence injectivity (and thus bijectivity) follows.

�

This bijection induces an abelian group structure on E(K) with identity element
O, eg. for P,Q ∈ E(K) we define P + Q to be the unique R ∈ E(K) such that
P +Q−2O = R−O in Pic0(E). One could be forgiven for doubting that this group
law is at all compatible with the geometry of E. Such scepticism turns out to be
spectacularly unfounded.

Proposition 2.4. P + Q + R = O in E(K) if and only if the points P,Q and R
are collinear in P2(K).

Proof. For simplicity’s sake we will assume that none of P,Q or R is equal to O.13

Suppose P + Q + R = O. From the definition of the group law on E(K) this
means that P + Q + R − 3O = D(f) for some f ∈ K(C). Such an f belongs to
L(3O) and since the coordinate functions x, y were chosen so that 1, x, y would be
a basis for L(3O) we are able to write f = a + bx + cy for some a, b, c ∈ K. But
since f(P ) = f(Q) = f(R) = 0 this means that all three points lie on the line
{[Z : X : Y ] | aZ + bX + cY = 0} in P2(K). Reversing this argument shows that
P +Q+R = O whenever P,Q and R are colinear in P2(K).

�

Corollary 2.2. For every P ∈ E(K), −P is the remaining point of intersection
between E(K) and the line in P2(K) through P and O.

Proof. Recall Bezout’s theorem: a pair of curves in P2(K) of respective degree n
and m intersect in precisely nm points (counted with muliplicity). Thus there is a
unique third point (counted with multiplicity) in the intersection between E(K) and
the line through P and O. If we call this point R then by the preceding proposition
we have P +R = P +R +O = O (recall that O is the identity element).

�

We thus have a purely geometric way to define the sum of any two points P,Q ∈
E(K): if R is the third intersection point of E(K) with the line through P and Q
then P + Q is the third point of intersection of E(K) with the line through R and
O. In light of this description it is (relatively) easy to see that if P = [p1 : p2 : p3]
and Q = [q1 : q2 : q3] then P +Q = [f1 : f2 : f3] where each fi is a rational function
of the pi and qj with coefficients in K. Similarly, the involution of E(K) taking each
point to its inverse with respect to the group law is also given by rational functions.
We have just proved

Theorem 5. An elliptic curve (E,O) is an algebraic group.

13In the case that one or more of P,Q,R is O the following proof must be adapted accordingly.
This is tedious rather than difficult and so we omit these cases.
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Since an elliptic curve is also a one dimensional projective variety we are now
entitled to adopt the following defintion:

Definition 2.11. An elliptic curve is an abelian variety of dimension one.

2.2 Abelian varieties over C
When K = C there is an obvious, näıve method – based on the rough intuition that
a compact complex manifold should be (more or less) the same thing as a complex
projective variety – for producing (potentially!) abelian varieties over C,

Definition 2.12. Let V be a g-dimensional complex vector space. A lattice in V is
a free Z-submodule Λ in V of rank 2g such that the canonical inclusion R⊗Z Λ ↪→ V
is an isomorphism of vector spaces over R.

Definition 2.13. A complex torus of dimension g is an orbit space of the form
V/Λ where V is a complex vector space and Λ is a lattice in V . A morphism between
complex tori V/Λ,W/Λ′ is a C-linear mapping T : V → W such that T (Λ) ⊆ Λ′. T
is an isomorphism if dimV = dimW and T (Λ) = Λ′.

Every complex torus X = V/Λ inherits a complex structure and an abelian group
law µ(z, w) = z + w mod Λ from V and is thus a compact commutative complex
Lie group. However, it is not the case that every complex torus is an abelian variety.
Before we can hope to use complex tori to study abelian varieties we must first solve
the following recognition problem: for which lattices Λ ⊆ V is V/Λ a projective
(and thus also an abelian) variety?

The essential insight is this: to say that X = V/Λ is projective is to say that
there exists an embedding η : X ↪→ Pn for some n. There exists a certain line
bundle14 O(1) on Pn that when pulled back along the embedding η induces what is
known as a very ample line bundle on X. This line bundle can be pulled futher
back along the quotient mapping V → V/Λ to product a rather special line bundle
on V satisfying a rich set of symmetries with respect to the action of Λ. We shall
see that the existence (or non-existence) of an embedding η is determined by the
existence (or non-existence) of a certain piece of linear algebraic data attached to
the pair (V,Λ): a polarization.

2.3 Line bundles on orbit spaces

Before we specialise to the case of complex tori, we will cover some of the general
theory of line bundles on orbit spaces .

Let V be a complex manifold and let G be a group acting on V by biholomor-
phisms V

∼−→ V in such a way that the quotient X := Γ\V is once again a complex
manifold.15 Suppose we are given a holomorphic (resp. meromorphic) line bundle

14See appendix B for a general discussion of line bundles on projective spaces.
15For expositional reasons we will assume that the action of G is free and properly discontinuous.

This assumption is not strictly necessary: group actions on V with discrete orbits and finite
stabilisers can be accommodated at the expositional cost of introducing orbifolds. This cost being
altogether too steep for the present document (to say nothing of its author!), we beg the reader’s
indulgence in allowing us to assert rather more than we are prepared to prove.
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p : L → X. Our immediate aim is to show that holomorphic (resp. meromorphic)
sections of p : L → X may be identified with holomorphic (resp. meromorphic)
functions on V satisfying certain explicit functional equations which are themselves
jointly determined by the transition functions of the bundle and the action of G.

We briefly recall the definition of the canonical quotient atlas on X = G\V . Let
π : V → X be the (holomorphic) quotient map. For x ∈ V , let [x] = π(x) , let Gx
denote the G-orbit of x and let Sx be the set of all (U,ϕU) in the holomorphic atlas
of V such that U is an open connected neighbourhood of x on which the restriction
π|U : U → π(U) is a biholomorphism. Then an explicit basis of open neighbourhoods
of [x] in X is

S[x] = {π(U) | U ∈ Sy for some y ∈ Gx.}

For each U ∈ S[x], π
−1(U) is by construction a disjoint union

⊔
g∈G Ug with the

following properties:

1. Ugh = gUh for all g, h ∈ G. In other words, π−1U is the orbit of a single
connected component U1 (chosen arbitrarily) where 1 ∈ G is the identity
element.

2. For all g ∈ G, π restricts to a biholomorphism π|Ug : Ug
∼−→ U .

The neighbourhood atlas of [x] is the set of all pairs (U, f) where U ∈ S[x] and
where f is a composition

U
π|−1
Ug−−→ Ug

F−→ Cn

with F a biholomorphic map between Ug and an open subset of Cn.

The quotient map π : V → X induces a holomorphic line bundle π∗p : LV → V
whose fibre above z ∈ V is canonically identified with fibre of p : L → X above
π(z) ∈ X. This is the (categorical) fibre product of p and π, ie. the bundle for
which the pullback square

LV L

V X

π∗p p

π

is universal.

For every open set U ∈ X there is an induced homomorphism16

π∗ : L (U) → LV (π−1U),

s 7→ s ◦ π

where L (U) (resp. LV (π−1U)) is the vector space of sections of p : L → X over
U (resp. sections of π∗p : LV → V over π−1U).

Let us now attempt to characterise the image of such a homomorphism. Let
U ⊂ X be such that

16This can be promoted to a homomorphism ofOX modules whereOX is the sheaf of holomorphic
functions on X (mapping to OV via pullback along π).
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1. π−1U is a disjoint union
⊔
g∈G Ug as previously described;

2. The bundle p : L → X is trivialisable over U .

Since π−1U is a disjoint union, a holomorphic section of LV over π−1U is the
same thing as a family of holomorphic sections

{sg ∈ LV (Ug)}g∈G.

For each g let ϕg : p−1Ug
∼−→ Ug × C be a trivialisation and identify sg with a

holomorphic function fg : Ug → C like so:

ϕg ◦ sg(z) =
(
z, fg(z)

)
.

Notice that we may interpret {ϕg}g∈G as a family of trivialisations17 of p : L → X
over U . Indeed, in order to write down the the transition maps between the vari-
ous trivialisations quite explicitly one need only observe that there exists a unique
nowhere vanishing holomorphic function jg :

⊔
h∈G Uh → C× such that the function

Tg :
⊔
h∈G

Uh × C →
⊔
gh∈G

Ugh × C,

(z, w) 7→ (gz, jg(z)w)

makes the following diagram commute:

Uh × C Ugh × C

p−1(U)

Tg

ϕh ϕgh

To say that s is in the image of π∗ : L (U)→ LV (π−1U) is to say that there exists
a section s ∈ L (U) (which we identify with the section s1 ∈ LV (U1)) such that the
family of functions {fg}g is computing the section s with respect to the family {ϕg}g
of trivialisations of p−1U . More concretely, if we define a function f : π−1U → C by
f |Ug = fg then in terms of the commuting triangles of trivialisations we have

(gz, f(gz)) = sg(gz) = Tg(s1(z)) = Tg(z, f(z)) = (gz, jg(z)f(z).)

Thus a holomorphic section of p : L → X is the same thing as a holomorphic
function f : π−1U → C with functional equations

f(gz) = jg(z)f(z), for all z ∈ π−1U and all g ∈ G.

Let us study the functions jg more closely. The first thing to notice is that this
family of functions satisfies certain identities: the transition functions {Tg}g were
defined in such a way that every diagram of the form

17If the reader is at all troubled by the author’s (ab)use of the term “trivialisation” to refer to
a map π−1U → Ug × C with Ug (merely!) canonically isomorphic – but not strictly equal – to
U , they may prefer to think of {Ug}g∈G as a family of “charts” for U in which case the ϕg are
trivialisations in local coordinates. If they are now doubly-troubled by the author’s (ab)use of the
term “chart” in the preceding sentence then they are advised to lighten up.
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Uh × C Ug2h × C Ug1g2h × C

p−1U

Tg2

Tg1g2

Tg1

ϕh ϕg2h ϕg1g2h

would commute. Thus

(g1g2x, jg1g2(x)w) = Tg1g2(x,w) = Tg1Tg2(x,w) = (g1g2x, jg1(g2x)jg2(x)w).

To summarise: these functions are related by identities jg1g2(x) = jg1(g2x)jg2(x) for
all g1, g2 ∈ G and for all x ∈ π∗p−1U . These identities are collectively known as a
cocycle condition. Here’s why:

Lemma 2.1. The assignment g 7→ jg is a 1-cocycle in group cohomology for G
acting on the multiplicative group of nowhere vanishing holomorphic functions on
p−1U .18

Proof. This is immediate from the basic definitions of group cohomology. These can
be found in appendix C.

�

The second thing to notice about the functions jg is that they give us a complete
description of the restricted bundle p : p−1U → U in terms of a discrete set of data .
In order to make this statement precise we describe a general method for generating
line bundles on from 1-cocyles.

Let M be a complex manifold and let O(M)× denote the multiplicative group of
nowhere vanishing holomorphic functions on M . Let Γ be a group acting freely and
properly discontinuously by biholomorphisms on M in such a way that the quotient
Γ\M is (canonically) a complex manifold.19 Let ω ∈ H1(Γ,O(M)×) be a 1-cocyle
and define an action of Γ on M × C by the formula

γ(m, z) := (γm, ωγ(m)z)

where ωγ := ω(γ).

Proposition 2.5.

πω : Γ\
(
M × C

)
→ Γ\M,

[m, z] 7→ [m]

is a holomorphic line bundle on Γ\M .

Proof. Given our assumptions on the action of Γ on M the map

M × C→ Γ\
(
M × C), (m, z) 7→ [m, z]

is an isomorphism in a neighbourhood of any point. The corresponding local inverses
give local trivialisations of πω and are manifestly linear on its fibres.

18The G-module structure on the latter group is given by g(f) := f ◦ g−1.
19As before, one may significantly weaken the assumptions on the action if one is prepared to

work with orbifolds.
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�

We shall refer to such a bundle as the automorphic line bundle on Γ\M with
factor of automorphy ω. Returning to the case of V and X = G\V , it is a simple
matter of unwinding the definitions to verify that the restriction of p : L → X to
p−1U is isomorphic to the automorphic line bundle on U with factor of automorphy
j. Indeed, it follows from our earlier discussions that every line bundle on X is
locally isomorphic to an automorphic line bundle.

Theorem 6. The set of isomorphism classes of automorphic line bundles on Γ\M
is in bijection with the first group cohomology H1(Γ,O(M)×).

Proof. We have already shown that every 1-cocycle determines a line bundle, and so
we are tasked with showing that a given pair of automorphic line bundles on Γ\M are
isomorphic precisely when the ratio of their factors of automorphy is a 1-coboundary.

From the definition of group cohomology a 1-coboundary is of the form d0fγ(x) =
f(γx)
f(x)

for some f ∈ O(M)×.

Let ω : Γ → O(M)∗, γ 7→ jγ be a 1-cocycle, let f ∈ O(X)× and define a

new cocycle ωf by the formula ωfγ (x) = ωγ(x)f(γx)
f(x)

. Let Lω and Lωf denote the

corresponding line bundles on Γ\M and define a function ϕ : Lω → Lωf by the
formula

ϕ([x, z]) = [x, f(x)z].

This is well defined since

ϕ([γx, ωγ(x)z]) = ϕ([γx, ωfγ (x)
f(x)

f(γx)
z]) = [γx, ωfγ (x)f(x)z] = [x, f(x)z] = ϕ([x, z]).

Then ϕ is bijective, holomorphic and linear on the fibres of Lω with holomorphic
inverse [x, z] 7→ [x, 1

f(x)
z], ie. it is an isomorphism of line bundles on Γ\M .

Conversely, suppose ω, τ are 1-cocycles and that we are given an isomorphism
Lω → Lτ of the form [x, z] 7→ [x, φ(x)z]. Then φ must be nonvanishing (since
otherwise it could not restrict to a linear isomorphism on every fibre of Lω) and

must satisfy φ(γx)
φ(x)

= τγ(x)

ωγ(x)
for all γ ∈ Γ (since otherwise it could not be well defined).

�

Remark: The bijection of the theorem can be promoted to a group isomorphism
since (i) a fibrewise tensor product Lω1 ⊗ Lω2 → Γ\M of automorphic line bun-
dles is once again automorphic with factor of automorphy ω1ω2 and (ii) constant
1-cocycles give rise to trivial line bundles.

2.4 Polarizations of complex tori

In this section Λ is a fixed lattice in Cg and X = Cg/Λ is the corresponding complex
torus.
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Definition 2.14. A Riemann form for the pair (Cg,Λ) is a Hermitian form

H : Cg × Cg → C,
(z, w) 7→ H(z, w)

such that H(λ1, λ2) ∈ Z for all λ1, λ2 ∈ Λ.

A polarization of the pair (Cg,Λ) is a positive definite Riemann form ie. if a
form satisfying H(z, z) > 0 for all z 6= 0 ∈ Cg.

Theorem 7. Every line bundle L on X is automorphic. Up to multiplication by a
1-coboundary, the factor of automorphy of L has a factor of automorphy λ 7→ jλ for
L is of the form

jλ(z) = e2πi(L(z,λ)+J(λ))

where L : Cg × Λ→ C and J : Λ→ C are such that

(a) z → L(z, λ) is C-linear for each λ ∈ Λ;

(b) λ→ L(z, λ) is Z-linear for all z ∈ Cg;

(c) L(λ1, λ2) ≡ L(λ2, λ1) mod Z for all λ1, λ2 ∈ Λ;

(d) J(λ1 + λ2)− J(λ1)− J(λ2) ≡ L(λ1, λ2) mod Z for all λ1, λ2 ∈ Λ.

Proof. See [ Rosen, page 87, theorem B].

�

Condition (b) allows us to extend L to an R-bilinear form on Cg. If λ1, . . . , λ2g

is a free generating set for Λ then it is also a basis for Cg as a 2g-dimensional real
vector space, in which case every v ∈ Cg can be written uniquely in the form

v = a1λ1 + . . .+ a2gλ2g, ai ∈ R

and we define

L(z, v) :=

2g∑
i=1

aiL(z, λi).

Define a function E : Cg ×Cg → C by the formula E(z, w) := L(z, w)−L(w, z).

Lemma 2.2. 1. E is a skew-symmetric R-bilinear form on Cg × Cg.

2. E restricts to a Z-bilinear form E : Λ× Λ→ Z.

3. E : Cg × Cg takes values in R.

4. E(iz, iw) = E(z, w) for all z, w ∈ Cg.

Proof. (1) Skew symmetry is obvious and we have just now shown that L is R-
bilinear.
(2) follows immediately from condition (b) on L.
(3) follows from (1) and (2) since Λ contains a R-basis for Cg.
As for (4), since L is C-linear in the first variable we have

E(iz, iw) = i
[
L(z, iw)− L(w, iz)

]



Robert Sayer 19

and
E(z, w) = −i2

[
L(z, w)− L(w, z)

]
= i
[
L(iw, z)− L(iz, w)

]
.

Thus

E(iz, iw)−E(z, w) = i
[
L(z, iw)−L(w, iz)+L(iz, w)−L(iw, z)

]
= i
[
E(iz, w)−E(iw, z)

]
.

But according to (3) both E(iz, iw) − E(z, w) and E(iz, w) − E(iw, z) are real
numbers, so E(iz, iw)− E(w, z) ∈ R ∩ iR = {0}.

�

Using these facts it is easy to see that the function H : Cg×Cg → Cg defined by

H(z, w) = E(iz, w) + iE(z, w)

is a Hermitian form on Cg × Cg taking integer values on Λ× Λ ie. it is a Riemann
form for the pair (Cg,Λ).

Definition 2.15. Let L be a line bundle on Cg/Λ and let L,E and H be as above.
We say that H is the Riemann form associated to L .

We say that L is a polarizing line bundle on the complex torus Cg/Λ if the
Riemann form associated to L is a polarization of the pair (Cg,Λ).

It is a lemma of Frobenius (see [Igusa, §4, page 72]) that if L is a polarization of
Cg/Λ then Λ admits a Z-basis λ1, . . . , λ2g with respect to which the corresponding
skew-symmetric R-bilinear form E : Cg × Cg → R is given by a matrix of the form

e1

e2

. . .

eg
−e1

−e2

. . .

−eg


where each ei is a strictly positive integer and where e1 | e2 | . . . | eg. We shall
call such a basis a symplectic Z-basis with respect to the polarization. Frobenius’
lemma goes on to say that the sequence of integers (e1, . . . , eg) does not depend on
a choice of symplectic basis, ie. these integers are canonical [Igusa, ibid.].

Definition 2.16. The type of a polarization H of Cg/Λ is the sequence of integers
(e1, e2, . . . , eg) associated to any symplectic basis with respect to L . A principal
polarization is a polarization of type (1, 1, . . . , 1), ie. a polarization such that the
skew symmetric form E is given by the matrix

J =

(
0 I
−I 0

)
.

Definition 2.17. Let K be a field and let V be either (i) an algebraic variety
over K or else (ii) a complex manifold if K = C. A very ample line bundle
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on V is a line bundle p : L → V for which there exists a set of global sections
s0, s1, . . . , sn : V → L such that the function

V → Pn
K
,

x 7→ [s0(x) : s1(x) : . . . : sn(x)]

is an embedding. An ample line bundle on V is a line bundle L for which some
positive tensor power L N⊗ is very ample.

Theorem 8. (Lefschetz Embedding Theorem). Let L be a line bundle on a complex
torus X = Cg/Λ and let H : Cg ×Cg → C be the associated Riemann form. If H is
a polarization of the pair (Cg,Λ) then L 3⊗ is a very ample line bundle on X.

Thus a polarizable complex torus X is an abelian variety. Conversely, it can be
shown that (i) for any projective embedding ϑ : Cg → Pn of a complex torus the
Riemann form associated to the pullback along ϑ of the hyperplane line bundle O(1)
on Pn is a polarization of (Cg,Λ), and (ii) every complex abelian variety arises from
a polarized complex torus via an embedding of this kind. Henceforth we make no
distinction between abelian varieties over C and polarized complex tori.

Remark: It turns out that every 1-dimensional complex torus is an abelian
variety (ie. an elliptic curve). Let ω1, ω2 6= 0 ∈ C be such that ω2/ω1 /∈ R and
consider the complex torus C/Λ where Λ := ω1Z + ω2Z. Define a function E :
C× C→ R by

E(z, u) =
z ∧R u
ω1 ∧R ω2

.

Explicitly, if we write z = z1ω1 +z2ω2, u = u1ω1 +u2ω2 for zi, ui ∈ R then it is trivial
to derive the formula

E(z, w) = det

(
z1 u1

z2 u2

)
and so E is a skew-symmetric R-bilinear form taking integral values on Λ×Λ. Thus
E is the imaginary part of a positive definite Riemann form H(z, u) = E(iz, u) +
i(E, z, u) on C, ie. H is a polarization. It can be shown that any positive definite
Riemann form on C is a multiple of this and so a 1-dimensional complex torus is
canonically polarized. This polarization is principal since the imaginary part can be
written

E(z, u) =
(
z1 z2

)( 0 1
−1 0

)(
u1

u2

)
.

2.5 Tate modules and `-adic Galois representations

Let A be an abelian variety over a field K and let K be a fixed algebraic closure.
For each natural number N let [N ] : A(K)→ A(K) denote the multiplication by N
isogeny and let A[N ] be its kernel. In the case that K is a subfield of C, we have
A(K) = Cg/Λ for some lattice Λ and so A[N ] =

(
1
N

Λ
)
/Λ. The mental picture this

sketches for us in the complex case remains a useful schematic picture for abelian
varieties over general fields: if char(K) = 0 or char(K) = p with p - N then A[N ] is
abstractly isomorphic to (Z/NZ)2g where g is the dimension of A×K Spec(K) over
K [Stevens, §2, examples (2.10)].
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Let ` 6= char(K) be prime. For each n ≥ 1 the multiplication by ` morphism

induces a surjective homomorphism A[`n+1]
`−→ A[`n] and so we have a projective

system indexed by N ending with

. . .
`−→ A[`3]

`−→ A[`2]
`−→ A[`]

`−→ O.

Definition 2.18. The `-adic Tate module of A is the projective limit

T`(A) := lim←−
n

A[`n].

Upon fixing compatible isomorphisms A[`n]
∼−→ Z/`nZ for all n we obtain an

isomorphism T`(A)
∼−→
(
Z`
)2g

.

There is a natural action of the absolute Galois group GK on A(K). Recall
that a K-point of A is really a morphism f : Spec(K) → A. By functoriality, the
action of GK on K by K-algebra automorphisms induces a action on Spec(K) by
isomorphisms of K-schemes, whence the canonical action

GK × A(K) → A(K),

(σ, f) 7→ f ◦ σ−1.

This action descends to an automorphism of A[`n] for all n ≥ 1: the isogeny
[`n] is defined over K and each σ ∈ GK fixes A(K)-pointwise.20 Each of these
actions is continuous for the discrete topology on A[`n] and commutes with the
maps [`] : A[`n] → A[`n−1] for all n ≥ 1. By the universal property of projective
limits we get a well defined continuous action of GK on T`(A) for all l 6= char(K)
and by picking bases for each T`(A) as a Z`-module we obtain a system of `-adic
Galois representations

ρA,` : GK → GL2g(Z`), ` 6= char(K).

By tensoring each T`(A) with Q (note: Q`
∼= Q ⊗Z Z`) we obtain corresponding

representations of GK on GL2g(Q`).

Reduction of abelian varieties.

For any abelian variety A over a number field K there exists a smooth group scheme
Nér(A) over OK called the Néron minimal model or simply the Néron model21

of A which enjoys the following two properties:

1. The base change Nér(A)×OK Spec(K) of A to K is canonically isomorphic to
A.

20To say that a point x ∈ A(K) belongs to A[`n] is to say that for every choice of local coordinates
x = (x1, . . . , xg) the xi satisfy some set of explicit rational functions with coefficients in K. In
these same local coordinates, σ ∈ GK acts as (x1, . . . , xg) 7→ (σx1, . . . , σxg) and it follows that GK
acts by permutations on the set of solutions to those rational functions.

21We will omit a full definition, but suffice to say that the Néron model satisfies a universal
mapping property in the category of group schemes over OK and is thus unique up to unique
isomorphism by the standard argument. See [Artin] for details.
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2. For each prime p of OK the base change Nér(A) ×OK Spec(kP) of A to the
residue field kp := OK/pOK is a commutative algebraic group over kp. We
emphasise that a commutative algebraic group need not be an abelian variety:
the base change of a Nér(A) to kp may well be neither connected nor projective.

Definition 2.19. The reduction mod p of an abelian variety A over K is

Ap := Nér(A)×OK Spec(kp).

By Chevalley’s theorem 3, there exists a canonical short exact sequence

1→ NA → (Ap)
0 → Aab → 1

where (i) (Ap)
0 is the connected component of the identity in Ap, (ii) Aab an abelian

variety over kp and (iii) NA is an affine algebraic normal subgroup of (Ap)
0 over kp.

Definition 2.20. With the above notation, A is said to have good reduction at
p if NA = 1, ie. if the connected component of Ap is an abelian variety over kp.
Otherwise, A is said to have bad reduction at p.

Example 2.2.

In the case of an elliptic curve E over Q, Chevalley’s theorem implies that

1 = dimFpEp = dimFp(Ep)
0 = dimFpNE + dimFpabE.

Since there are only two22 1-dimensional affine algebraic groups over Fp, it follows
that if E has bad reduction at p then either

(a) Ep ∼= Gm and one says that E has multiplicative bad reduction at p;

(b) Ep ∼= Ga and one says that E has additive bad reduction at p.

Remark: It is known that an abelian variety over Q has good reduction outside
of a finite set of primes. Given the above classification of bad reduction, this allows
us to define a useful invariant of an elliptic curve know as its conductor.

Definition 2.21. The conductor of an elliptic curve E over Q is the positive
integer

NE :=
∏
p

pR(p)

where p runs over the primes of Q and the integers R(p) are defined by

R(p) =


0, if E has good reduction at p;

1, if E has multiplicative bad reduction at p;

2, if E has additive bad reduction at p.

Remark: There is an obvious alternative method for deriving an algebraic curve
over Fp from an elliptic curve over Q: choose a Weierstraß equation for E over Z
and consider the solution set in P2(Fp) of the reduction mod p of that equation.
It turns out that this simple minded construction agrees with the preceding one: p
is a prime of bad reduction for E if and only if the discriminant of any Weierstraß
equation for E vanishes mod p, and for all primes of good reduction the reduced
equation is a Weierstraß equation for the reduction Ep.

22This statement is not technically true since it is possible that Ep is isomorphic to Gm over
an extension of Fp but not over Fp itself. The statement becomes true after base change to an
algebraic closure Fp, and in any case this subtlety will not be of any significance for us.
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`-adic cohomology and the L-function of an abelian variety.

Let X be an smooth projective variety over Q. For each prime ` and each j ≥ 0 the
natural action of GQ on X(Q) induces a Galois representation

ρA,`,j : GQ → GL
(
Hj

ét
(X,Q`)

))
.

It is a theorem in Grothendieck’s Étale / `-adic cohomology that the characteristic
polynomial

det(1− ρX,`,j(Frobp)T | Hj

ét
(X,Q`)

Ip
)
∈ Q`[T ]

of a Frobenius element at p acting on the maximal unramified-at-p subrepresenta-
tion of Hj

ét
(X,Q`) is independent of ` so long as ` 6= p and belongs in each case to

Q[T ]. When X = A is an abelian variety it is further known [Serre-Tate] that ρA,`,j
is unramified at all primes of good reduction for A.

Definition 2.22. Let X be a projective algebraic variety of dimension g over Q
and let 0 ≤ j ≤ 2g. The Hasse-Weil L-functions of X are the functions
{L
(
Hj

(X), s
)
| 0 ≤ j ≤ 2g} of a complex variable s defined (for Re(s) sufficiently

large) by the infinite product

L
(
Hj(X), s

)
=
∏
p

Lp
(
Hj(X), p−s

)
where

Lp
(
Hj(X), T ) := det

(
1− TρX,`,j(Frobp) | Hj

ét
(X,Q`)

Ip
)−1

for any prime ` 6= p.

Conjecture 2.1. (Hasse-Weil Conjecture) If X is smooth projective variety
over a number field then for every j with 0 ≤ j ≤ 2 dimX there exists a mero-
morphic function L∞

(
Hj(X), s

)
and a positive integer N such that the completed

L-function
Λ
(
Hj(X), s

)
:= N s/2L∞

(
Hj(X), s

)
L
(
Hj(X), s

)
has a meromorphic continuation to C which is analytic on C\{1+ j/2} and satisfies
a functional equation

Λ
(
Hj(X), s

)
= ±Λ

(
Hj(X), 1 + j − s

)
.

The following theorem is an analogue of Lefschetz’s fixed point formula23 in the
context of `-adic cohomology.

Theorem 9. ( `-adic Lefschetz theorem.) Let X be a smooth projective variety
over Q of dimension g and let p be a prime. Then for all primes ` 6= p and all
natural numbers n ≥ 1 we have the following identity:

#X(Fpn) = #{x ∈ X(Q) | Frobnp (x) = x} =

2g∑
j=0

(−1)jTr
(
Frobnp | H

j

ét
(X,Q`)

Ip
)
.

23The original Lefschetz formula (1926) computes the number of fixed points of a continuous
endomorphism f of a compact topological space X in terms of the traces of the induced linear

endomorphisms of rational homology spaces H
sing
∗ (X,Z)⊗Q.
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The `-adic cohomology of an abelian variety is much simpler than that of a
general smooth projective variety:

Theorem 10. Let A be an abelian variety of dimension g over Q. For every prime
` we have isomorphisms of Q`[GQ]-modules

(a)
Hj

ét
(A,Q`) ∼= H1

ét(A,Q`)
∧
j , ∀0 ≤ j ≤ 2g;

(b)
H1

ét(A,Q`) ∼= HomQ`
(
T`(A)⊗Q,Q`

)
Proof. See [Milne, §15, theorem 15.1].

�

It follows that all the information that can in principle be extracted from Galois
representations on the `-adic cohomologies of an abelian variety is contained in the
representations on its first cohomology or, equivalently, on its Tate modules. We
are thus motivated to define the L-function L(A, s) of A in the following way:

Definition 2.23. The L-function of an abelian variety A over Q is the function
of a complex variable s defined (in a maximal right half plane Re(s) > x0) by the
infinite product

L(A, s) =
∏
p

Lp(A, p
−s)

where
Lp(A, T ) = det

(
1− TFrobp|V Ip

`

)−1

and where V` can be taken to be either H1

ét(A,Q`) or T`(A)⊗Q (with their natural

Galois module structures) for any prime ` 6= p.

The following special case of the Hasse-Weil conjecture is known to be true in
light of the (elliptic) modularity theorem of Taylor-Wiles and Taylor-Conrad-Breuil-
Diamond:

Theorem 11. Let E be an elliptic curve over Q with conductor N . Then

Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s)

has an analytic continuation to an entire function of C and satisfies the functional
equation Λ(E, s) = ±Λ(E, 2− s).
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3 Modular Forms

3.1 Symplectic Spaces and Symplectic Groups

Definition 3.1. A symplectic space over a field K is a pair (V, h) where V is finite
dimensional vector space V over K and where h : V × V → K is a non-degenerate,
K-bilinear, skew-symmetric form on V . The symplectic group Sp(V, h) is the
group of K-linear automorphisms of V which preserve the form h, ie.

Sp(V, h) = {g ∈ GL(V ) | h(gu, gv) = h(u, v) for all u, v ∈ V.}

Remark: The dimension of a symplectic space is necessarily even.

If char(K) = 0 then it is always possible to find a basis B for V such that

[h(u, v)]B = [u]tB

(
0 In
−In 0

)
[v]B

where dim(V ) = 2n and where In is the n× n identity matrix [Igusa, §4, lemma 5,
pages 71-72]. Such a basis is called a symplectic basis for (V, h).

As in §2, a free abelian group Λ in a finite dimensional vector space V over R or
C is called a lattice if some (and hence every) Z-basis for Λ is also an R-basis for
V ie. if the natural R-linear map R⊗ Λ→ V is an isomorphism.

Proposition 3.1. Let (V, h) be a symplectic space over R with dim(V ) = 2n. Sup-
pose that there exists a lattice Λ in V on which h restricts to an integral form
h : Λ × Λ → Z. Then there exists a basis B for Λ with respect to which h is given
by a matrix (

0 E
−E 0

)
where E = diag(e1, . . . , en) is a diagonal matrix with the property that

1. each ei is a strictly positive integer;

2. e1 | e2 | . . . | eg.

Moreover, the diagonal matrix E is uniquely determined by the pair (Λ, h): if B′ is
any other such basis for Λ with corresponding diagonal matrix E ′ = diag(e′1, . . . , e

′
n)

then e′i = ei for all i.

Proof. See [Igusa, Ibid.].

�

In the situation of the proposition, we will say that Λ is an integral structure on
(V, h).

The upshot is that the category of all symplectic spaces over R with integral
structure breaks up discretely into a countable set of isomorphisms classes. This is
analogous to the way in which the category of all finite dimensional vector spaces
over a field K breaks up into isomorphism classes parametrised by a single discrete
invariant dimK . This latter phenomenon motivates the definition and study of the
general linear groups GLn(K), and by pushing this analogy to its logical conclusion
we come to the following definition.
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Definition 3.2. Let g > 0 be an integer. Let E and JE be as above and let hE denote
the corresponding symplectic form on Z2g. The general symplectic group of type
E is the group scheme GSp(E , ·) over Z whose set of R-points for any commutative
ring R is the matrix group

GSp(E , R) = {M ∈ GL2g(R) | M tJEM = λ(M)J + E for some λ(M) ∈ R×}

of symplectic similitudes of (R2g, R⊗Z hE ).

The function λ : GSp(E , R) → R×,M 7→ λ(M) is necessarily rather special: if
M,N ∈ GSp(E , R) then

(MN)tJE (MN) = N t(M tJEM)N = λ(M)N tJEN = λ(M)λ(N)JE .

ie. λ is a group homomorphism. Even better, λ is a morphism of schemes: for
each field R and each matrix M ∈ GSp(E , R) the map M 7→ λ(M) is an explicit
polynomial function (with integer coefficients, no less) in the entries of M .24 We
have just proved

Proposition 3.2. λ is a homomorphism GSp(E , ·) → GL1 of group schemes over
Z.

�

Definition 3.3. The symplectic group of type E is the group scheme Sp(E , ·)
over Z which sits in the short exact sequence

1→ Sp(E , ·)→ GSp(E , ·) λ−→ GL1 → 1.

Thus for any commutative ring R we have

Sp(E , R) = {M ∈ GL2g(k) | M tJM = J}.

Remark: When E = diag(1, 1, . . . , 1) = Ig we identify GSp(Ig, K) with the
group of all symplectic similitudes of K2g and Sp(Ig, K) with Sp(K2g, H) where
H(u, v) = utJIv is the standard symplectic form on K2g. We dignify these special
cases with a definition:

Definition 3.4. The general symplectic group of degree 2g is

GSp2g := GSp(Ig, ·).

The symplectic group of degree 2g is

Sp2g := Sp(Ig, ·).
24In particular, λ is (i) regular as a function on the variety GSp(E , ·) ×Z Spec(K) for any field

K, (ii) smooth as a function on the real manifold GSp(E ,R), and (iii) holomorphic as a function
on the complex manifold GSp(E ,C).
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It is clear from the definition that det(M) = ±1 for all M ∈ Sp2g(R). In fact, it
turns out that Sp2g(R) is always a subgroup of SL2g(R).25

Proposition 3.3. Let (V, h) be a symplectic space over R of dimension 2g with
an integral structure Λ and type E . There exists a complex structure J on V with
respect to which

H : V × V → C, H(u, v) := h(iu, v) + ih(u, v)

is a polarization of the complex(ified) torus V/Λ.

Proof. Recall that a complex structure on V is (by definition) a R-linear automor-
phism J : V

∼−→ V such that J2 = −I, in which case iu := Ju for all u ∈ V . Let B
be a symplectic Z-basis for Λ, so that

h(u, v) := [u]tB

(
0 E
−E 0

)
[v]B.

One easily checks that the matrix

JI :=

(
0 I
−I 0

)
belongs to Sp(E ,Z) for all E and that the automorphism J : V → V whose matrix
with respect to the basis B is JI satisfies h(Ju, Jv) = h(u, v) and that H(u, v) :=
h(Ju, v)+ih(u, v) is a positive definite hermitian form on complexified vectors space
(V, J) and that H integer valued on Λ× Λ.

�

Recall (from the discussion following lemma 2.2 in §2) that a polarization H :
V × V → C of a complex abelian variety V/Λ is always of the form

H(u, v) = E(iu, v) + iE(u, v)

where E : V × V → R is a non-degenerate, skew-symmetric and R-bilinear form
on V which (i) restricts to an alternating integral form E : Λ × Λ → Z and (ii) is
compatible with the complex structure on V in the sense that E(iu, iv) = E(u, v).

Definition 3.5. A polarization H of a complex abelian variety V/Λ is said to be of
type E = diag(e1, . . . , eg) if E = im(H) is represented by the matrix

JE =

(
0 E
−E 0

)
with respect to some (and thus every) symplectic Z-basis for Λ.

25One way to see this is to appeal to the Pfaffian. Without going into details, if K is a field
with algebraic closure K then Pfaffian is a function Pf : M2n(K) → K with the property that
Pf(AtBA) = (detA)Pf(B) and Pf(A)2 = det(A) whenever A is a skew symmetric matrix. For
M ∈ Sp2g(K), M tJM = J is skew-symmetric and it follows that

Pf(J) = Pf(M tJM) = det(M)Pf(J) 6= 0,

whence detM = 1.



Robert Sayer 28

3.2 Siegel Spaces

Definition 3.6. Let g ≥ 1 be an integer. The Siegel space of degree g is the set

Hg = {Z = X + iY ∈ Mg(C) | Zt = Z, utY u > 0 for all u 6= 0 ∈ Rg}

of complex, g by g symmetric matrices with positive definite imaginary part.

Remark: Hg is endowed with a complex manifold structure by declaring that
the set inclusion Hg ↪→ Mg(C) ∼= Cg2

is a holomorphic embedding.

Theorem 12. (Iwasawa decomposition)26

Sp2g(R) = NAK

where

1. N = N2g is the set of all matrices of the form(
U M
0 (U−1)t

)
such that (i) L ∈ GLg(R) and (U − I) is strictly upper triangular, and (ii)
M ∈ Mg(R) is such that (U−1M)t = U−1M ;

2.

A = A2g =
{

diag(a1, . . . , ag, a
−1
1 , . . . , a−1

g )
∣∣ ai > 0 for all i = 1, . . . , g

}
;

3.

K = K2g =

{(
A B
−B A

) ∣∣ A,B ∈ Mg(R), A+ iB ∈ U(g)

}
.

That is, every element g ∈ Sp2g(R) has a unique factorisation g = nak where
n ∈ N, a ∈ A, k ∈ K.

Proof. See [Springer, §5, proposition 5.15].

�

Remark: K is a maximal compact subgroup of Sp2g(R). Since Sp2g(R) ⊆
SL2g(R) and SO(2g) is a maximal compact subgroup of SL2g(R) it suffices to check
that

K = Sp2g(R) ∩ SO(2g).

If a matrix X =

(
A B
C D

)
belongs to this intersection then from the identities

XX t = I and X tJX = J we derive

ACt = −BDt, and BDt = DBt

and so
A−D = ACt −DCt = −D(Bt + Ct).

26The standard Iwasawa decomposition is the transpose (NAK)t = KtAtN t = KAN t of that
shown here.
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Since both Sp2g(R) and SO(2g) are closed under sending X to −X we also have

D − A = −(−D)(−Bt − Ct) = −D(Bt + Ct)

and it follows that D = A and B = −C. That A+ iB is unitary follows immediately
and so K = Sp2g(R) ∩ SO(2g) is a maximal compact subgroup as claimed.

Definition 3.7. A homogeneous space is a manifold M such that M ∼= G/H for
G a Lie group and H a closed subgroup of G. A homogeneous space M ∼= G/H is
called a symmetric space for G if there exists an automorphism σ : G→ G such
that

(a) σ2 = idG;

(b) H is a union of connected components of the set

Gσ := {g ∈ G | σ(g) = g}

of σ-fixed points of G.

Examples 3.1.

1. A complex torus X = Cg/Λ is homogeneous but not symmetric: every lie
group automorphism of the additive group Cg is linear and so cannot fix a full
lattice Λ without fixing all of Cg.

2. The circle S1 is a symmetric space with G = U(1) = {e2πix | x ∈ R/Z}. We
may take H = {1} to the trivial subgroup and σ to be complex conjugation
e2πix 7→ e−2πix.

3. S1 can also be realised as a homogeneous space for R with H = Z, but it is
not a symmetric space for R.

Remark: This last example is intended to illustrate that one must specify how a
given manifold M is to be realised as a homogeneous space before one can ask more
refined questions about it. It is thus preferable to either fix a realisation G/H

∼−→M
at the outset, or in the absence of a canonical choice of basepoint in M to think of
a homogeneous space as a fibration

H → G→M.

Proposition 3.4. Hg is a symmetric space for Sp2g(R) which is (non-canonically)
isomorphic to Sp2g(R)/K where K := SO(2g) ∩ Sp2g(R).

We begin with a lemma.

Lemma 3.1. A finite dimensional manifold M is a homogeneous space if and only
if M admits a smooth transitive action G ×M → M by a finite dimensional Lie
group G.
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Proof. That a homogeneous space M ∼= G/H admits a smooth transitive G-action
is trivial. Conversely, suppose that G is a Lie group acting smoothly and transitively
(ie. with a single orbit) on M . Fix a point m0 ∈M , let H be the stabliser subgroup
of m0 in G and define a map ϕ : G → M by ϕ(g) = gm0. Then ϕ is surjective 27

and smooth28 and its fibres are precisely the cosets of H in G. It follows that ϕ
descends to a smooth bijection ϕH : G/H → M . That the inverse (in the category
of sets) ϕH is smooth can be seen argued as follows.

• Since M is a manifold every point x ∈ M has a contractible neighbourhood
U .

• Since
H → G→M

is a smooth fibration, any smooth map Y
f−→ M with Y contractible factors

though a lift Y
f̂−→ G.

• Applying this to the inclusion fU : U ↪→M we get a smooth lift U
f̂U−→ G.

• When restricted to U , the function inverse to ϕH is identically equal to the

composition U
f̂U−→ G

π−→ G/H where π is canonical quotient map.

• Since both f̂U and π are smooth (the latter canonically so) we conclude that
the function inverse to ϕH is everywhere locally smooth on M and thus globally
smooth (since smooth functions glue).

� (Lemma)

Proof. (proposition 3.4) The basic strategy should be clear from the lemma: we will
construct a smooth transitive action of Sp2g(R) on Hg such that K is the stabiliser
of a (carefully chosen!) point. If g ∈ Sp2g(R) then it follows from the Iwasawa
decomposition that g has a unique factorisation

g =

(
I X
0 I

)(
V 0
0 (V t)−1

)(
A B
−B A

)
where

(a) X ∈ Mg(R) is symmetric;

(b) V is an upper triangular matrix with strictly positive diagonal entries;

(c)

(
A B
−B A

)
∈ K.

Indeed, X = U−1M and V = diag(a1, . . . , ag) in the notation of the Iwasawa de-
composition.

27By the transitivity assumption.
28It is the composition of the embedding G ↪→ G ×M, g 7→ (g,m0) of G into G ×M at height

m0 and the smooth action G×M →M .



Robert Sayer 31

Define a function

Ψ : Sp2g(R)×Hg → Hg,(
A B
C D

)
× τ 7→ (Aτ +B)(Cτ +D)−1

For a proof that Ψ is well defined (ie. that Cτ +D) is invertible and that Im(Aτ +
B)(Cτ +D)−1 > 0) see [Klingen, chapter I]. Clearly Ψ(I, τ) = τ for all τ ∈ Hg and
the following computation(

A(Eτ + F )(Gτ +H)−1) +B
)(
C(Eτ + F )(Gτ +H)−1 +D

)−1

= (AEτ + AF +BGτ +BH)(Gτ +H)−1
(
C(Eτ + F )(Gτ +H)−1 +D

)−1

=
(
(AE +BG)τ + AF +BH

)(
(CE +DG)τ + CF +DH

)−1

proves that Ψ(gh, τ) = Ψ(g,Ψ(h, τ)) for all g, h ∈ Sp2g(R) and all τ ∈ Hg, ie, that Ψ
defines a group action. This action is smooth since if zij is the coordinate function

on Hg corresponding to the ijth matrix entry then each of the functions

Sp2g(R)×Hg Ψ−→ Hg ↪→ Mg(C)
zij−→ C

is an everywhere well defined rational function of τ and the natural coordintes on
Sp2g(R). Henceforth we abandon the notation Ψ and denote the action by(

A B
C D

)
τ = (Aτ +B)(Cτ +D)−1.

Consider the orbit under this action of the point iI ∈ Hg.

(a) The stabiliser of iI is K: indeed,(
a B
C D

)
iI = (iA+B)(iC +D)−1 = iI ⇐⇒ iA+B = iD − C

and any symplectic matrix of the form

(
A B
−B A

)
satisfies AtB = BtA and

BtB + AtA = I, in which case

(At − iBt)(A+ iB) = AAt +BBt = I,

ie. A+ iB is a unitary matrix.

(b) By Cholesky’s decomposition theorem for real symmetric matrices, for each
τ = X + iY ∈ Hg there exists a unique upper triangular matrix U with positive
diagonal entries such that UU t = Y . Let gX,U be the symplectic matrix(

I X
0 I

)(
U 0
0 (U t)−1

)
.

Then

gX,U iI =

(
I X
0 I

)(
U 0
0 (U t)−1

)
iI =

(
I X
0 I

)
iUU t = X + iUU t = X + iY.
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Thus Sp2g(R) acts smoothly on Hg with a single orbit, and the stabiliser of any
point is conjugate to K, ie.

K −→ Sp2g(R)
(g 7→giI)−−−−→ Hg

is a fibration.

The inner automorphism σ(g) := JgJ−1 of Sp2g(R) has order 2, and the identity(
A B
C D

)
= J

(
A B
C D

)
J−1 =

(
D −C
−B A

)

holds in Sp2g(R) if and only if

(
A B
C D

)
=

(
A B
−B A

)
∈ K, whence K = Sp2g(R)σ.

We conclude that Hg is a symmetric space for Sp2g(R).

�

3.3 Universal Families and Moduli Spaces of Polarized Abelian
Varieties

Throughout this section g is a fixed positive integer and E = diag(e1, . . . , eg) denotes
a fixed polarization type.

Let (V/Λ, H) be a complex abelian variety of dimension g with polarization H
of type E . For each symplectic Z-basis BΛ = {λ1, . . . , λ2g} for Λ we have (care of
[Igusa, §4, pages 72-74]) the following C-basis BV for V :

BV := {λg+i | 1 ≤ i ≤ g}.

Consider the function Ω from the set of symplectic Z-bases for Λ to the set M2g×g(C)
of 2g × g complex matrices defined by the rule

BΛ = {λ1, . . . , λ2g} 7→ Ω(BΛ) :=



[λ1]B
...

[λg]B
[λg+1]B

...
[λ2g]B


where [u]BV ∈ Cg denotes the row vector of coordinates of u ∈ V with respect to BV

Proposition 3.5.

Ω(BΛ) =

(
τB
I

)
for some τB ∈ Hg.

Proof. That rows g+1 through 2g of Ω(BΛ) form a g by g identity matrix is obvious.
The claim about the first g rows is proved on pages 72-74 of [Igusa] .

�
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If B′Λ = {λ′1, . . . , λ′2g} is some other symplectic Z-basis for Λ then there exists a
unique integral change of (symplectic) basis matrix(

A B
C D

)
∈ Sp(E ,Z)

satisfying 

[λ′1]BV
...

[λ′g]BV
[λ′g+1]BV

...
[λ′2g]BV


=

(
A B
C D

)(
τB
)

=

(
AτB +B
CτB +D

)
.

From this we obtain the identity

τB′ = (AτB +B)(CτB +D)−1.

We also observe that for all v ∈ V ,

[v]tBV = [v]tB′V

λ
′
g+1
...
λ′2g


BV

= [v]tB′V

(
C

λ1
...
λg


BV

+D

λg+1
...
λ2g


BV

)
= [v]tB′V

(
CτB +D

)
.

This gives us an explicit change of basis formula, namely

[v]B′V = [v]BV (CτB +D)−1.

For each τ ∈ Hg let
Λτ,E := Zgτ + Zg

be the lattice generated by the rows τ1, . . . , τg of τ and by Zg ⊆ Cg and endow Λτ,E

with the fixed ordered Z basis

Bτ :=
(
τ1, . . . , τg, z1, . . . , zg

)
where zj := (δ1j, . . . , δgj) with δij denoting the Krönecker delta. Let Eτ,E : Cg → R
be the alternating R-bilinear form on Cg given by

Eτ,E (u, v) := [u]tBτ

(
0 E
−E 0

)
[v]Bτ

where Bτ is thought of as an R basis for Cg.

Theorem 13. The function

Hτ,E : Cg → C, Hτ,E (u, v) := Eτ,E (iu, v) + Eτ,E (u, v)

is a positive definite Riemann form with respect to the pair
(
Cg,Λτ,E

)
. Thus the

complex torus Aτ,E := Cg/Λτ,E is an abelian variety over C with a fixed polarization
of type E .

Proof. See [M.Rosen, §6, pages 97-98] and [J.Igusa, §4, pages 72-72].

�
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The following lemma is more or less a tautology at this point. We state it for
emphasis.

Lemma 3.2. Let A := V/Λ be a g dimensional abelian variety over C and let
H : V → C be a polarization of A of type E . Then for each choice of symplectic
Z-basis BΛ the function

A → AτB,E ,

z mod Λ 7→ [z]B mod Λτ,E

is an isomorphism of E -polarized abelian varieties.

�

Let Ag,E denote the set of pairs (τ, z mod Λτ,E ) where

(a) τ ∈ Hg;

(b) z ∈ Aτ,E .

Thus Ag,E can be though of as the union of all the E -polarized abelian varieties
Aτ,E . Let Sp(E ,Z) act on Ag,E according to the formula(

A B
C D

)(
τ, z
)

:=
(
(Aτ +B)(Cτ +D)−1 , z(Cτ +D)−1

)
.

Definition 3.8. A family of abelian varieties over a field K is a morphism
π : A → X of K-schemes with a section O : X → A such that for each K-point
x ∈ X the fibre π−1(x) := x×X A is an abelian variety over K with identity element
O(x). A family π : A→ X of abelian varieties over K is called a universal family
if every abelian variety A over K is isomorphic to exactly one fibre of π.

Remark: One can also consider universal families for restricted classes of abelian
varieties. For instance, if K is a field and π : A→ X is a universal family of abelian
varieties over K then there is a subfamily πg : Ag → Xg of abelian varieties over
K of fixed dimension g. By specifying additional data (eg. polarization type) we
obtain yet smaller universal families.

Theorem 14.

π : Sp(E ,Z)\Ag,E → Sp(E ,Z)\Hg,

[τ, z] 7→ [τ ]

is a universal family of g-dimensional E -polarized abelian varieties over C with
identity section O[τ ] 7→ [τ, 0].

Proof. By proposition 3.5, whenever V/Λ is a g-dimensional E -polarized abelian
variety then every choice of symplectic Z-basis B for Λ determines a point τB ∈ Hg

together with an isomorphism

V/Λ
∼−→ Cg/ΛτB,E = AτB,E

∼= π−1(τB)

of E -polarized abelian varieties over C. By construction the set

{τB ∈ Hg | B is a symplectic Z-basis for V/Λ}

is a single orbit in Hg under the action of Sp(E ,Z) and so the set of all Aτ,E to which
A is isomorphic as a E -polarized abelian variety comprises exactly one fibre of π.
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�

One can paraphrase theorem 14 as follows: Sp(E ,Z)\Hg is a coarse moduli
space of g-dimensional complex abelian varieties with E -type polarisation. In gen-
eral one cannot infer that Sp(E ,Z)\Hg is a fine moduli space since there might well
exist g-dimensional complex abelian varieties which are non-uniquely isomorphic (as
E -polarized abelian varieties) to a fibre of π : Sp(E ,Z)\Ag,E → Sp(E ,Z)\Hg. This
phenomenon is best demonstrated by example.

3.4 Example: Level Structures for Elliptic curves

We have already seen that every elliptic curve over C carries a principal polarization,
so we may think of

π : SL2(Z)\A1 → SL2(Z)\H1

(where A1 := A1,I) as a universal family for all elliptic curves over C.

The point −1+i
√

3
2
∈ H1 has a non-trivial stabiliser in SL2(Z) : for instance, we

have(
0 −1
1 1

)
−1 + i

√
3

2
=

−2

i
√

3 + 1
=

−2(1− i
√

3)

(1 + i
√

3)(1− i
√

3)
=
−2 + 2i

√
3

4
=
−1 + i

√
3

2
.

Since z 7→ z
(−1+i

√
3

2
+ 1
)−1

is not the identity function on A−1+i
√

3
2

it follows that

the elliptic curve A−1+i
√

3
2

has non-trivial automorphisms and that no elliptic curve

E can ever be uniquely isomorphic to A−1+i
√

3
2

.

Thus the “coarseness’ of the moduli space can be traced to a lack of freeness in
the action of Sp(E ,Z) on Hg. A useful trick for fixing this deficiency is to consider
not just E -polarised abelian varieties but E -polarised abelian varieties together with
a so-called level structure. Rather than attempting to give a uniform definition
of a “level structure” 29 we shall illustrate how the technique applies to the moduli
space of elliptic curves.

Let N be a positive integer and consider the following subgroups of SL2(Z):

(a)

Γ(N) := ker
(
SL2(Z)→ SL2(Z/NZ)

)
=

{(a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
mod N},

(b)

Γ1(N) :=
{(a b

c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N},

(c)

Γ0(N) :=
{(a b

c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N},

29Level structures tends to be something defined in an ad hoc manner for the purposes of refining
a specific moduli problem. It is hoped that the examples presented here make the “philosphy” of
level structures clear.
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where “∗” denotes an arbirary integer. Notice that SL2(Z) = Γ(1) in this notation,
and that we have a chain of inclusions

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ Γ(1).

Thus we have a diagram of (generically ramified) coverings

Γ(N)\H1 Γ1(N)\H1 Γ0(N)\H1

Γ(1)\H1

Lemma 3.3. For N ≥ 2 (resp. N ≥ 3) the groups Γ(N) and Γ1(N) (resp. Γ0(N))
act freely on H1.

Proof. See [Husemöller, Chapter 11, §2, prop. 2.5].

�

For τ ∈ H1 we make the following definitions.

1. Eτ is the elliptic curve C/Zτ + Z;

2. P (τ) := τ
N

;

3. Q(τ) := 1
N

4. C(τ) is the order N subgroup of E(τ) generated by Q(τ).

Let γ =

(
a b
c d

)
∈ SL2(Z) act on H1C× C according to the formula

γ(τ, u, w) :=
(
γτ,

u

cτ + d
,

w

cτ + d

)
where the action of γ on H1 is the usual one eg. γ(τ) = (aτ) + b)(cτ + d)−1.

Suppose that γ satisfies

γ(Eτ , z mod Zτ+Z, P (τ), Q(τ) =
(
E(γτ), P (γτ) mod Zγτ+Z, Q(γτ) mod Zγτ+Z

)
(1)

Then there exist integers m1,m2,m3,m4 such that

(a)
1

N
(cτ + d)−1 =

1

N
+m1(aτ + b)(cτ + d)−1 +m2;

(b)
τ

N
(cτ + d)−1 =

( 1

N
+m3

)
(aτ + b)(cτ + d)−1 +m4.

From (a) we derive d = 1−N(m1b + m2d) and c = −N(m1a + m2d) and from (b)
we derive a = 1 + N(m3c + m2a) and b = N(m3d + m4b). In other words we have
congruences a ≡ d ≡ 1 mod N and c ≡ b ≡ 0 mod N . Conversely, one easily
checks that equation (1) holds for arbitrary γ ∈ Γ(N).
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Lemma 3.4. Let E = C/Λ be an elliptic curve over C with a fixed “basis” ω1, ω2

for its submodule E[N ] ∼= Z/NZ × Z/NZ of N-torsion points. Then every choice
of Z-basis ω̃1, ω̃2 for Λ[N ] := {z ∈ C | Nz ∈ Λ} satisfying ω̃i ≡ ωi mod Λ induces
an isomorphism ψ : E

∼−→ E(τ) (τ ∈ Hg) with ψ(ω1) = P (τ) mod Zτ + Z and
ψ(ω2Λ) = Q(τ) mod Zτ + Z.

Proof. The only difficult thing about this lemma is unpacking the unfortunate no-
tation. If ω̃1 and ω̃2 are as in the statement then B := {Nω̃1, Nω̃2} is a Z-basis for
C/Λ. By proposition 3.5 we associate to B a unique point τ ∈ H1 and an isomor-
phism ψ : E

∼−→ E(τB). That ψ(ω1) = P (τ) and ψ(ω2) = Q(τ) is immediate (under
the assumption that B reduces mod Λ to the set {ω1, ω2}) from our construction of
the isomorphism ψ.

�

Combining lemma 3.4 with the computation of congruences which preceded it
we obtain the following.

Theorem 15. Let

A1(Γ(N)) := {(τ, z, P (τ), Q(τ) | τ ∈ H1, z ∈ C mod Zτ + Z} ⊆ A1 × C× C.

Then
πΓ(N) : Γ(N)\A1(Γ(N))→ Γ(N)\H1

is a universal family of triples (E,P,Q) where

1. E is an elliptic curve over C;

2. P,Q ∈ E are generators for the N-torsion submodule E[N ] of E.

�

Corollary 3.1. Let SL2(Z) act on A1 × C like so:

γ(τ, z ∈ C/Zτ + Z, p) :=
(
γτ, z(cτ + d)−1 ∈ C/Zγτ + Z, p(cτ + d)−1

)
.

Define
A1(Γ1(N)) := {(τ, z ∈ C/Zτ + Z, P (τ)} ⊆ A1 × C.

Then
πΓ1(N) : Γ1(N)\A1(Γ1(N))→ Γ(1)\H1

is a universal family of pairs (E,P ) where

1. E is an elliptic curve over C;

2. P is a point of (exact) order N in E.

Proof. This all but falls out from theorem 15 upon forgetting the second generator
for E[N ]. Returning to the derivation of congruences preceding lemma 3.4, if γ ∈
SL2(Z) is to satisfy P (γτ) = P (τ)(cz+d)−1 then we must have d ≡ 1, c ≡ 0 mod N .
From this one infers (given that γ must be invertible mod

By forgetting the point P of order N while still keeping track of the cyclic
subgroup it generates one obtains
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Corollary 3.2. Let A1(Γ0(N)) be the set

A1(Γ0(N)) := {(τ, z, C(τ)) | τ ∈ H1, z ∈ E(τ)}

where C(τ) is the cyclic subgroup of order N in E(τ) defined in the discussion
preceding 3.4 . Then Γ0(N) acts on A1(Γ0(N)) according to the definition

γ(τ, z, C(τ)) :=
(
γτ, z(cτ + d)−1, C(γτ

)
and the projection

πΓ0(N) : Γ0(N)\A1(Γ0(N))→ Γ0(N)\H1

is a universal family of elliptic curves over C with a choice of cyclic subgroup of
order N .

Proof. The proof follows from corollary 3.1 in a fashion more or less identical to the
way corollary 3.1 followed from theorem 15. We omit the details.

�

Combining these results with the lemma 3.3 we arrive at the following conclusion.

Theorem 16. (a) For N ≥ 2 the space

Y (N) := Γ(N)\H1

is a fine moduli space classifying elliptic curves E over C with a fixed basis P,Q
for their N-torsion submodule E(N).

(b) For N ≥ 2 the space
Y1(N) := Γ1(N)\H1

is a fine moduli space classifying elliptic curves E over C with a chosen point
P ∈ E of exact order N .

(c) For N ≥ 3 the space
Y0(N) := Γ0(N)\H1

is a fine moduli space30 classifying elliptic curves E over C with a chosen cyclic
subgroup C of order N .

3.5 Modular Forms

The goal of the present section is to replace the ad hoc definition of modular forms
from §1 with the following uniform definition: modular forms are holomorphic global
sections of a certain natural family of automorphic line bundles 31 on moduli spaces
of polarised abelian varieties (with or without level structure).

30Technically this is not quite true since every elliptic curve has an automorphism E
−1−−→ E,P 7→

−P and this automorphism clearly fixes any cyclic subgroup of E. This is a minor concern which
can be solved by passing to a certain double cover of Y0(N).

31We choose to discuss scalar valued modular forms only. It is not difficult to formulate a
definition of automorphic vector bundles of rank > 1 and thus adapt our presentation to include
vector valued modular forms.
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Definition 3.9. A locally symmetric space is a space of the form Γ\G/K where
(i) G is a Lie group, (ii) K a Lie subgroup of G (eg. a maximal compact subgroup)
and (iii) Γ is a discrete subgroup of G.

This definition encompasses the moduli spaces of principally polarized abelian va-
rieties since we have seen how to realise each Siegel space Hg as a symmetric space
Sp2g(R)/

(
SO(2g) ∩ Sp2g(R). So as to extend this definition over moduli spaces

of abelian varieties with arbitrary polarizations we substitute “surrogate” moduli
spaces of polarised abelian varieties that can be realised as quotients of Hg by dis-
crete (but generically non-integral) subgroups of Sp2g(Q).

Lemma 3.5. Sp(E ,Z) is conjugate in GL2g(Q) to a subgroup of Sp2g(Q).

The matrix

IE :=

(
I 0
0 E

)
is an element of GL2g(Q) and satisfies IE JIIE = JE . If M ∈ Sp(E ,Z) then we have

(IEMI−1
E )tJI(IEMI−1

E ) = I−1
E M tI tE JIIEMI−1

E

= I−1
E M tJEMI−1

E

= I−1
E JE I

−1
E

= JI .

�

Henceforth we identify the coarse moduli space Sp(E ,Z)\Hg with Γ(E )\Hg where
Γ(E ) := IE Sp2g(E ,Z)I−1

E ⊆ Sp2g(Q) is as in lemma 3.5. The kind of moduli spaces
one obtains in this way are of the form Γ\Hg where Γ is an arithmetic subgroup
of Sp2g(Q).

Definition 3.10. Let G be an group scheme over Z. An arithmetic subgroup of
G is a subgroup Γ of G(Q) such that if we write Γ′ := Γ ∩ G(Z) then Γ′ has finite
index in both G(Z) and Γ, ie.

[G(Z) : Γ′] <∞ and [Γ : Γ′] <∞.

It is precisely spaces of the form Γ\Hg for arithmetic Γ ⊆ Sp2g(Q) on which we
shall define our “certain natural family” of automorphic line bundles. We will now
attempt to explain what exactly we mean by “natural.”

Lemma 3.6. Let G be a group acting smoothly on a manifold M . For each g ∈ G
and m ∈M let Dg|m denote the derivative (ie. Jacobian matrix) of the action of g
on M at the point m. Then the function

G×M → R, (g,m) 7→ det
(
Dg|m

)
represents a class in the 1st group cohomology H1(G,O(M)) of G with coefficients
in the ring O(M) of smooth real valued functions on M .

Proof. If g, h ∈ G andm ∈M then det
(
Dgh|m

)
=
(
Dg|hmDh|m

)
=
(
Dg|hm

)(
Dh|m

)
.

This is precisely the cocycle condition.32

32See appendix C.
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�

Remark Both the statement and proof of this lemma go through mutatis mu-
tandis for complex manifolds with holomorphic actions.

Our intention is that lemma 3.6 be understood in the following way: whenever M
is a a locally symmetric space of the form Γ\G/K with Γ discrete then the cocycle
γ 7→ det

(
Dγ
)

is a factor of automorphy for the (eminently natural) line bundle
detD which encodes the derivatives of the action of Γ on M .

Proposition 3.6. Let M =

(
A B
C D

)
∈ Sp2g(R) let DMτ denote the derivative of

the action of M on Hg at the point τ . Then

detDMτ0 = det(Cτ0 +D)−g−1.

Proof. See [Klingen, I.3, pages 35-36].

�

Definition 3.11. The standard33 factor of automorphy for the action of Sp2g(R)
on Hg is

j : Sp2g(Q) → O(Hg)×,

γ =

(
A B
C D

)
7→ jγ(τ) := det(Cτ +D).

Definition 3.12. Let k ∈ Z and let Γ ⊆ Sp2g(Q) be a discrete group. A modular
form of weight k and level Γ is a holomorphic global section of the automorphic
line bundle Ljk(Γ) on Γ\Hg with factor of automorphy jk.

The vector space over C of all modular forms of weight k and level Γ will be
denoted Mk(Γ).

Remarks:

1. The space of modular forms of weight k and level Γ can be identified with
H0
(
Γ\Hg,Ljk(Γ)

)
.34

2. If f ∈ Mk(Γ) and g ∈ Mj(Γ) then it is trivial to check that fg ∈ Mk+j(Γ).
We can thus think each Mk(Γ) as a homogeneous summand in a Z-graded
C-algebra

M∗(Γ) :=
⊕
k

Mk(Γ).

From the preceding geometric definition one derives the following “classical”
looking definition:

33The term “standard” is entirely our own and thus entirely non-standard in the literature.
Indeed, no one else seems to have bothered to dignify the omnipresent expression Cτ +D with a
name.

34Here we are (mildy) abusing notation by letting Ljk(Γ) refer to both a line bundle and its
sheaf of sections.
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Definition 3.13. Let Γ be an arithmetic subgroup of Sp2g(Q) for g ≥ 2. A modular
form of weight k (k ∈ Z) for Γ is a holomorphic function f : Hg → C satisfying
the functional equation

f(γτ) = jkγ (τ)f(τ)

for all τ ∈ Hg and all γ ∈ Γ;

Remark: When g = 1 we must also ask that f is “holomorphic at the cusps.”35

In fact, we also require that modular forms on Hg for g > 1 satisfy an analogous
condition, but thankfully this turns out to be no condition at all when g > 1 as
it is automatically satisfied by any holomorphic function satisfying definition 3.13 .
This small mercy for expositors of the theory modular forms is known as Köcher’s
principle.

Definition 3.14. A modular form f ∈Mk

(
Sp2g(Z)

)
is called a cusp form if

lim
t→∞

F

(
τ 0
0 it

)
= 0

for all τ ∈ Hg−1. More generally, if Γ is an arithmetic subgroup of Sp2g(Q) then we

say that f ∈Mk

(
Γ
)

is a cusp form if for all

α =

(
A B
C D

)
∈ Sp2g(Q)

and all τ ∈ Hg−1 we have

lim
t→∞

det
(
C

(
τ 0
0 it

)
+D

)−k
f
(
α

(
τ 0
0 it

)
= 0.

4 Hecke Algebras

4.1 Hecke Pairs and Hecke Algebras

One of the most elementary yet important results in group theory is that whenever
one has a group G and a subgroup Γ ⊆ G then the set of right (resp. left) cosets
of Γ is a partition of G with an associated right (resp. left) permutation action by
G. Hecke algebras – to be defined momentarily – appear in the context of another
36 partition of G which may be associated to Γ.

Definition 4.1. A double coset of Γ in G is a set of the form

ΓgΓ := {γ1gγ2 | γi ∈ Γ}

where g is a fixed element of G.

Lemma 4.1. G is partitioned by the double cosets of Γ.

Proof. If g, h ∈ G are such that γ1gγ2 = γ3hγ4 then h = (γ−1
3 γ1)g(γ2γ

−1
4 ) ie. h ∈

ΓgΓ. It follows that distinct double cosets are disjoint.

�
35See §1 for a definition of this condition in the “classical” notation.
36Equally natural if – admittedly – less elementary.
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Corollary 4.1. Every double coset ΓgΓ is partitioned by left (equivalently right)
cosets of Γ.

Proof. A left coset gΓ (resp. right coset Γg) is obviously contained in ΓgΓ since the
identity element of G belongs to Γ and so

ΓgΓ =
⋃

g′Γ∩ΓgΓ6=∅

g′Γ =
⋃

Γg′′∩ΓgΓ 6=∅

Γg′′.

These unions are disjoint since distinct left (resp right) cosets of Γ are disjoint in G.

�

Definition 4.2. The pair (G,Γ) is called a Hecke pair if every double coset of Γ
in G is a finite union of left cosets (and thus also right cosets) of Γ in G.

Henceforth (G,Γ) is assumed to be a Hecke pair.

Let Z[Γ\G] denote the free abelian group on the right cosets of Γ in G. There is
a natural right action of G on this space by Z-linear automorphisms, the so-called
right regular representation,37 whereby h ∈ G acts as(∑

g

Γg
)
h :=

∑
g

Γ(gh).

Let Z[Γ\G]Γ denote the submodule of Γ-invariants for this representation, ie.

Z[Γ\G]Γ = {X ∈ Z[Γ\G] | Xγ = X for all γ ∈ Γ}.

Lemma 4.2. Let Z[Γ] be the group ring of Γ and let Z[Γ\G/Γ] be the free abelian
group on the double cosets of Γ. Let η : Γ\G/Γ→ Z[Γ\G] be the function

η(ΓgΓ) :=
∑

g′∈Γ\ΓgΓ

Γg′

and extend η in the unique way to a Z-linear map defined on Z[Γ\G/Γ]. Then η is
an isomorphism of (right) Z[Γ] modules between Z[Γ\G/Γ] and Z[Γ\G]Γ.

Proof. We begin by remarking that η is well defined: for each g ∈ G, γ ∈ Γ descends
via the right regular representation to a well defined permutation of the set of right
cosets of Γ in ΓgΓ, and η(ΓgΓ) is independent of the choice of representatives g′ for
the right cosets since these are unique up to left translations by Γ.

Given what has just now been remarked, η(ΓgΓ) is certainly Γ invariant on the
right, and η is injective since distinct double cosets of Γ are disjoint in G. As for
surjectivity, if

X =
∑

Γg∈Γ\G

aΓgΓg (aΓg ∈ Z is zero for all but finitely many Γg)

is right Γ invariant then the coefficients aΓg are themselves right Γ invariant in the
sense that aΓgγ = aΓg for all Γg, γ. Then defining aΓgΓ := aΓg we have

X =
∑

ΓgΓ∈Γ\G/Γ

aΓgΓ

∑
Γg′∈Γ\ΓgΓ

Γg′ = η
( ∑

ΓgΓ∈Γ\G/Γ

aΓgΓΓgΓ
)
.

37This is the induced representation Ind ↑GΓ Z where Z is equipped with a trivial action of Γ.
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�

To each double coset ΓgΓ we associate a linear endomorphism TΓgΓ of Z[Γ\G]
by defining

TΓgΓ(Γh) :=
∑

Γg′∈ΓgΓ

Γ(g′h)

for right cosets Γh and extending linearly. We remark that this definition does not
depend upon the choice of representative elements g′ for the right cosets of Γ in
ΓgΓ (which are uniquely defined up to left translation by Γ), nor on the choice of
representative for the right coset Γh, since if we replace h with γh then

TΓgΓ(Γγh) =
∑

Γg′∈ΓgΓ

Γ(g′γh)

=
( ∑

Γg′∈ΓgΓ

Γg′
)
γh

= η(ΓgΓ)γh

= η(ΓgΓ)h since η(ΓgΓ) ∈ Z[Γ\G]Γ

=
( ∑

Γg′∈ΓgΓ

Γ(g′)
)
h

=
∑

Γg′∈ΓgΓ

Γ(g′h).

Lemma 4.3. Each TΓgΓ restricts to an endomorphism of Z[Γ\G]Γ.

Proof. This will follow immediately if we know that each TΓgΓ commutes with the
right regular representation of G on Z[Γ\G]. As for this latter claim, for each right
coset Γh and each g′′ ∈ G we have(

TΓgΓ(Γh)
)
g′′ =

( ∑
Γg′∈Γ\ΓgΓ

Γ(g′h)
)
g′′ =

( ∑
Γg′∈Γ\ΓgΓ

Γ(g′hg′′)
)

= TΓgΓ(Γhg′′).

Thus the two linear actions commute on each canonical basis element and so also
as operators on Z[Γ\G].

�

Definition 4.3. Let (G,Γ) be a Hecke pair. The Hecke ring H(G,Γ) of the pair
is the ring whose underlying abelian group is the double coset space Z[Γ\G/Γ] and
whose product (denoted by ∗) is defined on basis elements by

ΓgΓ ∗ ΓhΓ := η−1
(
TΓgΓ(η(ΓhΓ)

)
.

Remark:

• The binary operation ∗ is associative. Observe that η(ΓhΓ) = TΓhΓ(Γ) where
Γ = η(Γ1Γ) is the right (equivalently double) coset of the identity in G. We
can thus write ΓgΓ ∗ ΓhΓ := η−1

(
TΓgΓ ◦ TΓhΓ(Γ)

)
whence associativity follows

as composition of functions is always associative.

• We may replace Z with any commutative coefficient ring R and speak instead
of the Hecke algebra H(G,Γ)⊗R over R.
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Proposition 4.1. Let V be vector space over a field K and let ρ : G → GL(V ) be
a K-linear representation. Then ρ induces a H(G,Γ)⊗K module structure on the
subspace V Γ := {v ∈ V | ρ(γ)v = v for all γ ∈ Γ} of Γ-invariant vectors in V .

Proof. For each double coset ΓgΓ =
⊔
g′ Γg

′ and each v ∈ V Γ we define

ρH(ΓgΓ)v :=
∑
g′

ρ(g′)v.

and extend this K-linearly to all linear combinations of double cosets. Each of these
operators preserves V Γ since whenever γ ∈ Γ we have ΓgΓ =

⊔′
g Γg′ if and only if

ΓgΓ =
⊔′
g Γγ−1g′, in which case

ρ(γ)ρH(ΓgΓ)v = ρ(γ)
∑
g′

ρ(γ−1g′)v =
∑
g′

ρ(γγ−1g′)v =
∑
g′

ρ(g′)v = ρH(ΓgΓ)v.

Since the identity element in the Hecke algebra is the double coset of the identity in
G (ie. Γ itself) we have ρH(idH(G,Γ)⊗K) = idV Γ . Given an arbitrary pair of double
cosets ΓgΓ,ΓhΓ we have

ρH(ΓgΓ) ◦ ρH(ΓhΓ)v = ρ(ΓgΓ)
(∑

h′

ρ(h′)v
)

=
∑
g′,h′

ρ(g′h′)v.

On the other hand, notice that the action of any given double coset ΓuΓ “factors
through” the K linear isomorphism η : K[Γ\G/Γ]

∼−→ K[Γ\G]Γ upon choosing an
arbitrary set of representatives u′ in G for each right coset in the sum η(ΓuΓ) =∑

Γu′∈Γ\ΓuΓ Γu′ and defining ρH(ΓuΓ)v =
∑

u′ ρ(u′)v. Given this, we compute

η(ΓgΓ ∗ ΓhΓ) = TΓgΓ(
∑
h′

Γh′) :=
∑
g′

∑
h′

Γg′h′

whence it follows that

ρH(ΓgΓ ∗ ΓhΓ) = ρH(ΓgΓ) ◦ ρH(ΓhΓ)

for all double cosets ΓgΓ,ΓhΓ. Since the entire algebra structure of the Hecke algebra
is determined on its basis of double cosets we conclude that ρH : H(G,Γ) ⊗ K →
EndK(V Γ) is a well defined homomorphism of K-algebras.

�

4.2 Hecke algebras acting on modular forms

Let GSp+
2g(Q) := {g ∈ GSp2g(Q) | det g > 0}. Our starting point is the following

theorem:

Theorem 17. For all integers g ≥ 1 and all congruence subgroups Γ ⊆ Sp2g(Q) the

pair
(
GSp+

2g(Q),Γ)
)

is a Hecke pair.

Proof. See [A-Z, Chap. 3, Lemma 3.1].

�
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Let O(Hg) denote the vector space of all holomorphic functions f : Hg → C. For
each integer k and each g ∈ GSp+

2g(Q) we define the slash operator of weight k for
g to be the following linear operator on O(Hg):(

φ|kg
)
(τ) := det(γ)k−1 det(Cτ +D)−kφ(γτ)

where g =

(
A B
C D

)
acts on Hg as in §3.

Lemma 4.4. For each k ∈ Z, the function

GSp+
2g(Q)→ GL(O(Hg)), g 7→ |kg

is a linear representation.

Proof. The 2g × 2g identity matrix clearly maps to the identity operator for any
k. Fixing k and letting (i) g, g′ ∈ GSp+

2g(Q),(ii) φ ∈ O(Hg) and (iii) τ ∈ Hg be
arbitrary we have(

φ|kg|kg′
)
(τ) := det(g′)k−1 det(C ′τ +D′)−k

(
φ|kg

)
(γ′τ)

:= det(g′)k−1 det(g)k−1 det(C ′τ +D′)−k

× det
(
C(A′τ +B′)(C ′τ +D′)−1 +D

)−k
φ(γγ′τ)

= det(gg′)k
−1

det
(
(CA′ +DC ′)τ + CB′ +DD′)

)−k
φ(γγ′τ)

=
(
φ|kgg′

)
(τ)

where the final line follows because(
A B
C D

)(
A′ B′

C ′ D′

)
=

(
AA′ +BC ′ AB′ +BD′

CA′ +DC ′ CB′ +DD′

)
.

�

By construction, for any discrete subgroup Γ of Sp2g(Q) the slash operators give
an alternative characterisation of the space of modular forms of weight k with respect
to Γ, namely

Mk(Γ) = {φ ∈ O(Hg) | φ|kγ = φ for all γ ∈ Γ} = O(Hg)|kΓ.

Combining this with theorem refheckepair and proposition 4.1 we obtain the
following theorem:

Theorem 18. For each congruence subgroup Γ of Sp2g(Q) the algebra M∗(Γ) =
⊕k∈ZMk(Γ) of modular forms with respect to Γ is a graded module over the Hecke
algebra H(GSp+

2g(Q),Γ).
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Example 4.1.

Recall that when g = we can identify GSp+
2g(Q) ∼= with GL+

2 (Q) and Sp2(Z)
with SL2(Z). The set

{A ∈ GL2(Z) | detA = p}
comprises one double coset of SL2(Z) in GL2(Q) with right coset representatives(

p 0
0 1

)
and

(
1 b
0 p

)
for 0 ≤ b ≤ p− 1.

The double coset SL2(Z)diag(p, 1)SL2(Z) acts on O(H1) via the weight k slash op-
erator according to the rule

(
f |kSL2(Z)diag(p, 1)SL2(Z)

)
(τ) =

(
f |k
(
p 0
0 1

))
(τ) +

p−1∑
b=0

(
f |k
(

1 b
0 p

))
(τ)

= pk−1
(
f(pτ) +

1

pk

p−1∑
b=0

f
(τ + b

p

))
= pk−1f(pτ) +

1

p

p−1∑
b=0

f
(τ + b

p

)
Thus if f is a modular form of weight k with Fourier development f(τ) =∑
n≥0 anq

n where q = e2πiτ then

(
f |kSL2(Z)diag(p, 1)SL2(Z)

)
(τ) = pk−1f(pτ) +

1

p

p−1∑
b=0

f
(τ + b

p

)
=

∑
n≥0

pk−1anq
np +

1

p

p−1∑
b=0

∑
n≥0

ane
2πin

p
(τ+b)

=
∑
n≥0

pk−1anq
np +

1

p

p−1∑
b=0

∑
n≥0, p|n

ane
2πin

p
(τ+b)

=
∑
n≥0

pk−1anq
np +

1

p

p−1∑
b=0

∑
n≥0

anpq
ne2πibn/p

=
∑
n≥0

pk−1anq
np +

∑
n≥0

anpq
n

where in the second line we have used the fact that Hecke operators preserve the
space of modular forms of a given weight and that every modular form has a Fourier
development in non-negative integral powers of q. We have thus recovered the for-
mula with which we defined the Hecke operator at p of weight k in §1.

For posterity, we record the action of this operator on Fourier coefficients.

Corollary 4.2. For f ∈ Mk(SL2(Z) let [f ]n denote the coefficient of qn in the
expansion of f and let. Then[

f |kSL2(Z)diag(p, 1)SL2(Z)
]
n

=

{
[f ]np, if p - n,
[f ]np + pk−1[f ]n/p, if p | n.

.
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�

Lemma 4.5. Let k be a postive integer and let p be a prime number. Let f(q) =∑
n≥1 anq

n ∈ Sk(SL2(Z) be an eigenvector of the Hecke operator SL2(Z)diag(p, 1)SL2(Z)
with eigenvalue λ(p). Then λ(p)a1 = ap.

Proof. We have∑
n≥1

λ(p)anq
n =

(
f |kSL2(Z)diag(p, 1)SL2(Z)

)
(q) :=

∑
n≥0

pk−1anq
np +

∑
n≥0

anpq
n

and the claimed identity follows upon equating the coefficients of q1 in each series.

�

As a corollary we discover that the Fourier coefficients of simultaneous eigenvec-
tors are multiplicative:

Corollary 4.3. Let ` and p be distinct primes and suppose that f =
∑

n≥1 anq
n

is a eigenvector for both SL2(Z)diag(p, 1)SL2(Z) and SL2(Z)diag(`, 1)SL2(Z). Then
ap` = apa`.

Proof. This is a straightforward computation. We omit the details.

�

4.3 Reductive groups, Maximal Tori and Weyl groups

Before we can say anything more about the structure of the Hecke algbebrasH(GSp+
2g(Q),Γ)

we must first collect some definitions and theorems (without proof) from the theory
of reductive groups.

Definition 4.4. Let G be an algebraic group. An element u ∈ G is called unipotent
if for every faithful linear representation ρ : G ↪→ GL(V ) on a finite dimensional
vector space V there exists a positive integer n such that (ρ(u) − idV )n = idV . An
algebraic group U is called a unipotent group if every u ∈ U is unipotent.

Example 4.2.

The additive group Ga is a unipotent group.

Definition 4.5. A reductive group is a geometrically connected38 algebraic group
which contains no non-trivial normal unipotent subgroups.

Examples 4.1.

1. The multiplicative group Gm is reductive. More generally, Gn
m is reductive for

all positive integers n.

2. The general linear groups GLn and the special linear groups SLn are all reduc-
tive.

3. The general symplectic group GSp2g and its subgroup Sp2g are both reductive.

38A variety V over a field K is geometrically connected if the base change of V to an algebraic
closure of K is connected.
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Definition 4.6. Let G be a reductive group over a field K. A torus in G is a
commutative subgroup T of G which is isomorphic (possibly over an extension of K)
to a product Gn

m of multiplicative groups. A torus T ∼= Gn
m is called a maximal

torus if whenever T ′ ∼= Gn′
m is another torus is G then n′ ≤ n.

Examples 4.2.

Let R be a commutative ring.

1. A maximal torus for GLn is the group scheme Tn whose group Tn(R) of R-
points is the subgroup of diagonal matrices in GLn(R), ie.

T (R) = {diag(t1, . . . , tn) | ti ∈ R×}.

Clearly T ∼= Gn
m

2. A maximal torus in SLn is the group scheme Tn,1 whose R-points are n by n
diagonal matrices with entries in R and determinant 1. Explicitly,

Tn,1(K) = {diag(a1, . . . , an) | ai ∈ K×,
∏
i

ai = 1}

= {diag(a1, . . . , an−1,
n−1∏
i=i

a−1
i ) | ai ∈ K×}

This latter description shows that Tn,1 ∼= Gn−1
m .

3. A maximal torus for GSp2g is the subgroup scheme T whose set of R-points for
each commutative ring R is the subgroup of diagonal matrices in GSp2g(R),
ie. matrices of the form

D :=



a1

. . .

ag
b1

. . .

bg


ai, bj ∈ R×

which satisfy DtJD = λJ for some constant λ ∈ R×. Since

Dt

(
0 I
−I 0

)
D =



a1b1

. . .

agbg
−a1b1

. . .

−agbg


the condition is that

D =

(
diag(a1, . . . , ag) 0

0 λdiag(a−1
1 , . . . , a−1

g )

)
for arbitrary a1, . . . , ag, λ ∈ R×. It follows from this analysis that T ∼= Gg+1

m .
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Theorem 19. Every reductive group G has a maximal torus T . Moreover, any two
maximal tori in G are conjugate.

Proof. For general facts about reductive groups, see [Springer].

�

Definition 4.7. Let G be a reductive group with maximal torus T and let NT be the
normalizer of T in G. The Weyl group of G is the group WG := NT/T .

Examples 4.3.

1. The normalizer of Tn in GLn is the group Nn of generalised permutation
matrices ie. n by n matrices with a single non-zero entry in each row and
column. Up to the action of the torus Tn on Nn we can assume that all non-
zero entries are equal to 1, and in this way we identify WGLn

with the group
of n by n permutation matrices or, equivalently, with the symmetric group Sn
on n letters.

2. The normalizer of Tn,1 in SLn is the subgroup Nn,1 of Nn comprising generalised
permutation matrices with determinant 1. If A = diag(a1, . . . , an) ∈ Tn,1(K)
and X ∈ Nn,1 then

XAX−1 = diag(aσ(1), . . . , aσ(n))

for some permutation σ and all such permutations can be attained in this way.
It follows that WSLn

is once again isomorphic to the symmetric group Sn on
n letters.

3. The Weyl group of GSp2g is isomorphic to a semidirect product Sg n (Z/2Z)g

where Sg is the symmetric group on g letters [Van der Geer, §12, pg. 25]. A
permutation σ ∈ Sg acts on T (R) as

σdiag(a1, . . . , ag, b1, . . . , bg) := diag(aσ(1), . . . , aσ(g), bσ(1), . . . , bσ(g))

and the ith factor of Z/2Z interchanges ai and bi.

4.4 Local Hecke Algebras

Let G be a reductive group. Then for each prime number p the group G := G(Qp)
is a locally compact group. with maximal compact subgroup K := G(Zp). Let dµ
be Haar measure on G normalised so as to give K unit mass ie.

∫
G
χKdµ = 1 where

χK is the characteristic function of K.

Definition 4.8. The (unramified) local Hecke algebra H(G,K) of G is the C-
vector space of all locally constant, K bi-invariant and compactly supported functions
f : G→ C with the convolution product

f ∗ g(x) :=

∫
G

f(xy)g(y−1)dµ(y).

Lemma 4.6. The convolution product is well defined and gives H(G,K) the struc-
ture of a associative and unital C-algebra. That is,
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(a) Whenever f, g : G → C are locally constant, compactly supported and K bi-
invariant then f ∗ g also enjoys these properties;

(b) (f ∗ g) ∗ h = f ∗ (g ∗ h) for all f, g, h ∈ H(G,K);

(c) there exists an identity element in H(G,K) with respect to convolution.

Proof. So as to give a flavour of the method of proof we will prove the claims about
K bi-invariance, compact support and the existence of a unit element.

For all k ∈ K we have

f ∗ g(kx) =

∫
G

f(kxy)g(y−1)dµ(y) =

∫
G

f(xy)g(y−1)dµ(y)

(since f is left K-invariant) and

f∗g(xk) =

∫
G

f(xky)g(y−1)dµ(y) =

∫
G

f(xky)g(y−1k−1)dµ(ky) =

∫
G

f(xz)g(z−1)dµ(z) (z := ky)

(since g is right K-invariant and dµ is Haar measure). Thus f ∗ g is K bi-invariant.

If x ∈ G belongs to the support supp(f ∗ g) of f ∗ g then by inspection of the
convolution integral the set {y ∈ G | xy ∈ supp(f) and y ∈ supp(g)−1} has positive
measure. Let y be any element of this set. Then (i) y = x−1u for u ∈ supp(f) and
(ii) y = v−1 for some v ∈ supp(g). But then v−1 = x−1u or in other words x = uv.
It follows that supp(f ∗ g) ⊆ supp(f)supp(g). This latter set is the image of the
compact subset supp(f) × supp(g) of G × G under the continuous multiplication
map G × G → G it follows that supp(f ∗ g) is contained in a compact subset of G
ie. f ∗ g is compactly supported.

Let χK denote the characteristic function of Kand let f ∈ H(G,K) be arbitary.
Then sincef is K bi-invariant and χK is supported on K we have

f ∗ χK(x) =

∫
G

f(xy)χK(y−1)dµ(y) =

∫
K

f(xy)χK(y−1)dµ(y) = f(x)

∫
K

dµ = f(x)

and

χK ∗ f(x) =

∫
G

χK(xy)f(y−1)dµ(y)

=

∫
x−1K

χK(xy)f(y−1)dµ(y)

=

∫
x−1K

f(xyy−1)dµ(y)

= f(x)

∫
x−1K

dµ

= f(x)

where in the third to last line we observe that xy ∈ K for all y ∈ x−1K and in the
last line we use that µ is a translation invariant measure. It follows that χK is an
identity element with respect to ∗.

�
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Remark: In the definition of the unramified local Hecke algebra, one may re-
place K with any open compact subgroup K ′ of G (while otherwise leaving the def-
initions untouched) to produce a variety of ramified local Hecke algebras H(G,K ′).

The study of local Hecke algebras is amply motivated by the following theorem.

Theorem 20. There is an isomorphism

H(GSp+(Q), Sp2g(Z)) ∼=
⊗
p

H(GSp2g(Qp),GSp2g(Zp)).

More generally, if Γ ⊆ Sp2g(Z) is a congruence subgroup then

H
(
GSp+(Q),Γ

) ∼= ⊗
p

H
(
GSp2g(Qp), Kp)

)
where Kp is an open compact subgroup of GSp2g(Zp) with Kp = GSp2g(Zp) for all
but finitely many primes p.

Proof. See [Van der Geer, §16, page 30].

�

Remark: Though we omit the proof of theorem 20, we remark that the subalgebra
of H(GSp+(Q), Sp2g(Z)) corresponding to H(GSp(Qp), Sp2g(Zp)) can be identified
with the Hecke algebra of the pair(

GL2(Z[
1

p
]) , SL2(Z))

)
.

In other words, the unramified local Hecke algebra at p is isomorphic to the subalge-
bra of H(GSp+(Q), Sp2g(Z)) generated by double cosets whose elements are integral
up to p-power denominators.

An important step towards understanding the local Hecke algebras of GSp2g is
understanding the local Hecke algebras of its maximal torus T . Recall that any p-
adic number x can be written uniquely in the form x = pνp(x)u where νp is the p-adic
valuation and u ∈ Z×p . We arrive at the following refined description of T (Qp): it is
the set of all matrices of the form



pt1u1

. . .

ptgug
pλvp−t1u−1

1
. . .

pλvp−tgu−1
g


t1, . . . , tg, λ ∈ Z, u, v ∈ Z×p .

If we define matrices

T0(p) :=

(
I 0
0 pI

)
and Ti(p) for i = 1, . . . , g by

Ti(p) = diag(ti(1), . . . , tI(g), ti(1)−1, . . . , ti(g)−1)
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where

ti(j) :=

{
1, if j 6= i,

p, if j = i

ie.

T1(p) :=



p
1

. . .

1
p−1

1
. . .

1


, . . . Tg(p) :=



1
. . .

1
p

1
. . .

1
p−1


then every element X of T (Qp) can be written uniquely in the form X =

U
∏g

i=0 Ti(p)
ni with U ∈ T (Zp) and n0, . . . , ng ∈ Z.

Lemma 4.7. For i = 0, . . . , g let χi denote the characteristic function of the
T (Zp)Ti(p)T (Zp) = Ti(p)T (Zp) = T (Zp)Ti(p) ⊆ T (Qp).

39 Then χi ∗ χ = χij where
χij is the characteristic function of the coset T (Zp)Ti(p)Tj(p).

Proof. We have already shown (see lemma 4.6) that the support of χi ∗ χj must
be a subset of T (Zp)Ti(p)Tj(p). On the other hand , if x = uTi(p)Tj(p) for some
u ∈ T (Zp) then

χi ∗ χj(x) =

∫
t∈T (Qp)

χi(uTi(p)Tj(p)y)χj(y
−1)dµ(y)

=

∫
y∈Tj(p)−1T (Zp)

χi(uTi(p)Tj(p)y)χj(y
−1)dµ(y)

=

∫
u′∈T (Zp)

χi(uTi(p)Tj(p)Tj(p)
−1u′)χj(u

′Tj(p))dµ(u′)

=

∫
u′∈T (Zp)

χi(Ti(p))χj(Tj(p))dµ(u′)

=

∫
T (Zp)

dµ

= 1

where in the second line we have observed that χj(y
−1) 6= 0 precisely when y ∈

Tj(p)
−1T (Zp).

�

We have just proved

Theorem 21. The unramified local Hecke algebra of the maximal torus T of GSp2g(Qp)
is isomorphic to a ring of Laurent polynomials. Explicitly,

H
(
T (Qp), T (Zp)

)
= C[χ±0 , . . . , χ

±
g ].

39We remark that, as T is an commutative group, every double coset in T is really a single coset
and tT (Zp) = T (Zp)t for all t ∈ T (Qp). We shall make use of this in the proof of the lemma.
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�

For any reductive group G with maximal torus TG and for any prime number p
the action of the Weyl group WG on TG(Qp) preserves TG(Zp), and so there is an
induced action of WG on H

(
TG(Qp), TG(Zp)

)
.

Theorem 22. (The Satake Isomorphism)
Let G be a reductive group with maximal torus TG and corresponding Weyl group
WG. Then the unramified local Hecke algebra at p of G is isomorphic to the algebra
of WG invariants in the unramified local Hecke algebra of TG, ie.

H
(
G(Qp), G(Zp)

) ∼= H(TG(Qp), TG(Zp)
)WG .

Proof. See [Van der Geer, §17].

�

Corollary 4.4. (a)

H
(
GSp2g(Qp),GSp2g(Zp)

) ∼= C[χ±0 , . . . , χ
±
g ]Sgn(Z/2Z)g

where Sg acts by permuting X1, . . . , Xg and the ith copy of Z/2Z acts by inverting
Xi.

(b) H
(
GSp2g(Qp),GSp2g(Zp)

)
is a commutative algebra.

�

Using the Satake isomorphism and the tensor product isomorphism (theorem 20)
one can write down explicit generators for H(GSp+

2g(Q), Sp2g(Z)).

Theorem 23. The Hecke algebra H(GSp+
2g(Q), Sp2g(Z) is generated by the double

cosets of

T (p) :=

(
Ig 0
0 pIg

)
,

T (p)−1 :=

(
Ig 0
0 p−1Ig

)
,

and

Ti(p
2) :=


Ig−i

pIi
p2Ig−i

pIi


as p runs over the set of prime numbers (Ij denotes the j by j identity matrix).

Proof. See [Van der Geer, §16, theorem 16.3] for a discussion and [A-Z] for a proof.

�

As was true for g = 1, for each weight k and each postive integer there exists a
certain Hermitian product

Sk
(
Sp2g(Z)

)
× Sk

(
Sp2g(Z)

)
→ C
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called the Petersson product40 with respect to which the Hecke operators on Sk
(
Sp2g(Z)

)
are all self adjoint. Since a family of self-adjoint commuting operators on a finite
dimensional vector space can always be simultaneously diagonalised, we obtain the
following startling theorem.

Theorem 24. The space Sk
(
Sp2g(Z)

)
of cuspforms of weight k has a basis of si-

multaneous eigenvectors with respect to the Hecke algebra H
(
GSp+

2g(Q), Sp2g(Z)
)
.

We are moved to make the following definition:

Definition 4.9. Let Γ be an arithmetic subgroup of Sp2g(Q)
)
. A Hecke eigenform

for Γ is a modular form F which is a simultaneous eigenvector for the Hecke algebra
H
(
GSp+

2g(Q),Γ
)
.

4.5 The L-series on a Hecke eigenform

Suppose that F ∈Mk(Sp2g(Z)) is a Hecke eigenform. Then the function

H
(
GSp+

2g(Q), Sp2g(Z)
)
→ C

which sends a Hecke operator φ to its eigenvalue on C-span{F} ⊆ Mk(Sp2g(Z)
)

is
a complex character (ie. a C-algebra homomorphism with 1-dimensional image) of
the Hecke algebra. We denote this Hecke character by χF . For all primes p we
obtain a character χF,p of the unramified local Hecke algebra at p as the composition

H(GSp2g(Qp),GSp2g(Zp) ↪→
⊗
p

H(GSp2g(Qp),GSp2g(Zp)
∼−→ H(GSp+

2g(Q), Sp2g(Z)
χF−→ C

which we may identify with a homomorphism of C-algebras χF,p : C[X±0 , X
±
1 , . . . , X

±
g ]W →

C where W ∼= Sg n (Z/2Z)g is the Weyl group of GSp2g acting as in the preceding
section. Tautologically, we have

HomC-alg
(
C[X±0 , X

±
1 , . . . , X

±
g ]W ,C

)
= (C×)g+1/W

and so we further identify χF,p with the W -orbit of a certain (g+1)-tuple (α0, . . . , αg)
of non-zero complex numbers.

Definition 4.10. With all notation being as above, a set of Satake parameters
for F at p is any member of the W -orbit of (α0, . . . , αg).

Definition 4.11. Let F ∈ Sk(Sp2g(Z)) be a cuspidal Hecke eigenform. The (for-
mal) spinor Euler factor of F at p is the expression

Lp(F, spin, X) := (1− α0X)

g∏
r=1

∏
1≤i1<...<ir≤g

(1− α0α1 . . . αgX)

for any41 set of Satake parameters (α0, α1, . . . , αg) for F at p.

The (formal) spinor L-series of F is the infinite product

Lspin(F, s) :=
∏
p

Lp(F, spin, p−s)−1.

40We decline to give the definition (which can be found in [Van der Geer, §5] and [Andrianov,
§1.3 (especially theorem 1.38)]) simply because we will not revisit this product again after the
present paragraph.

41Since Satake parameters are unique up to conjugacy this is well defined.
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Remark: On the origin of the name “spinor.” In the context of Lang-
lands’s theory of dual groups and L-groups the set of complex characters of
H
(
GSp2g(Qp),GSp(Zp)

)
is in canonical correspondence with the set of “semisim-

ple” conjugacy classes (ie. conjugacy classes of points in the maximal torus) in
a certain complex reductive Lie group GSpin2g+1(C) which is related to the gen-

eral symplectic group by GSpin2g+1 = ĜSp2g where ·̂ denotes the dual group con-
struction. The local Hecke-character χF,p is thus identified with a conjugacy class
cF,p ⊆ GSpin2g+1(C). To each irreducible and finite dimensional complex represen-
tation π : GSpin2g+1(C)→ GL(V ) we associate an Euler factor

Lp(F, π,X) := det
(
1− pi(cF,p)X|V

)
and a corresponding (formal) L-series

Lπ(F, s) :=
∏
p

Lp(F, π, p
−s)−1.

The spinor L-function corresponds to a certain (2g + 1)-dimensional representation
of GSpin2n+1(C) occurring in the context of Clifford algebras and mathematical
physic. Elements of the corresponding representation space are known as “spinors,”
whence the name.

4.6 Example: the spinor L-function of cuspform of level
SL2(Z).

The reasons for presenting the example in this section are twofold. Firstly, we hope
to explain why the spinor L-series has been singled out for special attention, and
secondly we wish to (finally!) find our way home to the basic motivating question
of this thesis: just what should a Taniyama-Shimura-Weil / modularity conjecture
look like when g > 1?

We begin by quoting three theorems. The first (respectively second) of which
expresses the eigenvalues of a Hecke eigenform for Sp2g(Z) (respecitvely the weight
of a cuspidal Hecke eigenform for SL2(Z)) in terms of Satake parameters, and the
third is the famous ramanujan identity for Hecke operators acting on Sk(SL2(Z).

Theorem 25. Let F be a Hecke eigenform for Sp2g(Z), let p be a prime number and
let (α0, . . . , αg) be a set of Satake parameters for F at p. Let λ(p) be the eigenvalue
of F under the Hecke operator T (p) (see theorem 23). For j = 1 to g let σj be the

jth elementary symmetric function in g variables evaluated at (α1, . . . , αg), ie.

σj :=
∑

1≤i1<i2<...<ij≤g

αi1αi2 . . . αij .

Then we have the identity

λ(p) = α0

(
1 +

g∑
j=1

σj
)
.

Proof. This can derived from [A-Z, pages 142-145]. See [Van der Geer, §18 proposi-
tion 18.1 and §19] for a discussion.
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�

Theorem 26. Let p be a prime number, let f ∈ Sk
(
SL2(Z)

)
be a Hecke eigenform

and let (α0, α1) be a set of Satake parameters for f at p. Then α2
0α

1 = pk−1.

Proof. See [Van der Geer, §19] .

�

Before quoting the third theorem we remark that for each prime p and integer
r the set SL2(Q)[pr] := {A ∈ SL2(Q) | det(A) = pr} is – since the value of the
determinant mapping is constant on any double coset of SL2(Z) – a union of double
cosets of SL2(Z) and thus also a sum of Hecke operators. We denote this “total
Hecke operator of SL2(Q)[pr]” by T (pr).

Theorem 27. For all primes numbers p and all integers r > 1 we have the identity

T (pr+1) = T (p)T (pr)− pk−1T (pr−1)

as operators on M2(SLk(Z).

Proof. See [Zagier 123, §4 (especially 4.2)]

�

The result we are aiming for follows from these via a chain of corollaries.

Corollary 4.5. Let f =
∑

n≥1 anq
n ∈ Sk

(
SL2(Z)

)
wih a1 = 1 and let λ(pr) denote

the eigenvalue of f under the operator T (pr). Then for all primes p and all integers
r ≥ 2 we have apr = λ(pr).

Proof. The case r = 1 is lemma 4.5. For r = 2, if for each modular form g we
define [g]n to be the coefficient of qn in the Fourier expansion of g then we combine
theorem 27 and the explicit formula 4.2 for the action of T (p) on Fourier coefficients
to obtain

λ(p2) = [T (p2)f ]1 = [T (p)T (p)f ]1 − pk−1 = [f ]np2 + pk−1 − pk−1 = [f ]np2 .

The claim for general r ≥ 2 now follows by induction from the base cases r = 1, 2
with a liberal use of theorem 27 and corollary 4.2.

�

Corollary 4.6. Let f =
∑

n≥1 anq
n ∈ Sk(SL2(Z) be a Hecke eigenform. Then the

Euler factor for the spin L-series of f at p is

Lp(f, spin, X) =
1

1− apX + pk−1X2
.

Proof. From the definition of the spinor Euler factor at p we have

Lp(f, spin, X) =
1

(1− α0X)(1− α0α1X)
=

1

1− α0(1 + α1)X − α2
0α1X

and this is equal to (1− apX + pk−1X2)−1 by theorem 26.

�
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Corollary 4.7. Define

Φp(X) := 1 +
∑
r≥1

T (pr)Xr.

Then the identity

Φp(X) =
(
1− T (p)X + pk−1X2

)−1

holds in the ring EndC
(
Mk(SL2(Z)

)
[[X]] of formal power series over the endomor-

phism algebra of Mk

(
SL2(Z)

)
.

Proof. For convenience we define T (p0) = 1. Then(
1− T (p)X + pk−1X2

)
Φp(X)

= Φp(X)− T (p)XΦp(X) + pk−1X2Φp(X)

= 1 +
(
T (p)− T (p)

)
X −

∑
r≥2

(
T (pr)− T (p)T (pr−1) + pk−1T (pr−2)

)
Xr

which is equal to 1 by theorem 27.

�

Definition 4.12. The Dirichlet series of a sequence (an)n∈N of complex numbers
an is the series

∑
n ann

−s.
The Dirichlet series of a modular form is the Dirichlet series of its sequence

of Fourier coefficients.

Remark: By far the simplest42 and most famous nontrivial example of a Dirich-
let series is

∑
n n
−s ie. the Dirichlet series of the of the constant sequence an = 1.

This series is better known as the Riemann Zeta function.

Theorem 28. The spinor L-function of f =
∑

n≥1 anq
n is equal to the Dirichlet

series of f .

Proof. A simple calculation using the explicit formula in corollary 4.2 confirms that
that the system of Fourier coefficients of a cuspidal Hecke eigenform is multiplicative
eg. anm = anam whenever gcd(n,m) = 1. The series defining the spinor L-series
of f is known to be absolutely convergent for Re(s) sufficiently large [Borel, §14,
theorem 14.2], and so we are permitted to rearrange the summation as we see fit.
The particular way in which we see fit to do so is the following one:

L(f, spin, s) =
∏
p

1

1− app−s + pk−1−2s

=
∏
p

Φp(p
−s)

=
∏
p

∑
r≥0

apr

prs

=
∑
n≥1

an
ns

where on the last line we have invoked the fundamental theorem of arithmetic.

42For a given (and contestable!) value of “simple.”
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�

We shall now give an alternative statement of the modularity theorem 1 from
§1. The reader would do well to compare the following statement to its earlier
counterpart.

Theorem 29. (Taylor-Breuil-Conrad-Diamond) Let E/Q be an elliptic curve
of conductor NE. Then there exists a Hecke eigenform f ∈ S2

(
(Γ0(NE)

)
with ratio-

nal eigenvalues such that
L(E, s) = Lspin(f, s).

5 Modularity

Philosophical Definition 5.1. An abelian variety A over Q of dimension g is
modular if there exists a modular form F ∈ Mk(Γ) for some weight k ∈ Z and
some arithmetic subgroup Γ of Sp2g(Q) together with a finite dimensional complex
representation π of GSpin2g+1(C) such that

L(A, s) = L(f, π, s)

.

The difficulties and deficiencies of this definition are several and glaring.

5.1 Partial L-series and “Automorphicity”.

Insight from the theory of Galois representations enables us extend the definition
of L(A, s) =

∏
p Lp(A, s) over all primes p, including those p at which A has bad

reduction. In contrast, given a general Hecke eigenform F of level Γ ( Sp2g(Q) gor
g > 1 and a finite dimensional complex representation π : GSpin2g+1(C) → GL(V )
we have only succeeded in defining a partial L-series∏

p∈S

Lp(f, π, s)

where S is the set of primes p for which the local Hecke algebra at p is unramified43

If we wish to state a coherent analogue of the Taniyama-Shimira-Weil / Modularity
Conjecture then it is incumbent upon us to show that there is a natural – and
moreover unique – way to define Lp(f, π, s) when p /∈ S. It is a standard (but very
much open) conjecture in the Langlands’ program (see [Borel, especially §12]) that
a suitable definition does indeed exist for partial L-series that are “automorphic” in
origin.44

5.2 L-series versus L functions

Neither L(A, s) nor L(f, π, s) is known (outside of certain special cases) to have
good analytic properties as a function an the complex plane. In particular, it has
not been established that these L-series are actually L-functions.

43When g = 1 we can define the L-series of a Hecke eigenform f to be the Dirichlet series of f .
44We will not attempt to define what “automorphic” means in this context. Suffice it to say

that this class of L-series encompasses (but vastly generalises) the L-series of Hecke eigenforms.
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Philosophical Definition 5.2. An L-function is a meromorphic function φ :
C→ C with the following properties:

(a) φ is the meromorphic continuation of a function defined in some right half plane
Re(s) > C (C ∈ R > 0) by a Dirichlet series

∑
n ann

−s;

(b) φ has an Euler product, ie. for Re(s) > C one can write φ(s) as a product

φ(s) =
∏
p

φp(s)

of analytic functions φp indexed by prime numbers p;

(c) there exists a function φ∞ such that the function Φ(s) := φ∞(s)φ(s) is a mero-
morphic function on C with finitely many poles which moreover satisfies a func-
tional equation relating its value at s to its value at κ − s for some constant
κ ∈ R (depending on φ).

In full generality we have

Theorem 30. (Langlands), care of [Borel, §14 theorem 14.2].
For each Hecke eigenform F and each finite dimensional complex representation π
of GSpin2g+1(C) the partial L series∏

p unramified

Lp(f, π, s)

is absolutely convergent in some right half plane.

For g = 1 and g = 2 we can do much better.

Theorem 31. Let N be a positive integer and let f ∈ Sk
(
Γ1(N)

)
be a newform, ie. a

cuspidal Hecke eigenform f(q) =
∑

n≥1 anq
n with a1 = 1 such that f /∈Mk

(
Γ1(M)

)
for any proper divisor M of N . Let Γ(s) :=

∫∞
t=0

ts−1e−tdt be the familiar Gamma
function from complex analysis. Then the function

Λ(f, s) = N s/2 Γ(s)

(2π)s
L(f, s)

has an analytic continuation to an entire function on C. Moreover, there exists a
second newform f̃ of the same weight and level as f and a constant W (f) such that

Λ(f, s) = W (f)Λ(f̃ , k − s).

Theorem 32. (Andrianov)
If F ∈Mk

(
Sp4(Z)

)
is a cuspidal Hecke eigenform then the function

Λspin(F, s) := Γ(s)Γ(s− k + 2)Lspin(F, s)

is meromorphic on C with finitely many poles and satisfies the functional equation

Λspin(F, 2k − 2− s) = (−1)Λk
spin(F, s).

For a full discussion and proof of these theorem, see [Rohrlich, section 3] (espe-
cially proposition 18 on page 85) and [A-Z] respectively.
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5.3 Modularity of GL2-type Abelian Varieties.

For a special class of abelian varieties a modularity theorem along the lines suggested
by philosophical definition 5.1 is known due to work of Ribet and the proof of Serre’s
conjecture by Khare & Wintenberger.

Definition 5.1. The endomorphism ring End(A) of an abelian variety A is the
ring of auto-isogenies of A under composition and pointwise addition. The rational
endomorphism algebra of A is the Q-algebra End(A)⊗Z Q.

Definition 5.2. An abelian variety A over Q is said to be of GL2-type if the ratio-
nal endomorphism algebra End(A)⊗Q is isomorphic to a number field of dimension
[End(A)⊗Q : Q] = dimA over Q.

In [Ribet, §4, theorem 4.4] it is shown that Serre’s conjecture on the modularity
of (odd) irreducible galois representations mod p implies that every abelian variety
of GL2-type is “classically modular.”

5.4 Gritsenko Lifts and the Paramodular Conjecture

We conclude with a conjecture of Brumer & Kramer in [B-K] which – by virtue
of being explicit enough to be computationally testable45 – amounts to the current
state-of-the-art modularity conjecture for g = 2.

Definition 5.3. The paramodular group of level N is

Γ[N ] :=

{
g ∈ Sp4(Q)

∣∣∣∣∣g =


∗ ∗ N−1∗ ∗
N∗ ∗ ∗ ∗
N∗ N∗ ∗ N∗
N∗ ∗ ∗ ∗


}
,

where ∗ denotes an integer.

Remark: The paramodular group Γ[N ] can be shown to be conjugate (in
GL2g(Q)) to the group Sp(diag(1, N),Z). Thus Γ[N ]\H2 is a (surrogate) coarse
moduli space of polarized abelian surfaces with polarization of type diag(1, N).

For each positive integer N there exists, thanks to work of Skoruppa-Zaguier in
[S-Z] and Gritsenko in [Gritsenko], an injective homomorphism from a certain sub-
space of the the space of elliptic cuspforms Sk(Γ0(N) to the space of paramodular
forms Mk(Γ[N ]). This homomorphism is known as the Gritsenko lifting and the
paramodular forms in its image are known as Gritsenko lifts .

In [R-S] an analogue of the theory of Atkin-Lehner theory of old- and new-
forms on SL2 is considered with respect to which the subspace of Mk(Γ[N ]) con-
sisting of Gritsenko lifts plays the role of “oldforms”.46 Brumer & Kramer define a
Gritsenko-non-lift to be a cuspidal Hecke eigenform in the orthogonal complement
of the space of Gritsenko lifts and advance the following precise conjecture.

Conjecture 5.1. (Brumer-Kramer 2010) Conjecture 1.1 in [B-K]
There is a one-to-one correspondence between isogeny classes of abelian surfaces A

45The paper [Poor-Yuen] details a continuing computational investigation of paramodular forms
which has – thus far – borne out the conjecture of Brumer & Kramer.

46See §1 for the definitions of old- and newforms.
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over Q of conductor N with EndQ(A) = Z and weight 2 non-lifts f on the paramod-
ular group Γ[N ] with rational eigenvalues, up to scalar multiplication. Moreover, the
L-series L(A, s) and Lspin(f, s) should agree.
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7 Appendix A. Galois representations

7.1 (Finite) Galois theory

Any ring homomorphism ϕ : K → L between fields K and L is necessarily injective
and so induces (i) an isomorphism between K and a subfield ϕ(K) of L and (ii) a
K-algebra structure on L for which ϕ is the structure map. In this situation one
says that L is an extension of K.47

Definition 7.1. An extension L/K of fields is called finite if [L : K] < ∞, ie. if
L is finite dimensional as an algebra over K.

A powerful technique for studying the structure of an extension L/K is to con-
sider the group Aut(L/K) of automorphisms of L as an element of the category
AlgK of K algebras.

According to taste, elements of Aut(L/K) can be thought of as ring homomor-
phisms σ : L → L such that σ(x) = x for all x ∈ K, or else (should one wish to
keep track of the particular extension mapping K → L) as commuting diagrams

L L

K

σ

It is an easy exercise to verify that for each subgroup H of Aut(L/K) the subset

LH := {x ∈ L | σ(x) = x for all σ ∈ H}

of L on which H acts trivially is in fact a subfield of L. We refer to LH as the fixed
field of H.

Definition 7.2. A extension L/K of fields is called Galois if

1. L/K is finite;

2. LAut(L/K) = K, ie. no proper intermediate extension of K in L is fixed by
every element of Aut(L/K).

When L/K is Galois we call Aut(L/K) the Galois group of the extension and
denote it by Gal(L/K).

The power of this definition is made abundantly clear by the striking funda-
mental theorem of Galois theory.

Theorem 33. If L/K is a Galois extension then

1. [L : K] = #Gal(L/K);

2. L/E is Galois for every subextension E/K contained in L;

3. subextensions of K in L are in one-to-one correspondence with subgroups of
the Galois group, eg. if K ⊆ E ⊆ L is a tower of extensions then E = LH for
a unique subgroup H of Gal(L/K);

47One often writes “L/K is an extension” to indicate that L is an extension of K. It is – for
better of worse – customary to suppress the homomorphism ϕ : K → L from the notation and to
conflate K with its image ϕ(K) in L.
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4. the extension LH/K is Galois if and only H is a normal subgroup of Gal(L/K);

5. for each normal subgroup H of Gal(L/K) there is a canonical surjection Gal(L/K)→
Gal(LH/K) with kernel H.

�

The surjective homomorphism Gal(L/K) → Gal(LH/K) in the last part of the
theorem is a simple restriction map eg. to each σ ∈ Gal(L/k) we associate the
pullback of σ along the inclusion H ↪→ L. That such a simple minded approach
actually works follows from the part (4) of the theorem: to say that H is a normal
subgroup of Gal(L/k) is to say that σH = Hσ for all σ, in which case for all x ∈ LH
we have

Hσx = σHx = σx.

and so σ(LH) = LH . That Gal(L/K) surjects onto Gal(LH/K) is only slightly less
trivial: one begins by choosing a basis e1, . . . , en for L over LH with e1 = 1 and then
one defines for each K-linear automorphism ψ : LH → LH a lifting Ψ : L → L by
letting ψ act diagonally with respect to the chosen basis, eg.

Ψ(
n∑
i=1

aiei) :=
n∑
i=1

ψ(ai)ei.

Clearly Ψ is K-linear, and one can easily check48 that Ψ is multiplicative and thus
a field automorphism of L.

7.2 Infinite Galois theory

Galois theoretical methods are sufficiently powerful, and the family of all Galois
extensions of a given field K sufficiently orderly in structure, that one is able to take
as one’s objects of study not only Galois extensions of arbitrarily large degree but
also arbitrarily large or even infinite systems of Galois extensions. Before we can
hope to explain just what this last statement purports to mean we must first make
a brief detour into abstract nonsense.

Let GK denote the subcategory of AlgK whose objects are Galois extensions
L/K and whose morphisms are K-linear field embeddings. Thus an object of GK is
a diagram

L

K

with L/K Galois and an element of HomGK (L,E) is a commuting diagram

L E

K

f

48For example, by letting {x(i, j, k)} ⊆ LH be a set of structure constants satisfying eiej =∑
k x(i, j, k)ek for every i, j and hammering out the computation in coordinates.
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where f : L→ E is ring homomorphism.

Let L/K and E/K be any two Galois extensions. Fix an algebraic closure
K → K and let F be the subfield of K generated by the images of all embeddings
(of which there [L : K] and [E : K] respectively) of L and E into K. It turns out
that F is a Galois extension of K in which both L and E are subextensions. The
upshot is that for any two Galois extensions L,E of K there exists a third Galois
extension F of K and a commuting diagram in GK of the form

L E F

K

We have just shown that GK is an inductive system49 in the category of K-
algebras. By the fundamental theorem of Galois theory the corresponding family
{Gal(L/K)}L∈GK of Galois groups forms a projective system50 of finite groups in
the category of groups. This projective system of Galois groups is the central object
of study for “infinite Galois theory” and it is precisely this object that allows us to
make sense of (and make good on) the grandiose claim made at the outset of this
section.

7.3 The Absolute Galois Group

Definition 7.3. Let K be a field. The absolute Galois group GK of K is the
projective limit in the category of groups of the projective system of all Galois groups
for finite extensions of K. That is,

GK := lim←−
L∈GK

Gal(K/k).

More prosaically, an element σ ∈ GK is a family {σL ∈ Gal(L/k)}L∈GK such that
whenever one has L,E, F ∈ GK with L a common subextension of E and F then the
restriction to L of σE and σF agree. Alternatively, if one fixes an algebraic closure
K → K with compatible embeddings {L → K}L∈GK then one may regard GK as
Gal(K/K). We make mention of this only because the latter notation is extremely
common in the literature.

Examples 7.1.

1. The algebraic closure of R is C and [C : R] = 2. Thus GR ∼= Z/2Z is the
subgroup of Aut(C) generated by complex conjugation.

2. Let p be a prime number and let K = Fp, the field of order p. Every finite
extension of Fp is of the form Fpn for some n > 0 and every such extension is

49An inductive (also known as direct) system is a (small) category C whose morphisms induce
a partial order on the set of objects of C (ie. x ≤ y if and only if there exists a morphism x → y
in C) with respect to which any two objects have a common lower bound.

50A projective (aka inverse) system is a (small) category C whose opposite category Cop is an
inductive system.
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Galois. The Galois group Gal(Fpn/Fp) is cyclic with canonical generator the
Frobenius automorphism

Frobp : Fpn → Fpn
x 7→ xp

and thus isomorphic to Z/nZ. Passing to the projective limit we conclude that

GFp = lim←−
n

Z/nZ ∼=
∏

prime `

lim←−
n

Z/`nZ =
∏

prime `

Z`

where Z` is the additive group of `-adic integers.51

It is customary (not to mention advantageous) to endow Gk with a topology that
reflects its construction as a projective limit of finite groups. The reader is gently
reminded that GK can be identified with a certain subset of the cartesian product
of Galois groups corresponding to all Galois extensions of K.

Definition 7.4. For each L ∈ GK endow Gal(L/K) with the discrete topology. The
profinite topology on GK is the topology induced by the inclusion

GK ↪→
∏
L∈GK

Gal(L/K)

where the ambient group is given the canonical product topology.52

We summarise the essential features of this topology.

• The topology of a topological group is uniquely determined by specifying an
open neighbourhood base at its identity element. In GK such a neighbourhood

base is given by the set of all kernels of canonical projections GK

projL−−−−→
Gal(L/K) for L ∈ GK . Since each group Gal(L/K) is finite, every such kernel
subgroup is finite index. As a corollary, if U is any nonempty open subset of
GK then GK is covered by finitely many translates of U .

• By the fundamental theorem,

ker
[
Gk → Gal(L/k)

]
=
(∏
E/L

Gal(E/L)
∏

F∈GK ,F /∈GL

Gal(F/K)
)
∩GK .

Thus the size of the open kernel of a projection map varies inversely with
the degree of the corresponding extension. Suitably paraphrased, this says
that “zooming in” at a point of GK is tantamount to studying extensions of
increasingly large degree over K.

• As Gal(L/K) is discrete for each L/K, each of the canonically open kernel
subgroups is also closed.

51The group lim←−n∈N Z/nZ is also known as the profinite completion of the integers and is

often denoted by Ẑ.
52Given a family {Xλ}λ of topological spaces, the product topology on

∏
λXλ is the weakest

topology in which every canonical projection
∏
λXλ

projλ−−−−→ Xλ is continuous.
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• It is not the case that normal subgroups of GK are in one-to-one correspon-
dence with Galois extensions of K. Fortunately, the desired correspondence
may be recovered by restricting one’s attention to closed normal subgroups of
GK .

• Since any finite topological space is compact, Tychonoff’s theorem implies
that

∏
L∈GK Gal(L/K) is compact. It is an elementary exercise in point set

topology to show that GK embeds into the product as a closed subgroup. Thus
GK is itself compact.

• GK is totally disconnected: that is, a subset of GK is connected if and only
if it is a singleton set.

7.4 Number fields

In the case that K is a number field we can augment and rigidify GK by exploiting
the arithmetic of K to define useful auxiliary structures.

Definition 7.5. A number field is a finite extension of the field of rational numbers
Q. If K is a number field then the ring of integers of K is the subring OK of
elements which are roots of monic integral polynomials:

OK := {x ∈ K | f(x) = 0 for some f = ant
n + an−1t

n−1 + . . .+ a1t+ a0 ∈ Z[t] with an = 1.}

The ring OK has fraction field K, is finitely generated as a module over Z, and
is an example of a Dedekind domain. Several equivalent definitions of the latter
exist, the following being the most convenient for our purposes.

Definition 7.6. A Dedekind domain is an integral domain O with the unique
factorisation property at the level of ideals. That is, if I ⊆ O is a non-zero ideal
then there exists a finite and unique collection of distinct prime ideals p1, . . . , pn and
unique positive integers e1, . . . , en such that

I =
n∏
i=1

peii .

It follows immediately from the definition that in a Dedekind domain O every
non-zero prime ideal is maximal.

Definition 7.7. Let O be a Dedekind domain and let p be a prime ideal in O. The
residue field of O at p is defined to be O/p.

In the case that O = OK for K a number field then the fact that O is a finitely
generated Z-module implies that every residue field is a finite field.

For the remainder of this document, whenever K is a number field we shall adopt
the following notations (abusive and otherwise) and conventions:

• If p is a prime ideal of OK then we will allow ourselves to call p a prime of K.

• We will allow ourselves to refer to a residue field of OK as a residue field of K.

• The residue field of K at p will be denoted by kp.
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• We define Kp to be the fraction field of the p-adic completion lim←−nOK/p
n of

OK at a prime ideal p. We will refer to this field as either the completion of
K at p or else the p-adic completion of K.

• The ring lim←−nOK/p
n itself will be denoted by OKp and referred to as either

the ring of p-adic integers or else as the ring of integers of Kp.

It is clear that for any extension ϕ : K → L of number fields we have ϕ(OK) ⊆
OL.

Definition 7.8. Let K → L be an extension of number fields and let p be a prime
of K. Let qe11 . . . qemm be the unique factorisation of pOL into distinct primes in L
with multiplicities e1, . . . , em. We say that p is

1. split in L if ei = 1 for all i;

2. ramified in L if ei > 1 for some i;

3. inert in L if pOL is prime.

The primes qi appearing the factorisation are said to be primes lying over (or
simply over) p. These are precisely the primes of OL satisfying qi ∩ OK = p. The
multiplicities e1, . . . , en are variously called the ramification numbers or ramifi-
cation degrees of p.

When L/K is Galois it is a theorem that for each prime p of OK the action of
Gal(L/K) on L descends to a transitive permutation action on the set {q1, . . . , qm}
of primes over p.

Definition 7.9. Let L/K be a Galois extension of number fields and let q be a prime
over p. The decomposition group at q is the stabiliser in Gal(L/K) of q for its
permutation action on primes over p:

Dq/p = {σ ∈ Gal(L/K) | σ(q) = q}.

It is clear from the definition that any two decomposition groups at primes over
p are conjugate in the Galois group.

The action of Dq/p preserves q and fixes p pointwise and so descends to an
automorphism of lq := L/q as an algebra over kp := K/p. In other words, the
decomposition group at q is equipped with a natural homomorphism to the Galois
group Gal(lq/kp) of the extension of (finite) residue fields.

Theorem 34. Let L/K be a Galois extension of number fields. Let p be a prime of
K and let q be a prime of L over p. There is an isomorphism of groups

Dq/p
∼−→ Gal(Lq/Kp).

Proof. Let ν : Lq → Q∪{∞} denote the q-adic discrete valuation and let q ∈ q be a
uniformiser for Lq

53 Then {x ∈ Lq | ν(x) ≥ 0} is precisely the ring of integers OLq

of Lq. We remark that every σ ∈ Gal(Lq/Kp) preserves both OLq and its maximal
ideal

qOLq = {x ∈ Lq | ν(x) > 0.}
53A uniformiser in a discrete valuation ring is an element m of the unique maximal ideal m with

minimal m-adic valuation.
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This is because (i) OL is defined by a purely algebraic integrality condition and
must therefore be preserved since Q ⊆ Kp, and (ii) OL embeds into its completion
OLq as a dense subset. The maximal ideal qOq is precisely the subset of O consisting
of elements x such that the sequence x, x2, x3, . . . converges to zero in q-adic norm54

and this set must necessarily be preserved by any (continuous) field automorhism
of Lq.

As for the putative isomorphism, to each σ ∈ Gal(Lq/Kp) we may associate
the restriction σ|L of σ to L ⊆ Lq, thus obtaining an automorphism of L fixing K
pointwise and preserving q ie. an element of Dq/p. This procedure of restriction is
faithful since L is dense in Lq . Conversely, for each θ in the decomposition group
at q we obtain an automorphism θq of Lq preserving both Oq and its maximal ideal
(ie. a continuous automorphism) by defining

θq(x) = lim
n→∞

θ(xn)

for any sequence {xn} in L converging to x.

�

In the course of the preceding proof it was shown that the action of Gal(Lq/Kp)
preserves both the ring of q-adic integers and its maximal ideal. Combining this
observation with the conclusion of the theorem we see that there exists a natu-
ral homomorphism from the decomposition group Dq/p to the Galois group of the
extension of finite residue fields lq/kp.

Theorem 35. For every prime p of K and every prime q of L over p the natural
homomorphism

Dq/p → Gal(lq/kp)

is surjective.

Definition 7.10. The inertia group at q, denoted Iq/p, is the kernel of the surjec-
tive homomorphism Dq/p → Gal(lq/kp).

To summarise: if L/K is a Galois extension of number fields then for each prime
p of K and each choice of prime q over p in of L (this choice being unique up to
conjugation in Gal(L/K)) we obtain a short exact sequence of groups of the form

1→ Iq/p → Dq/p → Gal(lq/kp)→ 1.

It can be shown that this sequence is well behaved under taking projective limits
over all L ∈ GK (so long as one makes compatible choices of primes over p) in the
sense that the sequence

1→ lim←−
L/K

Iq/p → lim←−
L/K

Dq/p → lim←−
L/K

Gal(lq/kp)→ 1

is exact and the inverse limits of the decomposition and inertia groups correspond-
ing to different compatible families of primes over p are all conjugate in GK . By
abuse of notation, any subgroup of GK conjugate to lim←−L/K Dq/p (resp. lim←−L/K Iq/p)
is referred to as the decomposition group Dp (resp. the inertia group Ip) of GK at
p.

54The q-adic norm of x is |lq|−ν(x).
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Remark: These short exact sequence can rewritten in the form

1→ Ip → GKp → Gkp → 1.

While only cosmetically different, this new expression suggests a general strategy –
or at the very least a philosophy – for attacking the Galois theory of number fields55:
begin by studying the (far simpler and/or more controllable) Galois theory of their
completions and their finite residue fields.

7.5 Galois representations

For general fields K the group GK is far too complex to expect direct group theo-
retical methods (eg. group presentations) to be practicable, much less to bear fruit.
This remains true even when one exploits to the fullest both topological methods
and whatever auxilliary arithmetic data (such as that introduced in section 6.5) one
might have to hand. One must suffer to study GK indirectly, ie. by way of its
actions and – in particular – of its continuous representation theory.

Definition 7.11. A continuous representation of a topological group G on a
vector space V is a continuous homomorphism ρ : G→ GL(V ).

Remark: The continuity of a representation depends crucially on the choice of
topology for GL(V ). This in turn depends on the base field F of V . If F = R or
F = C then GL(V ) is to be understood as a Lie group. If F is a nonarchimedean local
field (eg. F = Qp) then GL(V ) will be given the induced topology of its inclusion
into F n2

where n = dimV . 56. If F is a finite field then GL(V ) will always be
a discrete space. These stipulations ensure that whenever the vector space V is
itself equipped with a natural topology then a representation ρ : G → GL(V ) is
continuous (in the sense of the definition) if and only if for each v0 ∈ V the function

G→ V, g 7→ ρ(g)v0

is continuous.

Henceforth all representations will be assumed continuous. A representation of
an absolute Galois group GK will be referred to as a Galois representation.

Definition 7.12. Let K be a number field and let p be a prime of K. A Galois
representation ρ : GK → GL(V ) is said to be unramified at p if ρ(Ip) = 1 for some
(and hence every) inertia group at p. Otherwise, ρ is said to be ramified at p.

One happy consequence of a Galois representation being unramified at p is that
for such representations and such primes we can transport useful structures back-
wards from the (well understood) absolute Galois groups of finite fields along the
surjective homomorphisms Dp → Gkp . Recall that a Galois extension K → L of
number fields induces Galois extensions kp → lq of finite residue fields for each prime

55And more generally, of global fields. In place of an honest definition we offer a complete
classification: a global field is either (i) a number field or (ii) the field of rational functions on a
projective algebraic curve over a finite field.

56In other words, GL(V ) will be a sort of “p-adic manifold.” The technical name for such a
thing is a rigid analytic space.



Robert Sayer 71

p of K and each prime q of L over p, and that if |lq| = |kp|n then Gal(lq/kp) is a
cyclic group of order n with canonical generator the Frobenius automorphism
x 7→ xn. While it is no longer quite cyclic, the absolute Galois group Gkp neverthe-
less possesses a canonical topological generator 57. This is an element φp of Gkp with
the property that the image of φp in the Galois group of any finite extension of kp
is the associated Frobenius automorphism. For technical reasons it is convenient to
work not with φp itself but with its inverse Frobp := φ−1

p . 58

Definition 7.13. A Frobenius element of GK is any inverse image of Frobp in
any of the decomposition groups Dp at p.

From the short exact sequence

1→ Ip → Dp → Gkp → 1

we see that the obstruction to pulling back the Frobenius element to a well defined
element59 of the decomposition group (and thus to an element of GK itself) is pre-
cisely the existence of an inertia subgroup at p. The upshot is that – for all intents
and purposes – this obstruction vanishes with respect to any Galois representation
which is unramified at p.

The real power in the definition of a Frobenius element is revealed by the follow-
ing striking corollary of Chebotarev’s density theorem:

Theorem 36. Let K be a number field. For each Galois representation ρ : GK →
GL(V ) the set of (conjugacy classes) of Frobenius elements Frobp at primes of K
where ρ is unramified generates a dense subgroup of GK.

Thus a Galois representation is uniquely determined by its values on Frobenius
elements.

7.6 L-functions of Galois representations

Let K be a number field and let ρ : GK → GL(V ) be a Galois representation on a
finite dimensional vector space V . For each prime p of K let V Ip denote the maximal
subspace of V on which the inertia subgroup60 at p acts trivially:

V Ip := {v ∈ V | ρ(Ip)v = v}.

We remark that ρ may be restricted to a well defined representation Dp → GL(V Ip):
indeed, Ip is a normal subgroup61 of Dp and so ρ(Ip)ρ(σ)v = ρ(σ)ρ(Ip)v = ρ(σ)v for
all σ ∈ Dp and all v ∈ V Ip .

Before giving the central definition of this section, we briefly recall that the
norm Np of an ideal p in a number field K is the cardinality of its residue field, ie.
Np := |kp|.

57A topological generator in a topological group G is an element which generates a dense
subgroup.

58In the context of Étale cohomology (where the distinction becomes important) one refers to
Frobp as the geometric Frobenius and to φp as the arithmetic Frobenius.

59Technically a conjugacy class of elements, but this will turn out to be sufficiently well defined
for our purposes.

60This definition does not depend on the choice of Ip in its conjugacy class.
61Recall that the inertia subgroup at p is defined as the kernel of a homomorphism out of the

corresponding decomposition group.
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Definition 7.14. The L-function of a Galois representation ρ : GK → GL(V ) is
the function of a complex variable s defined by the infinite product

L(ρ, s) :=
∏
p

det(I −Np−sρ(Frobp)|V Ip)−1

where
det(I −Xρ(Frobp)|V Ip)

is the characteristic polynomial (in a variable X) of Frobp acting on V Ip. L(ρ, s) is
to be understood as being defined for s in the largest possible right half plane in C
for which the infinite product makes sense and converges absolutely.

8 Appendix B. Line bundles on projective spaces.

In this brief section we present the classification of line bundles of projective space.
These line bundles are (strictly peaking) not examples of the line bundles discussed
in the preceding section since we will need to quotient by a group action with con-
tinuous orbits. Nevertheless, the line bundles in question can be presented in a
virtually identical way.

For each k ∈ Z and n ∈ N we have the following action of C× on Cn+1\{0} ×C:

α
(
(z0, . . . , zn), p

)
:=
(
αz0, . . . , αzn), αkp

)
.

Let C×\kCn+1\{0}×C denote the orbit space of this action and write [(z0, . . . , zn), p]
for the image of

(
(z0, . . . , zn), p

)
under the quotient mapping.

Definition 8.1. The line bundle O(k) is the bundle on Pn with total space C×\kCn+1\{0}×
C and bundle map

πk : Ctimes\kCn+1\{0} × C → Pn,
[(z0, . . . , zn), p] 7→ [z0 : . . . : zn].

A global section s ofO(k) can be identified with a function f : Cn+1\{0}×C→ C
via

s([z0 : . . . : zn]) = [(z0, . . . , zn), f(z0, . . . , zn)]

and if s is to be well defined it must satisfy

[(αz0, . . . , αzn), αkf(z0, . . . , zn)] = [(z0, . . . , zn), f(z0, . . . , zn)] = s([z0 : . . . : zn])

= s([αz0 : . . . : αzn])

= [(αz0, . . . , αzn), f(αz0, . . . , αzn)].

In other words, f must be a homogeneous polynomial of degree k. Conversely, it
is easy to see that every homogeneous polynomial of degree k is a global section of
O(−k). We have shown

Lemma 8.1. Let Ik = {i = (i0, . . . , in) ∈ Zn+1
≥0 |

∑
j ij = k}. Then

H0
(
Pn,O(−k)

)
= C[t0, . . . , tn]k :=

⊕
i∈Ik

Cti00 t
i1
1 . . . t

in
n .
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Remark: It is trivial to see that O(k) ⊗C Om ∼= O(k + m) and that O(0) is a
trivial line bundle.

The line bundles O(−1) and O(1) are singled out for special attention since their
tensor products generate the whole family {O(k) | k ∈ Z}.

Definition 8.2. The tautological line bundle on Pn is O(−1).
The hyperplane line bundle on P n is O(1).

The tautological bundle is so named because it is isomorphic to the meromorphic
line bundle encoding the transition functions for the “standard” affine open charts
{(Ui, ϕi) | 0 ≤ i ≤ n} of Pn where

Ui := {[z0 : . . . : zn] ∈ Pn | zi 6= 0} ϕi−→ Ci × {1} × Cn−1,

[z0 : . . . , zi−1 : zi : zi+1 : . . . : zn] 7→ (z0/zi, . . . , zi−1/zi, 1, zi+1/zi, . . . , zn/zi).

with transition function τji over Ui ∩ Uj given by coordinate-wise multiplication by
zi/zj, eg.

τjiϕi
(
[z0 : . . . : zn]

)
= τij

(z0

zi
, . . . ,

zi
zi
, . . . ,

zj
zi
, . . . ,

zn
zi

)
:=

zi
zj

(z0

zi
, . . . ,

zi
zi
, . . . ,

zj
zi
, . . . ,

zn
zi

)
=

(z0

zj
, . . . ,

zi
zj
, . . . ,

zj
zj
, . . . ,

zn
zj

)
= ϕj

(
[z0 : . . . : zn]

)
.

A meromorphic global section s of this “transition function” bundle can be identified
with a meromorphic function f : Cn → C via its restrictions

s|Ui([z0 : . . . : zn]) =
(z0

zi
, . . . ,

zn
zi
, f(z1/zi, . . . , zn/zi)

)
and the compatibility of s with the transtition functions τji implies that τjifϕi =
f ◦ ϕj ie.

zi
zj
f(z1/zj, . . . , zn/zj)) = f(z1/zi, , . . . , zn/zi) = f

(zj
zi
z1/zj, . . . ,

zj
zi
zn/zj

)
and so f must be homogeneous of degree −1. It is now routine to verify that the
transition function bundle for Pn is isormophic to O(−1) as claimed.

The hyperplane bundle O(1) is so named because the divisor (=zero locus in Pn)
of any non-zero section s of O(1) is the flat hyperplane cut out by the corresponding
homogenous function fs ∈ C[t0, . . . , tn]1.

Theorem 37. Every meromorphic line bundle on Pn is isomorphic to O(k) for
some k ∈ Z.

9 Appendix C. Group Cohomology

If G is a group and A is a G-module then we form a chain complex

C0(G,A)
d0

−→ C1(G,A)
d1

−→ C2(G,A)
d2

−→ . . .
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where the group Cn(G,A) of n-cochains is the set of all functions φ : Gn → A
under pointwise addition and where the differential dn : Cn(G,A)→ Cn+1(G,A) is
defined on n-cochains f by the formula

dnf(g1, . . . , gn+1) = gf(g2, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn)

+(−1)n+1f(g1, . . . , gn).

The nth cohomology of G with coefficients in A is by definition

Hn(G,A) =
ker(dn)

im(dn−1)
.

Remark: The set C0(G,A) of 0-cochains is precisely62 the underlying abelian
group of A. For each a ∈ A = C0(G,A), d0a ∈ C1(G,A) is the function g 7→
d0a(g) := ga − a. To say that a ∈ ker(d0) is thus to say that ga = a for all
g ∈ G and since H0(G,A) = ker(d0) it follows that H0(G,A) = AG is the group of
invariants of A under G. Indeed, Hn(G,A) turns out to be the nth (left) derived
functor of the functor

(∗)G : G-Mod→ Z-Mod, A 7→ AG

taking G-modules to their groups of G-invariant elements.

62According to taste, this is either a tautology (ie. one simply defines C0(G,A) this way)
or else a consequence of categorical nonsense. Notice first of all that G0 cannot be the empty
set since we are working in the category of groups. Secondly, the n-fold cartesian product Gn

is defined by a universal mapping property: for each group M there is a natural isomorphism

Hom(M,Gn)
∼−→
(

Hom(M,G)
)n

, or in other words one obtains a unique homomorphism M → Gn

whenever one chooses exactly n homomorphisms M → G. When n = 0 this says that one obtains a
canonical homomorphism M → G0 whenever one chooses no homomorphisms at all from M to G,
ie. G0 should be a group for which there exists a canonical homorphism M → G0 for each group
M . Then G0 is a terminal object in the category of groups, which is to say that G0 is a trivial
group. Clambering back up and out from our own navels we conclude that functions G0 → A are
in bijection with A.


