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Abstract

We study modular forms modulo p™ with level structure I'; (N), where m > 1, p > 5 is
prime, and N is coprime to p. We exhibit properties of the weight filtrations of these
modular forms by approaching their construction from the perspective of Serre p-adic
modular forms, and present Chen and Kiming’s construction [4] of the theta operator
6. The primary motivation for this thesis is to study and compute theta cycles of these
modular forms, supplementing the results of Kim and Lee [13], and to use the tools
developed by Chen and Kiming to comment on the weight filtration for the differential

operator 0.
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Introduction

Let p > 5 be prime, and N,m > 1 be integers. In this thesis, we introduce modular
forms modulo p™ with level structure I'; (V) by approaching from both classical modular
forms and p-adic modular forms (in the sense of Serre, [15]). Our main objective is to
develop the theory necessary to understand Chen and Kiming’s construction of the
theta operator on modular forms modulo p™, and its corresponding effect on their
weight filtrations.

For most level structures, we can identify modular forms with their corresponding
g-expansions at oo, in particular for Serre p-adic modular forms over I'1 (V). In [15],
Serre demonstrates the classical theta operator = qdiq on g-expansions actually defines
a map on p-adic modular forms of level 1, sending a form of weight k to a form of weight
k4 2. In fact, the arguments can be generalised to show this map exists in all levels N
for which p1 N.

We then naturally define a theta operator on modular forms modulo p™; the
definition via p-adic modular forms allows Chen and Kiming to show this operator is
well-defined, and the congruence results for classical modular forms allow us to deter-
mine the weight filtration in certain cases. In this way, we use both approaches in
defining modular forms modulo p™ from the theory developed in Chapter 1.

From the congruence results and Chen and Kiming’s theorem (see Theorem 3), we
use SageMath-9-7 to compute p-filtration theta cycles for some modular forms modulo

p. We also test a result due to Kim and Lee on theta cycles for m > 2.
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Notation
e Q={>7,ap' | k€Z, 0< a; <p integers} is the p-adic numbers;
o Zp:={>7,ap" | 0< a; <pintegers} C Q, is the p-adic integers;
 for p a prime number, v, : Q, — Z is the p-adic valuation;

o for N > 1 an integer, I'\(N) := {(2%) € SLy(Z) | c=0, a=d =1 (mod N)} is

the arithmetic group giving level N level structure to a modular form;
o ' :=T4(N)=SLyZ);
¢ To(N) = {(2}) € SLo(Z) | ¢ = 0 (mod N)};
o H:={z|im(z) > 0} C C is the upper half-plane;

o for f a function on the upper half-plane, v = (2%) a real matrix of positive

determinant, and k an integer, we define the slash operator

(Flom)(2) = det(7)"2(cz + )+ (j 2) |

Note that (f|, V)7 = [l 77"

Page 2
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1 Defining modular forms modulo p™

In this chapter, we first define classical modular forms in the standard analytic way, and
give an important class of examples: the Eisenstein series. We also state an equivalent
algebraic-geometric definition originally due to Katz [11], as the proofs of certain results
we will need (for example Theorem 5.4 in [7]) are easier using a geometric approach.
We conclude with the definitions of Serre p-adic modular forms and modular forms
modulo p™, making sure we prove these are in fact equivalent. The theory (especially
for the case m = 1) is long established, although still has to be elucidated with some
care due to subtleties arising from the level and from the structure of the ring of rational

modular forms.

1.1 Classical modular forms
1.1.1 Defining classical modular forms

Definition 1. Let I' C SLy(Z) be a group of finite index (called, for convenience, an
arithmetic group in this thesis). A modular form of level I" and weight k € Z-, is a

holomorphic function f : H — C from the upper half-plane H satisfying

(a) for any (¢4) €T, f(%) = (cz + d)* f(z) (this is the automorphy condition);

(b) for any (2%) € SLy(Z), (cz +d)~* f(442) is bounded as im(z) — oo (this is the

growth condition).

It is clear from the definition that the set of all such modular forms f is a C-vector
space, which we denote by M (I"). It is also clear from the definition that multiplying
two such modular forms f and f’ of weights k& and &’ respectively results in a modular
form of level I' and weight k& + &’. Thus

M(T) := P Mu(T)

k>0

is a graded ring, which we refer to as (classical) modular forms with level structure T,
for the purposes of distinguishing them from the forms soon to be defined. If we omit
stating the level structure, it is assumed to be SLy(Z) unless otherwise obvious from

the context.

Page 3
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1.1.2 Fourier expansions for certain modular forms

Observe that (§1) € To(p) NT1(N) N SLy(Z), so for a modular form f in M(Ty(p)),
M(I'y1(N)) or M(SLs(Z)), we have f(z) = f(z+1) by the automorphy condition. This

o0
n=—oo

2miz

means that f has a Fourier expansion (at co) given by > anq™, with ¢ := e

and coefficients a,, € C for all n. But by the growth condition, we must have a,, = 0 for
all n < 0. That is, every modular form in M (T'y(p)), M(I'1(N)) or M(SLs(Z)) can be
identified with a formal power series Y, a,q" € C[q], called its g-ezpansion (at co).

The same argument shows that the C-vector space of modular forms with level

structure given by any arithmetic group I' containing (§ 1) is some submodule of C[q].
Definition 2. For I' = T'y(p),I'1(INV), SLa(Z) and any subring R C C, we define
M (T, R) == {f € My(T) | f =) ang" with a, € RVn}
n=0
to be those modular forms in M (I") whose ¢g-expansions have coefficients in R.

Henceforth, to conform to convention, we write
My (N, R) :== My(T'1(N),R) and M(N,R) := M(I'1(N), R).

Now that we can describe certain classical modular forms in terms of their g-expansions,

we can state the following definition of some very important modular forms:

Definition 3. The standard Eisenstein series on Slo(Z) are given by

for even k € Z¢. Here, By, is the k'™ Bernoulli number, o;(n) := Zd‘n d" is the sum of
the " powers of the positive divisors of n, and ¢ = €*™*. We write P := F,, Q = E,
and R := L.

Proposition 1. (See §2.1 and Proposition 5 in [2]). For even k > 4, we have Ej €
My, (SL2(Z)).

Proposition 2. (See Proposition 6 in [2]). Whilst P satisfies the growth condition, it

Page 4
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does not satisfy the automorphy condition; instead, for any (2Y) € SLa(Z), we have

az+0b 6ic
P = d)?P(z) — — d).
<cz+d) (cz+d)"P(z) . (cz+d)

Although P is not a modular form, it is a p-adic modular form of weight 2 (this
is a result of Proposition 12, or of the identity (9)). In fact, P will be important in the
construction of the theta operator on Serre p-adic modular forms, and eventually on
modular forms modulo p™. It is apropos in the context of our discussion of Eisenstein

series to state another important classical result on modular forms of level I'y:

Proposition 3. (Proposition 4 in [2]). The ring M(I'1) is freely generated by the
modular forms @ and R. Then every modular form in My(I'y) can be expressed as an

isobaric (in the sense of weight) polynomial in @ and R.

1.1.3 Congruences between modular forms

Definition 4. If f =" a,¢" € Q,[q] is a formal series in one variable ¢, we set

vp(f) := infy,(a,),

where v, : Q, — Z is the p-adic valuation for some prime p. Note that v,(f) > 0
implies f € Z,[q]. If v,(f) = m > 0, we write f =0 (mod p™). Let (f;) be a sequence
of elements of Q,[q]. We say that f; converges to f (and write lim f; = f) if the
coefficients of f; converge uniformly to those of f, that is if v,(f — f;) — +oo.

Theorem 1. (Based on Théoréme 1 in §1.3 of [15]). Let m > 1 be an integer, let
p =5 be a prime number, and let N > 1 be coprime to p. Let f, f' € M(N,Q) be two

modular forms with rational coefficients, of respective weights k and k'. Suppose that
f#0and v,(f — f') = v,(f) + m. Then

K=k (mod (p—1)p™1).

We present the proof of this theorem in §1.3 in the case N # 2, 3,4, once we have

defined modular forms modulo powers of primes.

Page 5
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1.1.4 Equivalent definition due to Katz

There is also an algebraic geometric approach to defining modular forms, and under
certain conditions, this definition gives the same result. By defining modular forms as
global sections of a sheaf on some moduli space, one can more easily deduce certain
results about them by calling upon more established theory. One such result (originally

attributed to Serre and Swinnerton-Dyer, but stated by Goren in [7]) is used in §1.3.

Definition 5. A (Katz) modular form of weight k and level ' = I'1(N) is a global section
of the line bundle w®* over the compactified modular curve I' \ H* :=I'\ (H UP*(Q)),
i.e., an element of MF(T) := HO(T \ H*,w®*). Here, w®* is in fact the Hodge
bundle defined as the quotient I' \ H* x C with the action of v = (¢4) € T given by
(z,a) = (72, (cz + d)Fa).

In Katz’s original definition in [5], the modular curve I' \ H is used, thus giving a
definition with no growth condition. But it is a fact that M (T") = MX2(T") (discussed
for example in §4 of Chapter 1 in [7]). Another advantage of this approach is that one
can apply base change to the ring over which the modular curve is defined to arrive at
a more general definition. In [5], Diamond and Im cite Katz’s definition of the space
MFa2(N R) of (Katz) modular forms of weight k on T'1(N) over the ring R C C. In
[12], Katz uses this definition to prove results used in §2.4.2, which is possible as a

result of the following equality:

Proposition 4. (Theorem 12.3.7 in [5] for N > 5, for N < 4 consult [}]). Forp =5,
we have
leatz(]\/; Fp) = Mk(N’ FP) - Mk(Nv Z) ®z Fp

ifk#1andpt N.

Page 6
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1.2 Serre p-adic modular forms
1.2.1 Defining Serre p-adic modular forms

When defining Serre p-adic modular forms, we assume that p # 2 to avoid complications
(see §1.4 in [15]). This is not an issue, since the main focus of our study is on the effect

of the theta operator for primes p > 5.

Definition 6. A (Serre) p-adic modular form of level N is a formal series

oo
f = Z anqn
n=0

with coefficients a, € Q, such that there exists a sequence (f;) of classical modular
forms of level N with rational coefficients (i.e. f; € M(N,Q)) satisfying lim f; = f (in
the sense that v,(f — f;) — +00).

Note that in [15], Serre only defines p-adic modular forms for level 1.

Definition 7. Let m > 1 be an integer and p # 2 be a prime number. Define
X i =Z/p" Hp—1)Z.

As m — o0, the X, form a projective system of groups with transition morphisms given

by the natural inclusions; we denote by X the projective limit of this system. We have
X =lim X, = Z;, % Z/(p—1)Z.

1.2.2 Weights of p-adic modular forms

Proposition 5. (Theorem 2 in §1.4 of [15]). Let f be a nonzero p-adic modular form,
and let (f;) be a sequence of modular forms of weights (k;), with rational coefficients,
converging to f. Then the sequence (k;) has a limit in the group X = projlim X,,,
called the “weight”. This limit depends on f, but not on the chosen sequence (f;).

Proof By hypothesis, we have v,(f; — f;) — o0o; on the other hand, v,(f;) is equal to
vp(f) for sufficiently large i. From Theorem 1 we deduce that, for all m > 1, the image
of the sequence k; in X,, stabilises; this means that the k; have a limit k£ in X. The fact

this limit does not depend on the chosen sequence is immediate from Theorem 1. [

Page 7



MC-SCIMAT mkoumouris@student.unimelb.edu.au October, 2023

Note that it is often true the weights (k;) stabilise simultaneously in all X, with
m > M for some M. In this scenario, the limit k can be interpreted naturally as an
integer. Henceforth, we denote by V(Z,, k, N) the set of p-adic modular forms of weight
k and level N. In fact, this is a Q,-module.

Lemma 1. Serre p-adic modular forms have a natural Q,-ring structure.

Proof Clearly Serre p-adic modular forms constitute a Q,-module with scalar multipli-
cation given by the normal Q, multiplication, and addition well-defined by coefficient-
wise addition in the ¢g-expansions (superadditive with respect to v,).

To complete our proof of the ring structure, let f and f’ be p-adic modular forms
with respective weights k and £’; we claim that ff’ is a p-adic modular form with weight
equal to the limit of k;k, in X. Let (f;) and (f/) be sequences of modular forms with
respective weights (k;) and (k) converging respectively to f and f’. From §1.1.1, we
know that (f;f/) is a sequence of modular forms with weights (k;k). Now by factoring

out the highest power of p from all coefficients in the g-expansion, we have

v (f'(f = fi)) Z vp(f = fi) — +o0,
vp(filf = ) = vp(f' = f) = +oc.

Hence,
vplff = filf]) Z vp(f'(f = fi)) + v (i ' = £7)) = +o0

and ff’ is indeed a p-adic modular form with weight equal to the limit of k;k} in X. [

Page 8
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1.3 Modular forms modulo p™
1.3.1 First definitions and properties

Definition 8. Let p be prime and m > 1 be an integer. Let I' be an arithmetic
group containing (1) so that My (', Z) consists of modular forms of weight & and level
structure I' all having g-expansions with integer coefficients.

Let Mk(F) = My(I',Z) ®z Z/p™Z the set of all these g-expansions but with the
coefficients reduced modulo p™, which forms a ring in the natural way. We call these
modular forms with weight k and level structure I' modulo p™.

Set M(F) =D ks0 ]Tfk(F, Z). These are modular forms with level structure I" mod-
ulo p™. We write My(N) := My(T1(N)), M(N) := M(T1(N)) and M := M(SLy(Z)),
and refer to modular forms modulo p™ if the level structure is SLy(Z), or otherwise

obvious from the context.

Proposition 6. Consider those forms in My(I', Q) whose q-expansions have only p-
integral coefficients. We can equivalently define My (T') as this set of q-expansions but

with the coefficients reduced modulo p™.

Proof We only need to prove we do not get extra series with this alternative definition.
This is equivalent to showing that every f € My (I',Q) with p-integral coefficients in
the g-expansion has the additional property that the denominators of these coefficients
are bounded; this way, there exists ¢ € Z with ged(c,p) = 1 such that c¢f € My(T',Z).
The fact that the denominators of the coefficients are bounded is a well-known result

(see, for example, Theorem 3.52 in [16]). O

Definition 9. For f = >~ ja,¢" € Z[q] ®z Q (i.e. g-expansions with rational coef-
ficients whose denominators are bounded), denote by fthe modular form modulo p™
obtained by reducing the coefficients of the g-expansion modulo p™. We use the same
notation to denote the resultant g-expansion if f is a p-adic modular form (this also

always turns out to be a modular form modulo p™, see Proposition 7).

Notice that in the definition of M (I'), we use a sum rather than a direct sum.

This is because of the following lemma:

Page 9
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Lemma 2. For p > 5, we have the inclusions
Mk(F) C Mk—i—pm*l(p—l) (F) C Mk—’—?pm*l(p—l) (F) C

For a € Z/p™(p — 1)Z, we write M*(T) for the union of My(T) with k in o.

To prove this lemma, we need the following famous fact about Bernoulli numbers

(proved for example in [10]):

Lemma 3. (The Clausen-von Staudt Theorem). For any positive integer n, we have

Boy + Z

p prime :
p— 1\2n

Remark. Note the obvious corollary v,(By,-1)) = v,(1/p) = —1 for any positive

integer t.

Proof of Lemma 2 These inclusions are induced by multiplication by E 1 1, which
is usually called the Hasse invariant for modular forms modulo p™; hence it suffices to

show EZ’;T_T =1 (mod p™). By the Clausen-von Staudt theorem, we have

p—1
l/p<m> :I/p<p—1)+1:1,

so E,_1 =1 (mod p™). We proceed by induction on m; having just showed the base case
m = 1, suppose m > 2. By the inductive hypothesis, we have Ef "= (mod p™~1),
which is the same as writing Ep 1 = = 14p™~ ! f for some f € Z[q] @2Q. Now 1,(*) =1

for all 0 < ¢ < p since p is prime, hence

m—1

B = (Lt fy
=14 (Y (mod )
=1 (modp™) (since p(m — 1) > m)

as required. O
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Note that by the Clausen-von Staudt theorem,

%(@—1WW4

)Z%ﬂp—wﬁ”5+1:m—1+1=m’
Bp—1ypm—1

so Ep_1ypm-1 = 1 (mod p™). In other words, one can think of these inclusions also
being induced by multiplication by E(p_l)pm—l = 1. We will see in the proof of Theorem
1 that for m = 1 and N # 2,3,4, this is the only relation on modular forms modulo
p in the sense that two modular forms are congruent modulo p if and only if they are
equal up to some power of the Hasse invariant. The more general result for p { N and

arbitrary m > 1 is given in Lemma 2.1 in [13].

1.3.2 Proving Theorem 1

Definition 10. An element x € Q, is p-integral if x € Z, C Q,, or equivalently if
vp(z) = 0.

Proof of Theorem 1 This theorem follows directly from Corollary 4.4.2 in [11]. How-
ever, we present a proof by strengthening the argument of Théoréme 1 in §1.3 of [15].
For f € Q[q] with p-integral coefficients, let f denote the series with coefficients
reduced modulo p (i.c., f = f when m = 1). Also, let M := M(N) for m = 1.
Since the denominators of the coefficients of f must be bounded, we can multiply
f by some scalar to make the coefficients p-integral, leaving the weight unaffected.
Thus we may assume without the loss of generality that v,(f) = 0, in which case the

condition is equivalent to
f'=f (modp™).

Since the coefficients of f and f’ are p-integral and m > 1, we certainly have f = f/ # 0
(and also f = JE) If p > 5, we see that f and f’ belong to the same component
M" := M"(N) of the algebra M. This follows from Theorem 5.4 in [7]; although
the proof of this theorem assumes N > 4, the conclusion holds for all N > 1 since
N | M = T'(M) C I'(N). Note that a proof for for N = 1 is also given by Swinnerton-
Dyer in Lemma 5 (i) of [18]. In summary, &' = & (mod p—1). The theorem is therefore
proved for m = 1.

Assume now that m > 2. Let h:= k" — k. Up to replacing f’ by

f Ep-1ypm

Page 11
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with large enough n, we may assume that A > 4. The Eisenstein series E}, is then a
modular form of weight h; as h is divisible by p — 1, we have E;, = 1 (mod p). Set
r = v,(h) + 1. We need to show that » > m. Suppose r < m. We have fE, — f' =

f=1+ (B —1).
Since h =0 (mod (p — 1)p"!), we have by the Clausen-von Staudt theorem

h

B—h>:yp(h)+1:7“—l+1:7",

vy(Ep—1) 2 1, (

so B, —1 =0 (mod p"). But f — f'= (mod p™), so we conclude that fE, — f =0
(mod p") and
p(fEn—f)=p " f(Er—1) (mod p).

Again using the Clausen-von Staudt Theorem, we have
p"(En—1) = Ag,

where ¢ = > "7 0j,-1(n)¢"™ and v,(\) = 0. The above congruence is therefore equivalent
to

fo=g (mod p),

where g is the modular form A\~'p~"(fE), — f'), of weight k¥'. As f # 0, this can be
written as ¢ = g/f and shows that ¢ belongs to the fraction field of M; moreover, §

and f have the same weight modulo p — 1; we conclude that ¢ belongs to the fraction
field of M. We have

and we easily check that

= d
Y=ot (Z al(n)q”> ,  where 0 = a0 (see 2.2).
n=1 q

In order to get a contradiction, observe that we have

— 1 — 1 —
Y = —ﬁﬁ"‘l(P) = —ﬂep_Q(EpH):
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whence 1) € MO, given the properties of the operator # (see 2.2). The equation E—EP =
1) shows that ¢ is integral over MO, hence belongs to M’ since M is integrally closed
(this is a consequence of Proposition 3, confer [1] for details); but this contradicts
Lemme (416-11) in [14]. O

1.3.3 Relationship to p-adic modular forms

Concluding this chapter is a simple matter of showing that we can effortlessly switch
between lifting a modular form modulo p™ to a Serre p-adic modular form and lifting

to a classical modular form with integer coefficients:

Proposition 7. Let {’(Zp,k:,N) be the g-expansion in the Q,-module V(Z,,k, N)
with p-integral coefficients, whose coefficients have been reduced modulo p™. Then
V(Z,, k, N) = M(N).

Proof First observe that every classical modular form f with level N and rational co-
efficients can be interpreted as a p-adic modular form; the constant sequence f, f, f, ...
indeed converges to f. Hence, V(Z,, k, N) D M;(N).

Now for any f € V(Z,, k, N) with p-integral coefficients, there exists a sequence
(fi) of modular forms with level N and rational coefficients converging to f. In partic-
ular, this means there exists ¢ € Z-, such that for all ¢ > ¢, we have v,(f — f;) > m.
Hence, f = f, so that \~/'(Zp, k,N) C My(N) (we can reduce the coefficients modulo p™
since they are p-integral). O
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2 Theta operator for modular forms

modulo p™

2.1 Theta operator on p-adic modular forms

Proposition 8. (Theorem 5 (a) in §2.1 of [15]). Let f =" a,q" be a p-adic modular
form of weight k and level N. The series

d,
0f = qd—‘]; = nang"

is a p-adic modular form of weight k + 2. Hence, we have a map 6 : V(Z,,k,N) —
V(Z,,k+2,N).

Before proving this, we define the 0 operator:

Proposition 9. Let f € M (I",Q), where I is an arithmetic group containing (§1).
Then
Of ==120f —kPf € My4o(I', Q).

Proof Clearly 0f has a g-expansion with rational coefficients and satisfies the growth

condition, as the g-expansions for f, P and f are all rational and satisfy the growth

az+b

condition. To show Jf has weight k + 2, consider any v = (4}§) € I with vz := 13,

Page 14



MC-SCIMAT mkoumouris@student.unimelb.edu.au October, 2023

and observe that

(0f)(vz) = 12(0f)(vz) — kP(y2)f(v2)
=12 (qd%(f)) (v2) — kP(v2)(cz + d)* f(2) (since f has weight k)
= %f’(vz) — kP(v2)(cz + d)* f(2) (since L = % . d% = 27m'qd%)
6 , 6ic .
= Ef (v2) — k ((cz +d)*P(z) — —(cz + d)) (cz+d)*f(2) (from 2)

s EUCD

Ge kL p(,
R cz+d)P(z) + E) (cz+d)" f(2)

(by the chain rule)

— % . & ((cza—;f:gkf(z)) —k <(cz +d)P(z) + %) (cz +d)* f(2)
(cz+d)?
= % ez 4+ d)? (ck(cz + )" f(2) + (cz + ) f(2))
—k ((cz +d)P(z) + %) (cz + ) f(2) (since ad — be = 1)

= 5 o () — Kz + PP )

— (ez )12 (qdiq<f>) (2) - (cz + A kP() (2)

= (cz+ )" (12(0f)(2) — kP(2) f(2))
= (cz +d)""*(0f)(2),

as claimed. 0
Proof of Proposition 8 Let (f;) be a sequence of modular forms with rational coef-
ficients such that lim f; = f, and let k; be the weight of f;. Since P is a p-adic modular
form of weight 2 (as a result of Proposition 12 or the identity (9)), df; can be inter-

preted as a p-adic modular form of weight k + 2 (by Proposition 9) in the usual way,

and f; can be interpreted as a p-adic modular form in the usual way, it follows that
1 k
= —0fi+—Pfi
07 126f + 12 J

is a p-adic modular form of weight k; + 2. So there exists a sequence (h;;); of classical
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modular forms of level N with rational coefficients satisfying lim;_,o, h; ; = 0f;.
Note that we can switch a limit on modular forms with the theta operator as it

is coefficient-wise continuous. Hence, we use a diagonal argument to deduce

So 6f is indeed a p-adic modular form of weight lim(k; +2) = k + 2. O

2.2 The construction for modular forms modulo p™

Now we present the construction of the theta operator for modular forms modulo p™
with level N. Now that we have defined the theta operator for Serre p-adic modu-
lar forms, and have defined modular forms modulo p™ via p-adic modular forms, the

construction is easy:

Definition 11. Abusing the same symbol as for p-adic modular forms, we define the
map
0 : M(N) — M(N)
f6f,
where we interpret f € M(N,Z) as a p-adic modular form in order to evaluate 6f.

Observe that the lift f € M(N,Z) of f is not unique (see Lemma 2), so we need
to justify this is indeed a well-defined operator. This is simple: if f = "> ja,¢" and

[r=>"7,a,q" are level N modular forms with integer coefficients, then

fo=f (modpm)
<~ a, =a, (modp™)V n
= na, =na, (modp™) V n
( )
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2.3 Defining filtrations

For a modular form modulo p™, it only makes sense to talk about weight with respect

to its lifts to classical modular forms. Hence, we define filtrations:

Definition 12. For p a prime, m € Z-o, and f € M(N,Z), the p™-filtration of f
(sometimes referred to as the (weight) filtration) is defined to be

wym (f) :=nf{k" | f=¢ (mod p™) for some g € My (N,Z)}.

Note that the filtration is defined above on M (N, Z), but it is also a map M(N) —» Z
by virtue of the fact that f,g € M(N,Z) satisfying f = ¢ (mod p™) implies wym (f) =
wym (g). Henceforth, we use wym(f) and wpm(f) interchangeably. We say that a lift f
of f (a modular form modulo p™) has exact p™-filtration if its weight is equal to its
filtration wym (f) = wym (f).

From this definition, if m’ > m > 1 are integers and f € My (N, Z), then

wym (f) < wpm/(f) < k.

Moreover, for p > 5 and p{ N we must have w,m (f) =k (mod (p — 1)p™!') by Theo-

rem 1.

One can now ask the question: what effect does the theta operator 6 have on
the p™-filtration of modular forms modulo p™? Again working with p > 5 and p 1 N,

observe that for f of exact filtration k, we must have

wym(0f) =k +2  (mod p™ ' (p—1)). (1)

This is because Bf lifts to a p-adic modular form of weight k + 2, meaning there must
exist some modular form g with weight congruent to k& + 2 modulo p™~!(p — 1) such
that = 60f = 0f. The congruence (1) then follows from Theorem 1.

2.3.1 Theta operator on p-filtrations

Having defined the theta operator on modular forms modulo p™ as well as filtrations,

we now have the tools to examine the effect of 6 on filtrations. In the case m = 1,
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this effect is well known for all primes p > 5 and levels satisfying p  N. This effect is

described in the theorem below:

Theorem 2. (See [12]). Let p > 5 be prime, m = 1, and N > 1 be an integer such
that pt N. If f € My(N,Z) has exact filtration (i.e. w,(f) = k), then

wp(0F) <wp(f) +p+1 (2)
with equality if and only if p{ wy(f) = k.

While Katz provides a proof for all levels N satisfying p { N in [12] using an
algebraic-geometric approach, a few authors prove this result for level 1 (see Lemma 5
(ii) in [18], and Corollaire 3 in [14]). We present a sketch of the proof for level 1 with

the aid of the following lemma:

Lemma 4. For p > 5 prime, set A:= E, ; and B := E,.,. Then B = P (here, —
denotes reduction of the coefficients modulo p as usual), and A and B are relatively

prime inside M ().

Proof We provide a sketch of the proof based on Serre’s Corollaire 3 in [14]: the first
part of the lemma follows from (8) with m = 1. Extending the definition of 0 to modular
forms modulo p in the same way as for 8, one can check directly that 94 = —E, A and
0’B = —4F¢A — E,B. Recalling that M(T';) can be finitely generated by E; and F,
we have that A and B are polynomials in £y and FEjg satisfying a second order system.

Then Igusa shows in [9] that we must have A coprime to B since 0A = B, as claimed. [

Proof of Theorem 2 for N = 1. Recall that £, ; =1 and E,;; = Es, so

0f = L (kBf + ADf).

If p 1k, then w,(0f) = wy(kBf + A0f). But A does not divide kBf + AJf since
A and B are coprime in M(I'y), 6f € M(I'1), and f has exact p-filtration. Now
recall that two modular forms of level 1 are congruent modulo p if and only if they
are equal up to some power of the Hasse invariant (see Lemma 5 (i) in [18]). Hence,
kBf 4+ AOf has exact p-filtration, meaning w,(0f) = k +p + 1. In the case p | k, we
have w,(0f) = w,(Adf) = w,(0f) <k +2<k+p+ 1. O
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2.4 Theta operator on p"-filtrations for m > 2

One might expect the generalisation to m > 1 of the previous result to be
wpr (0f) < wypn (f) + 24 p™(p — 1)

with equality in some cases, by virtue of the fact that the lift of the Hasse invariant for
modular forms modulo p™ has weight p™~!(p— 1), and this inequality would match our

result for m = 1. However, Chen and Kiming prove this is false:

Theorem 3. (Theorem 1 (1), (i) in [4]). Let m > 2 and f € My(N) withp > 5 prime
and pt N. Then

wym (0f) <k + k(m),

where k(m) == 2+ 2p™ Y (p —1). We have equality if f # 0 (mod p), p t k and
wy(f) = k.

Observe that this statement is weaker than the result for m = 1 both in the sense
that we bound above by the weight and not the filtration, and further, that equality
does not guarantee f #Z 0 (mod p), p 1k and w,(f) = k. We present the proof of this

theorem in two parts: first we prove the inequality, and then the conditional equality.

2.4.1 Finding the upper bound for the p™-filtration

Proving the inequality in Theorem 3 is the same as proving that 6 is a map
0 : Mi(N) — My i) (N). (3)

In this subsection, we present the proof of this fact, breaking down all components of

the proof successively:

By Proposition 12, we have

m—1
Ey,=-24 ijf] (mod p™) (4)
=0
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where for all j, f; € M, (N, Q) satisfies v,(f;) = 0, and

24+ pm I (P —1) forj=0,...,m—2
- | | 8
P p+ 1) for j=m—1

The point here is that k(m) — k; is a (positive integer) multiple ¢; of (p — 1)p™ 71,
which is the weight of the lift of the Hasse invariant for modular forms modulo p™~7;

indeed, we compute

L pP—pt - —p-1 forj=0,...,m—2 (6)
! pl—2pm2 .. 2p—2 forj=m-—1

So we can adjust each summand in (4) by some power of Egﬁ: " to make its weight

equal to k(m). This gives rise to the congruence

m—1 -
0f = ~ B2 0F — okt STPE Y (mod p™. (7)

1277t
=0
The RHS has weight k& + k(m), so we indeed have the map (3) as claimed.

To see how Chen and Kiming arrive at Proposition 12, we proceed in steps:

Definition 13. The V operator is defined on formal g-expansions as

(Z anq”> |V = Z anq"?.

If the g-expansion input represents a modular form f, then the operator acts by (f |

V)(2) = f(p2)-

Proposition 10. (Corollary 2 in [4]). For all even k > 4, define Gy, := _2% E;., where

By, is the k™ Bernoulli number. We claim that as q-expansions,

m—1
Go = Z]ﬁ (Goppm—i-1p-1) | V7)) (mod p™), (8)
j=0

where m > 1 and p > 5 is prime.

Before proving this result, we need the famous Kummer congruences for Bernoulli
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numbers (proved in many places, such as in [3]):

Lemma 5. (Kummer 1851). For { > 1, we

1-pH2 =1y )22 (mod p)

whenever u and v are positive even integers not divisible by p — 1 satisfying u = v
(mod ¢(p?)).

Proof of Proposition 10 In [4], Chen and Kiming prove this result using the identity
G = Z: | (1 _pk—lv)—l — Glt +pk—1Gz | V... _‘_pm(k—l)Gz | VT4 (9)

at the end of Serre’s proof of Théoreme 4 in [15] (here G} denotes the p-adic limit
Gr, — G7), together with some congruences proved by Serre in [14]. We present an
alternative, direct proof that is mostly self-contained.

First recall that

G = 3k + ;Uk_l(n)q", (10)
where oy(n) = 2, d" is the divisor sum. Suppose n > 1 with n = p'r where

ged(xz,p) = 1. Then a,(Gs) (i.e. the coefficient of ¢" on the LHS of (8)) is given
by o1(n), and the coefficient of ¢™ on the RHS of (8) is given by

m—1 min{m—1,¢}
an <Zp] * <G2+pm—j—1(p_1) | V‘j)) = Z p]0'1+p7n—j—1(p_1) (péi‘jflf). (11)
j=0 j=0

Note that for all 0 < j < m —1, ged(z,p™ ) =1 and p(p™7) = p™7~(p — 1), where

@ is the totient function. So using Euler’s theorem and the definition of o}, we have

oi(z) (mod p™ )
po(z) (mod p™).

01+pm*j*1(p—1)($)

= P orpm-i-ipo1) (@)

Moreover, from the fact that p is prime, we have o,(p'x) = o (z)+ploy(x)+- - -+poy ().
Putting these facts together, we get that the RHS of (11) is congruent to Syo; (z) modulo

p™, where
min{m—1,0} £—j

Spi= Y p Yy pUHEeT)
=0 =0
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Observe that ¢(p™7) > p™ =1 > m — j — 1 so that for i > 1,
JHI+e@" ) Z i+ 1+ ) > j+14m—j—1=m

So only the ¢ = 0 summand of the inner sum in the above expression for Sy contributes
modulo p™. Thus the RHS of (11) further simplifies to

min{m—1,¢}

Seor(x) = Z p | oix) = <Zp]> oi(z) = o1(n) (mod p™),

which is indeed a,,(G3). It remains to show

m—1
ao(G2) = ag (ZP] (Gagpm-i-1(p-1) | Vj)) (mod p™)
=0

—By :m_l j e ) m
= ‘Zp](mzw(pm—j))) (mod £

We achieve this using Kummer’s congruences; clearly p — 112 + o(p™ /) since p > 5.

So for each j =0,...,m — 1, we have
o) pmf. . 2 (mod p™™7)
2+ p(pmd) 1 =pltel™ ) 4
_B ‘ ‘
=(1—p)-—— (mod p"7), (since 1+ p(p™7) = m — j)

4

yielding

-« Bayp(m-i = -B my — DB —B -
%" (smrsy) =209 =0 =2 = mod

as claimed. ]
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Lemma 6. Let f € My(SLy(Z)); then f |V € Mip(T'o(p)).

Proof As explained in §3.1 of [15], to show f | V € My(I¢(p)), we must show that
fl,v = f for all v € I'y(p), and that f is holomorphic at the two cusps 0 and ioco of
[o(p). Indeed, for any v = (2¢54) € T'y(p) we have

(VD@ = e+t (o E0)

cz+d
(since det(y) = 1 and (f | V)(2) = f(p2))
— (S(ps iy [ alpz) +pb
=(p2)+d)"f (—ﬁ(pz)”)
= f(p=2) (since f € My (SLy(Z) and <C7p€f) € Sly(Z))

= (f1V)(2),

so the first condition holds.
As for the second condition, let f =Y 7 'a,g", and note from §3.1 of [15] that
f 1V is holomorphic at the cusps of I'g(p) if and only if the series

f ‘ V= Zanqpn and (f ’ V)|kW = anqn
n=0 n=0

0 -1
p 0

l¢?| < 1 and f € My(SLa(Z)). As for the second series, observe that

converge for all |g| < 1, where W := ( ) The first series indeed converges since

FIVILW = 7 fl (5] (5 o)
=p 2 f1 (59) (5 )
=p f|k(27p)
A (S8 )
p /2 Il (82) (since det(9 ') =1 and f € M (SL2(Z)))

= (det(£)) 07t
_ p—k/Q (pQ)k/Q pikf
=p 2,

so b, = p~*/2a,, and this series converges (again because f € M;(SLy(Z))). O
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Lemma 7. Let Tr denote the trace from T'o(p) to SLa(Z), defined by Serre in §3.2 of

[15] to be
p+l

Tr(f) =3 Flevs

for f € My(To(p)), where 1, ..., vp+1 are representatives of the quotient I'o(p) \ SLa(Z).
Then Tr(f) does not depend on the choice of v;, and Tr(f) € My(SL2(Z)).

Proof The fact that Tr does not depend on the choice of v; is an immediate conse-
quence of Lemma 6; for another set of representatives 71, ... ,7; +1, we have (without
loss of generality) that v} is the same as 7; up to some element a; € I'g(p). But
fl. v = fl,v; by Lemma 6.

To show Tr(f) € My(SL2(Z)), first observe that if [v;] denotes the coset repre-
sented by ~;, then multiplying the representatives by any v = (2 %) € SLy(Z) corre-
sponds to permuting the cosets. In other words, {[v1], ..., [Yp+1]} = {In],- -, [w17]}-
So

p+1

Tr(f)(v2) = (cz + d)* Y (flo7) (2) (since g(yz) = (cz + d)* (g, 7)(2) for any g)

J=1
p+1

= (cz+ )Y (flyv) (2)

j=1
(Tr does not depend on the choice of representatives)

= (cz + d)"Tr(f)(2).

In order to show Tr(f) satisfies the growth condition, it now suffices to prove Tr(f)(z)
is bounded as im(z) — oco. But this follows immediately from the fact that the growth
condition applies to f € My (I'o(p)) (i-e., (fl,7;)(2) is bounded as im(z) — oo V j). O

Remark. In Theorem 10 of §3.2 in [15], Serre uses the trace Tr from I'g(p) to SLy(Z)
to prove that a modular form of weight k£ on I'g(p) is in fact a p-adic modular form of

weight k& and level 1.

Proposition 11. (Lemma 2in [4}]). Let f € My(SL2(Z), Q) and suppose that v,(f) = 0.
Let t € Z~y and suppose that s € Z=q is such that

inf{s+1,p°+1—-k} >t
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Then there is h € My ps(p—1)(SLo(Z), Q) with vy(h) = 0 such that
flV=h (modph).

Proof The idea is to take h := Tr((f | V) - (Ep—1 — p*Y(E,—1 | V))P"). From Lemma
6, we know that f | V € M (To(p),Q) and E, 1 —p* Y (E,_1 | V) € M,_1(To(p),Q), so

(f | V) : (Epfl _pp_l(Epfl | V))ps € Mk+p$(p71)(ro(p))'

Then by Lemma 7, we have h € My psp—1)(SLa(Z), Q). Now clearly v,(f | V) = 0 since

vp(f) = 0. Our goal is to use Lemme 9 in [15] to argue

vp(h = (f | V) Zinf(s + 1,p" + 1+ v, ((f | V)|, W) = k/2)
=inf(s+ 1,p° + 1 — k)
=1,

where W = (3 3'). Then f | V = h (mod p'), and since v,(f | V) = 0, we must have

vp(h) = 0, and we will be done.

For the inequality above to work, we just need v,((f | V)|, W) = —k/2. But
from the proof of Lemma 6, we have (f | V)|, W = p™*/2f. Then since v,(f) = 0 by
assumption, we indeed have v,((f | V)|, W) = —k/2. O

Proposition 12. (Proposition 1 in [{]). Let m € N. For m > 2, define the positive
even integers ko, ..., kyn—1 asin (5), with ko :=p+1ifm=1. Then kg < -+ < kp—1
and there are modular forms fo, ..., fm_1, depending only on p and m, of level one and
of weights ko, ..., kn—1 respectively, that have rational q-ezpansions, satisfy v,(f;) =0

for all j, and are such that

B m—1 A
Sp =2 P (modp")
j=0

GQZ

as a congruence between q-expansions. Recall from (5) that

2+ pm I p Tt — 1) forj=0,...,m—2
P p+1) for j=m—1
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Proof By Proposition 10, it suffices to prove there exist modular forms fy, ..., fr—1
of weights ko, ..., k,—1 with rational g-expansions and 1,(f;) = 0 such that f; =
Goypm-i-1(p—1y | V7 (mod p™~7) for each j = 0,...,m — 1. In the case m = 1, set
fo = Gpy1. Then indeed kg = p+ 1, fo = Gpi1 | VO (mod p™), and v,(fy) = 0 (in fact
vp(Gr) = 0 for all k as the gP-coefficient in the g-expansion is never divisible by p).

m—1

Henceforth, suppose m > 2. Set f,,_1 = Gg +1 > and observe that
m—1 _
fm1=Gpn =Gy |V ' (mod p),

and f,,_1 has weight k,,_; = p™ '(p+ 1) (see §1.1.1). From the above congruence, we
also conclude that v,(fo) = 0 (as v,(Gp41) = 0). Now suppose j < m — 2: to find the
required f;, we prove (by induction) the existence of modular forms fjo, ..., f;;, where

i has weight 2 + p™ 7= (p"*! — 1) and rational g-expansion with v,(f;,) = 0 and
7 g p\Jj,
fj,’l" = G2+p7n—j—l(p_1) ‘ VT (mOd pmi])

We then get the desired form by setting f; = f;;. Now set fjo := Goippm-i-1(p-1),
and observe that v,(f;o) = 0 so that f;, clearly satisfies the required properties. Now
suppose f;, satisfies the required properties for some 0 <r <m—2. Set s =m —j+r,
t=m—jand k =2+ p™ 71 (prt — 1), and observe that

s+1=p" T 42> p" T > m—j=t
and also that
ps + 1— ]@ :pm—j—i-r _pm—j—l(pr+1 _ 1) -1 :pm—j—l -1 2 m _j — t,

where the last inequality follows from the fact that p > 2 and m — 35 > 2. So by
Proposition 11 (h = f;, in the language of the proposition), there exists a modular

form f;,1 with rational g-expansion and v,(f;,+1) = 0 such that

fire1 = fir |V = Gogpmoicapry | VT (mod p™ ™),
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where f;, 41 has weight

L +ps<p . 1) —9 +pm—j—1(pr+1 o 1) +pm—j+r(p o 1)
=24 p" T P =14+ (p - 1))
(A

This completes the induction. 0

Remark. One could naively ask why we cannot take f; = Gojpm—i-1(pi+1_1) for 0 <

j < m — 1. In other words, why do we not (in general) have
G2+pm7j71(p_1) | Vi= G2+pm7j71(pj+1_1) (mod pm_j)?

Using the formula for the g-expansion of Gy, given in (10) and Euler’s Theorem, it turns
out that

Qp, (G2+pm—j—1(p_1) ’ VJ> = 01+pm—j—1(p_1)(n/pj)
= 0pypm-im1+1-1)(n)  (mod p™7)

= an (G2+pm*j*1(p”1fl))
for all n with p’/ | n, lending credence to this hope. However, we do not in general have
an (Goppm-i-1(pir1-1) =0 (mod p™ )

whenever p’ { n. Take for example n = 1, and the ¢'-coefficient of G ym—i—1(p+1_1) is

just equal to 1.

2.4.2 When the upper bound on the p”-filtration is achieved

To complete the proof of Theorem 3, we must show that if f € M;(N) with f # 0

(mod p), p 1 k and w,(f) = k, then wm(8f) = k + k(m). Suppose for the sake of
contradiction that w,m (0f) = k' < k + k(m). So there exists some g € My (N) such
that f = g (mod p™). Then by Theorem 1, we have k + k(m) =k +¢-p™*(p—1)
for some ¢t > 1. Set

m1(g—1
h:=E (=1
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so that

m

0f = E;f,’f;lh (mod p™).

Substituting this into (7), we get the congruence

1]7 tjf]— (mod p™).

m—2
7n 1 ]_ m—1 .
2kp™ T E Y fra f = — h+12E§P1 of —2kf> pE)
=0
Observe that
by =p" = 2p" P = —2p—2 < p!
and also
b1 =p" =2 = = 2p =2
< pm—l o pm—2 o pm—j—l
=p" Y - = =)
— pﬂ’L7]71t]

(13)

forall j =0,1,...,m — 2. So we can factor out E;’ff“ on the RHS of (7), and also

divide both sides by 2k (since p 1 k and p is odd) to deduce

m 1Etm lfm 1f E;TII+1h/ (mOd pm)

for some h' € My yi(m)—(p—1)(tm_1+1)(IV). Thus
tm 1fm 1f E;rjil-Hh// (mod p)
for B := K /p™~ 1. Tt follows that

Wy (frn-1f) < k+k(m)—t,_1(p—1)

=k+2+2" (p—1) = B 20" P
=k+2+20"p—1) = 3p" (p— 1)+ 200" —

:k+pm _'_pmfl
=k+p"(p+1).

1)

+1))p—1)
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Now recall from the proof of Proposition 12 that f,,,—1 = Ggi;l. As Gy = —(Bpi1/2(p+
1))E,+1 with B,y1/2(p + 1) invertible modulo p, we deduce

wy(EY L f) < k+p Y p+ 1), (14)

However, as w,(f) = k # p (as p{ k), this contradicts Lemma 8:

Lemma 8. (Lemma 3 in [}]). Suppose that p # k € Z~o and that 0 # ¢ € MH(N) with
wy(¢) = k. Then, for a € Zy,

wp<Eg+1¢) = wp(d) +a(p+1).

Proof Suppose w,(E,11¢) < k+p+ 1; then E,;1¢ = E, 19 (mod p) for some 9 €
My, (N). By Theorem 4, we can read this congruence as an equality of forms in
M7 (N, Fp). By the remark after Lemma 1 in [12], E, 1 and E,,; do not share any
zeros. Hence, gg vanishes at every zero of Ep_l to at least the order that Ep_l vanishes
at that zero. Thus > p—1 and ¢ = Ep_lﬁfor somen € Mfff;fl)(]\/, F,). By Theorem
4, we have a corresponding lift n € M,__1)(IV,Z). But then w,(¢) < x—(p—1), a

contradiction. m

Remark. Note that if Lemma 8 requires only p 1 k, then there is a simple proof for
the case a = 1: suppose wy(Ep+1¢) < k+p+1; then E,11¢ = E, 19 (mod p) for some
Y € My (N). Then by Theorem 2, we have

K+p+1=w,(0¢)
= wp(/ﬁ52$+ Ep_l(%)
= wy(kEps10 + Eyp 100)
= wy(kEy1¥ + E,109)
= wy(ky +99)
<Kk+2 (since 1, 0 € Moy (N))

a contradiction.
This argument does not lead to an unrestricted induction though, and only gives
the result up to @ = —« (mod p), as for such a value of a we have p | w,(E},,6). This

value of a is necessarily less than p, and so cannot be used to argue a contradiction in
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(14) even for m = 2.

We conclude this section by commenting on some effects of 0 on the p™-filtration:

Proposition 13. Let m > 2 and f € My(N) with p > 5 prime, p{ N, and w,(f) =
k # p. Then Of has exact p™-filtration if k < @(p™). If p™ | k (but there is no bound

on k), then wym (0f) = wym(8f), and if also a,,(f) =0 (mod p™) for alln € Zsq, then
wp(0f) 2 k= (p(p™) = (p +1).

Proof By Theorem 1, we have wym(0f) = k+2 —1t - ¢(p™) for some t € Zzy. So if
k < ¢(p™), we must have ¢t = 0 to keep wym(f) > 1. If p™ | k, then df = 0f so that
indeed wym (8f) = wym (0.f).

If also a,,(f) = 0 (mod p™) for all n € Zsg, then f = §**"™)f (mod p™) as ¢-
expansions by Euler’s Theorem. Since applying 6 adds at most p+ 1 to the p-filtration

by Theorem 2, we have

wyp(0f) = wp(0f) = k — (p(p™) — D(p+1),

as claimed. O

The observation that f = #¢®™)f (mod p™) in the last proof naturally heralds

the theory developed in the following section.
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3 Theta cycles

Let f € My(N,Z) so that f € My(N) = My(N,TF,), and suppose we have a,,(f) = 0
for all n > 1. We can write f = ) a,q" for a, € F,; recall the effect of § on f is
given by > a,q" + na,q". Then by Fermat’s Little Theorem, we must have 077! f = f
(mod p), which implies 0771 f = A’f for some ¢ > 0, where A = E, ; is the lift of
the Hasse invariant. Thus if we remove the restriction on the coefficients of f, we still

always have
of =0f

as an equality of g-expansions for some ¢ > 0. This means w,(6?f) = w,(0f), which

naturally leads us to the notion of a theta cycle.

Definition 14. Let f € M(N) be a modular form modulo p. The p-filtration theta
cycle of f (or of f) is the tuple

(wp(97), w,(0%f), ... ,wp(epflf)) W/

3.1 Classifying p-filtration theta cycles

Here we present some results on the classification of p-filtration theta cycles by first
presenting a weak but general classification, and then stating a stronger but less general

classification due to Edixhoven (see Proposition 3.3 in [6]).

Proposition 14. Let p > 5 be prime and N > 1 be coprime to p. Let f € My(N,Z)
so that f € M(N) = M,(N,F,). Let x :=w,(0f), and let t € {1,...,p} be the unique
integer for which x —t = 0 (mod p). Then the p-filtration theta cycle of f is given by

either

(z,...,z+(p—2)(p+1)) ift=2
(z,....,2+(p—t)(p+1),2+2-t)(p+1),...,.0—(p+1)) ift>2

(where all omitted terms are given by successive increases of p+ 1), or

(z,...,a+(p—)p+1),2+p-t+)p+1)—(p-—c)p—1),...,
z+(p—t+e)p+l)—(p—c)p-1),2+2—t+c)p+1),....0—(p+1))
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for some integer 1 < ¢y < p— 2. Also, t =1 does not occur, and t = 2 forces the first

case.

Proof By Theorem 2, we have w,(6f) =k +p+ 1. Let

ni=#{1<i <p—1]w (0 f) —w,(0'f) #p+ 1}

be the number of “drops” in the theta cycle, where clearly n > 1. Thenlet 0™ f, ..., 0™ f
(where 1 <7 < -+ <71, <p—1) be the modular forms whose filtrations occur before
a drop in the theta cycle. So if f; := 6" f for all 1 < i < n, we have w,(0f;) — w,(f;) #
p+ 1. Note that by again by Theorem 2, fi,..., f, are the only modular forms whose

filtrations in the theta cycle are divisible by p, and moreover,
wp(0f;) —wp(fi) =p+1—0bi(p—1)
for some b; > 1. For 1 <i<p—1, let
Ci = Ti+1 — Ti,

where 7,1 :=p—1+1r;. Then ¢; — 1 > 0 is the number of increases by p + 1 between
the i*" and (i + 1) drops in the theta cycle. The cycle is of length p — 1, and indeed

we have
n
Z Ci=p— 1.
i=1

Also, we fall as far as we rise, so

Zbi(p—l)chi(pH)=(p—1)(p+1)=>2bi=p+1~

i=1 =1

After a fall, we cannot fall again until reaching the next filtration divisible by p. So for
all 4,
ci+bi=ci(p+1)—bi(p—1)=0 (mod p).

But ¢; + b; > 0 for all 4, and also

Zci‘l‘biZZC¢+Zbi:p—1+p+1:2P7
i=1 i=1 i=1
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so this forces two cases: either ¢; +b; = 2p (with n = 1), or ¢; + by = o + by = p (with
n=2).

Case 1: one fall. Then ¢; + by = 2p = ¢y = p—1,b; = p+ 1. This corresponds to the

first case in the proposition. The following diagram depicts the resultant theta cycle:

w0~ f) =z + (p—t)(p+1)

wy(0°) = x+p+1

0F) —
wy(0f) $ 9pf)*x

(0P ) =2+ (B-t)(p+1)
NCa t+2f J=x+(2-t)(p+1)

Figure 1: A graphical depiction of the p-filtration theta cycle in the case of one fall with ¢ > 2.
Black lines denote a rise of p + 1 and red lines denote a fall.

Case 2: two falls. Then ¢; + by = ¢o + by = p, which implies by = p—c¢1, co =p—1—¢;

and by = ¢; + 1. This corresponds to the second case in the proposition. The resultant

theta cycle is depicted below:

w, (P ) =z 4+ (p—t)(p+1)

wp(927):x—|—p—|—1 (Pt =2 4 (p—t+¢p)( —(p—c)p—1)
wy,(0f) = :c /pr f) _ .,
(0P~ )
w, (P2 f) =z +(p—t+1)p+1)—(p—c)lp—1) p(OPHHAtEf)

91" H‘31+2f J=z+@2—-t+ca)(p+1)

Figure 2: A graphical depiction of the p-filtration theta cycle in the case of two falls with
t — 1> c; > 1. Black lines denote a rise of p + 1 and red lines denote a fall.

Clearly ¢ = 2 cannot occur in this case, as otherwise there would be no falls after
the first p — 2 filtrations in the theta cycle. Now suppose for the sake of contradiction
that t = 1 does occur in either case; observe that = + ¢(p + 1) # 0 (mod p) for all
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0<{<p-—2. So by Theorem 2,

wp(07F) = 2+ (p— D(p+1) # = w,(0F),

a contradiction. So indeed, ¢ = 1 does not occur. O

For small weights and certain eigenvalues, it is possible to restrict the b; and

obtain a more precise classification of the theta cycles in the second case:

Corollary 1. (Proposition 3.3 in [6]). Let p > 5 be prime, and let f be a cuspidal
eigenform of type (N, k,e) where pt N and 1 < k < p+1. That is, ao(f) =0, and f is
a modular form of weight k and level N that is an eigenvector for all Hecke operators
Ty (see, for example, in §2.1 of [15]), with corresponding eigenvalues Ay. Suppose that
f also has exact p-filtration. Then the possible theta cycles of f are given as follows: if
Ap = 0, then the cycles are

(p+2,. ..,p+2+(p 2)(p+1)) if k=1
C+p+1,....24+(-2)(p+1),2) ifk=2
(k+p+1,. +(p—k)p+1),k,.... 1 +(k=3)(p+1),k) if3<k<p-—1
(3, 3+(p 3)(p+1),p) ifk=p

kdoes not occur ifk=p+1

where ky :=p+ 3 —k, and if A\, # 0, then the cycles are

((p+2,...,p+2+(p—2)(p+1)) ifk=1
(k+p+1,..  k+(@—kp+1),K+p+1,.. . K+k-1p+1) if2<k<p—1
(p+2,....,p+2+(p—-2)(p+1)) ifk=p

(2P +2,....2p+2+ (p—2)(p+1)) ifk=p+1,

where k' :=p+ 1 — k.
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3.2 p"-filtration theta cycles

Let p be prime, m > 1 be an integer, and f € My(N,Z) with fbeing the reduction to

a modular form modulo p™. Recalling the effect of the theta operator on g-expansions,

observe that ay, (6™ f) = 0 for any integer ¢ > 1. This naturally implies

o (0707 F) =y (9°7)

for any t > 1, where ¢ denotes Euler’s totient function. But for any integer n > 1

coprime to p, we have
ay <0<P(Pm)+mf> - a, (QMfN>
by Euler’s theorem. Hence,

gw(pm)erf: gmf_

Note that we do not necessarily have Qw(pm)“f: Hiffor 1 < m, since we may have

ay(f) #0  (mod p™™)
for some t > 1. Hence, we arrive at the following definition:

Definition 15. Let p be prime, m > 1 be an integer, and f € My (N, Z) with fbeing
the reduction to a modular form modulo p™. Then the p™-filtration theta cycle of f
(or of f) is the p(p™)-tuple of integers

(wpm (Gmf)v wpm(em—i_lf)a cee ’wpm(ego(pm)-i-m—lf))'
Note that with m = 1, this definition is consistent with Definition 14.

3.2.1 Known results

The fact that Chen and Kiming’s Theorem 3 is a much weaker analogue of Theorem 2
for the case m = 1 vastly inhibits our ability to classify the p™-filtration theta cycles for
m > 2. Nonetheless, Kim and Lee build on the results of Theorem 3 in [13] to obtain

the following results:

Theorem 4. (Theorem 1.7 in [153]). Let p > 5 be prime, N € Z~q be coprime to p, and
m > 2 be an integer. Let f € My(N,Z) have reduction f to a modular form modulo

p

m

as usual, and suppose v,(f) = 0. Let n, be an integer of the form n, = tp™ ! or
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ng =tp™ 1t —k+1 witht € Z. For such n; with 0 < n; < p™ —p™ L+ m — 1, there

exists an integer by(m,n;) < 1 such that

Wy (0™ f) =k + 2ny + b (m,ny)p™ (p — 1).
Moreover, if m > 3 and n; > p*, we have wpm(ﬁnff) < k4 2ng.

In the case m = 2, Kim and Lee compute by (m, n;) more precisely for certain types
of cusp forms f (those that can be written as linear combinations of modular forms
modulo p that are supersingular if they have sufficient p-filtration; confer Theorem 1.8
in [13] for details). It is clear in any case that classifying p™-filtration theta cycles is
a much harder task for m > 2 than it is for m = 1. We supplement the results of
Theorem 4 in §5 with the calculation of some p™-filtration theta cycles explained in the

following subsection.

3.2.2 SageMath-9-7 computations for p”-filtration theta cycles

In order to compute p™-filtration theta cycles, we must be able to use a computer to
determine whether the g-expansion of an arbitrary modular form ¢ is equivalent modulo
p™ to the g-expansion of some modular form of a given weight. This is, at first glance,
not an easy task. Indeed, one might expect this to be an impossible task since it is not
clear with which modular form we are trying to compare g; it may be extremely difficult
to determine this modular form as My (N, Q) may not have an easily computable basis.
Also, it is not obvious that showing the congruence for finitely many coefficients of the
g-expansions is enough.

Luckily, the Sturm bound is a helpful rejoinder to this last issue (see Corollary
9.20 in [17]), and moreover, there are large classes of modular forms that have easily
computable finite bases. For example, modular forms of level 1 and fixed weight have
finite Victor-Miller bases (this is a direct corollary of Proposition 3 - alternatively confer
Lemma 2.20 in [17]), and cusp forms of any fixed level and fixed weight also have finite
bases (see [8]) that are easy for Sage to fetch. We now explain the recipe for computing
the p™-filtration theta cycles for modular forms in these classes by walking through the
calculation of the p™-filtration theta cycle of f for p = 7 and m = 1,2, where f is a
modular form of level 1 and weight 12.

In particular, we set

f = CuspForms (Gammal(1), 12).q_integral basis(EXP_LEN) [0]
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to be the first cusp form (i.e. ao(f) = 0) in the basis of g-expansions provided by Sage
for cusp forms of weight 12 and level 1. Here, EXP_LEN is the number of terms of the

g-expansion that Sage generates. This gives

f=q - 24%xq™2 + 252%q"3 - 1472%q"4 + 4830%q~5 - 6048%q~6 - 16744%q"7 +
84480%q™8 - 113643%q~9 + 0(q"10).

Since the level is 1, we know f can be expressed as an isobaric weight-12 polynomial in
@ and R, which gives a more precise description of this cusp form. For our calculations
in Appendix 5, we provide this description whenever the modular form is of level 1, as
it is more precise and versatile in the sense that it does not depend on the arbitrary
ordering of bases in Sage. For our specific example, the only ways to obtain 12 by
adding 4s and 6s are 4 + 4 + 4 and 6 + 6, so we must have

f=aQ’+bR?

for constants a,b € C. Equating q and q~2-coefficients and using the expansion above,

we obtain

a+b=0,
3 X 240a — 2 x b04b =1

so that @ = 1/1728 and b = —1/1728.

The .q_integral basis() method is extremely useful, and allows us not only
to generate modular forms but also to check whether a given modular form lies in a
particular weight class. Indeed, to obtain the 7'-filtration theta cycle of f, for each
1 <t < p—1 wesee whether #f lies in M;(N) by checking if it lies in the span of the
basis of g-expansions (with coefficients reduced modulo 7) for the cusp forms of level
1 and weight k generated by this method, and iterating k to find the smallest k that
works. It is enough to check if it lies in the basis for cusp forms, as if it is a linear
combination of non cusp forms of weight £ modulo 7, we can subtract an appropriate
multiple of E} from each of these non-cusp forms in the linear combination to obtain a
linear combination of cusp forms.

To determine if A f lies in the span of the basis of g-expansions with coefficients

reduced modulo 7 for the cusp forms of level 1 and weight £, i.e.

basis = [g.change ring(Zmod(7 ** 1)) for g in CuspForms(Gammal(1l),
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w).q_integral basis(EXP_LEN)],

we need only check w = w7(671f)+2 (mod 6) by (1) (this saves significant computation
time). Sage solves a linear system to match the first EXP_LEN coefficients of the ¢-
expansions, which, provided we set EXP_LEN greater than the relevant Sturm bound
(by making use of the method .sturm_bound()), will give a positive indication #*f lies
in the span if the system has a solution.

This is because, although the Sturm bound applies to modular forms with complex
coefficients (and not coefficients in F; like 6 f), we know from the end of §1.3.1 that
equality of coefficients in the g-expansions of modular forms modulo 7 corresponds to
equality of coefficients in the g-expansions of modular forms by multiplying by some
power of the lift of the Hasse invariant FE.

In general, we know the g-expansion ' f is equivalent modulo p™ to some modular
form of weight at most wym (0! f)+k(m) by Theorem 3, so we should be safe by setting
EXP_LEN greater than the Sturm bound for forms of weight wym (6"~ f) 4+ k(m).

For our example f, we obtain the 7'-filtration theta cycle
[20, 28, 12, 20, 28, 12].

It is easy to check this is consistent with the results of Theorem 2. We can use the

same recipe to get the 72-filtration theta cycle for f:

(100, 60, 104, 106, 108, 68, 112, 114, 74, 76, 78, 80, 82, 84, 86, 88,
90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 68, 112, 114, 74, 76, 120,
80, 40, 84, 86, 88, 90, 92, 94, 96, 98].

Since f #Z 0 (mod 7), 7112 and w7(f) = 12 (as the corresponding isobaric polynomial
is not divisible by FEjg), we should expect

wr(0f) =124+24+2x7x6 =098,

by Theorem 3, which matches w-2 (0‘P(72)+1j~') from the calculation above. This is indeed
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to be expected, as it turns out f is supersingular. We also note that

60 =12+2-3 + 42
68 =12+2-7+42
T4=12+2-10 + 42
we2 (0 f) =82 =12+42- 14+ 42
88 = 124217 + 42
wr (0% f) =96 = 12 + 2 - 21 4 42
1
6
7
4
9

!

wr2 (02 f) =96 = 12+ 2-42 40 - 42,

which matches what Kim and Lee predict in Theorem 4.

The most computationally expensive part of this recipe seems to be the fetching
of the g-integral bases, which takes a long time for higher level N as more precision is
needed in the basis elements due to the increasing Sturm bound. In Appendix 5, we thus
compute the p™-filtration theta cycles for some modular forms of level N = 1,2. We
also restrict to m < 3 and p = 5,7,11 to prevent the cycles from getting impractically

long. We also consider only weight £ coprime to p, and level N coprime to p.
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4 Conclusion

In this thesis, we presented the theory of modular forms modulo powers of primes in
order to study their p™-filtration theta cycles. By defining classical modular forms
both in an analytic way (see §1.1.1) and algebraic-geometric way (see Definition 5),
and proving the equivalence of these two definitions under certain circumstances (see
Theorem 4), Chen and Kiming prove the result (see Lemma 8) that the p-filtration of
a modular form of exact filtration x # p multiplied by E,.; is simply x + p + 1. This
allows them to prove the case of equality in their main result (see Theorem 3) on the
effect of 6 on the p™-filtration.

An important takeaway is that it is much harder to calculate lower bounds for the
p™-filtration of a modular form of arbitrary weight, which makes Lemma 8 an important
result. Indeed, it seems a more tractable approach to use algebraic-geometric properties
of modular forms to prove lower bounds (as in the proof of Lemma 8). Nonetheless, we
can deduce, for example, modest restrictions on the effect of 9 on the p™-filtration for
low weights (see Proposition 13).

Whilst classifying p-filtration theta cycles is an old problem with many results (see,
for example, Proposition 3.3 in [6]), classifying p™-filtration theta cycles for m > 2 is a
much newer and seemingly more difficult problem. Kim and Lee’s results in [13] from
2023 provide some upper bounds on the filtrations for general m (see Theorem 4), and
some exact results for certain classes of modular forms with m = 2 (see Theorem 1.8 in
[13]). We concluded our study by outlining a general approach to use Sage to compute
these theta cycles, with the goal of supplementing the contemporary interest in these
objects.

After computing some p"-filtration theta cycles for m > 2 (see §5), strict com-
putational limitations arose as the level N increases and the power m increases. Since
these limitations ostensibly emerge from the internal issue of Sage fetching bases, it is
not clear how to overcome these ceilings. One idea is to create a hash table of bases
for the relevant classes of modular forms of all even weights up to some large number.
While computationally expensive, this avoids Sage repeatedly fetching the same bases

when computing these theta cycles.
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5 Appendix

The Sage files relevant to this appendix can be found here.

5.1 Level 1 modular forms

5.1.1 Cusp forms

= CuspForms (Gammal (1), 12).q_integral basis() [0]
p q g
—q - 24%q"2 + 252%q~3 - 1472%q~4 + 4830%q"5 - 6048%q6

- 16744%q~7 + 84480%q~8 - 113643*%q~9 + 0(q~10)

1 3 2

= — (@*-R
725 (@ )

The cycles for this f are presented on the next page (as the table does not fit).
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m=3

(18, 24, 30, 12)

(56, 58, 40, 42, 64, 66, 68,
50, 52, 54, 76, 58, 40, 42,
64, 46, 48, 70, 72, 54)

(218, 120, 122, 224, 226, 228, 130,
132, 234, 236, 238, 140, 42, 244,
246, 248, 150, 152, 254, 256, 258,
60, 62, 264, 266, 268, 70, 72,
174, 276, 178, 80, 82, 184, 186,
188, 90, 92, 194, 196, 198, 100,
102, 204, 206, 208, 110, 112, 214,
216, 218, 120, 122, 224, 226, 228,
130, 132, 234, 236, 238, 140, 42,
244, 246, 248, 150, 152, 254, 256,
258, 60, 62, 264, 166, 168, 70,
72, 174, 176, 178, 80, 82, 184,
186, 188, 90, 92, 194, 196, 198,
100, 102, 204, 206, 208, 110, 112,
214, 216)

(20, 28, 12, 20, 28, 12)

(100, 60, 104, 106, 108, 68, 112,
114, 74, 76, 78, 80, 82, 84,
86, 88, 90, 92, 94, 96, 98,

100, 102, 104, 106, 108, 68, 112,
114, 74, 76, 120, 80, 40, 84,
86, 88, 90, 92, 94, 96, 98)

(312, 608, 610, 612, 320, 616, 618,
326, 622, 624, 626, 334, 630, 632,
340, 636, 638, 640, 348, 644, 646,
354, 650, 652, 654, 362, 658, 660,
368, 664, 666, 668, 82, 672, 674,
88, 678, 680, 682, 96, 686, 688,
102, 692, 694, 696, 110, 700, 702,
116, 412, 708, 416, 124, 420, 422,
130, 426, 428, 430, 138, 434, 436,
144, 440, 442, 444, 152, 448, 450,
158, 454, 456, 458, 166, 462, 464,
172, 468, 470, 472, 180, 476, 478,
186, 482, 484, 486, 194, 490, 492,
200, 496, 498, 500, 208, 504, 506,
214, 510, 512, 514, 222, 518, 520,
228, 524, 526, 528, 236, 532, 534,
242, 538, 540, 542, 250, 546, 548,
256, 552, 554, 556, 264, 560, 562,
270, 566, 568, 570, 278, 574, 576,
284, 580, 582, 584, 292, 588, 590,
298, 594, 596, 598, 306, 602, 604,
312, 608, 610, 612, 320, 616, 618,
326, 622, 624, 626, 334, 630, 632,
340, 636, 638, 640, 348, 644, 646,
354, 650, 652, 654, 68, 658, 660,
368, 664, 666, 668, 376, 672, 674,
382, 678, 680, 682, 390, 686, 688,
396, 692, 694, 696, 404, 700, 702,
410, 412, 708, 416, 124, 420, 422,
130, 426, 428, 430, 138, 434, 436,
144, 440, 442, 444, 152, 448, 450,
158, 454, 456, 458, 166, 462, 464,
172, 468, 470, 472, 180, 476, 478,
186, 482, 484, 486, 194, 490, 492,
200, 496, 498, 500, 208, 504, 506,
214, 510, 512, 514, 222, 518, 520,
228, 524, 526, 528, 236, 532, 534,
242, 538, 540, 542, 250, 546, 548,
256, 552, 554, 556, 264, 560, 562,
270, 566, 568, 570, 278, 574, 576,
284, 580, 582, 584, 292, 588, 590,
298, 594, 596, 598, 306, 602, 604)

Table 1: Table of p™-filtration theta cycles for f
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f=

CuspForms (Gammal1 (1), 16).q_integral_basis() [0]

q + 216%q~2 - 3348%q~3 + 13888%q~4 + 52110%q~5 + 0(q~6)

1

ﬁ <Q4 _ R2Q)

m=3

5 (18, 24, 30, 12)

(60, 62, 64, 46, 48, 30, 52,
54, 36, 58, 60, 42, 64, 66,
68, 50, 52, 54, 76, 58)

(222, 224, 126, 228, 230, 232, 234,
136, 238, 240, 242, 244, 146, 248,
250, 252, 254, 156, 258, 260, 262,
264, 66, 168, 270, 272, 174, 76,
178, 180, 182, 184, 86, 188, 190,
192, 194, 96, 198, 200, 202, 204,
106, 208, 210, 212, 214, 116, 218,
220, 222, 224, 126, 228, 230, 232,
234, 136, 238, 240, 242, 244, 46,
248, 250, 252, 254, 56, 258, 260,
162, 264, 66, 268, 170, 172, 174,
176, 178, 180, 182, 184, 86, 188,
190, 192, 194, 96, 198, 200, 202,
204, 106, 208, 210, 212, 214, 116,
218, 220)

T | (24, 32, 40, 48, 56, 16)

(104, 106, 108, 110, 70, 72, 116,
118, 120, 122, 124, 84, 86, 88,
132, 134, 136, 96, 98, 100, 102,

104, 148, 108, 110, 112, 114, 116,
118, 78, 80, 124, 84, 86, 130,
48, 92, 52, 96, 140, 142, 102)

(610, 612, 614, 322, 324, 620, 622,
624, 626, 628, 336, 338, 634, 636,
638, 640, 642, 350, 352, 648, 650,
652, 654, 656, 364, 366, 662, 664,
666, 668, 670, 378, 86, 676, 678,
680, 682, 684, 392, 394, 690, 692,
694, 696, 698, 112, 114, 704, 706,
708, 710, 712, 126, 128, 424, 720,
722, 724, 432, 140, 142, 438, 440,
736, 444, 446, 154, 156, 452, 454,
456, 458, 460, 168, 170, 466, 468,
470, 472, 474, 182, 184, 480, 482,
484, 486, 488, 196, 198, 494, 496,
498, 500, 502, 210, 212, 508, 510,
512, 514, 516, 224, 226, 522, 524,
526, 528, 530, 238, 240, 536, 538,
540, 542, 544, 252, 254, 550, 552,
554, 556, 558, 266, 268, 564, 566,
568, 570, 572, 280, 282, 578, 580,
582, 584, 586, 294, 296, 592, 594,
596, 598, 600, 308, 310, 606, 608,
610, 612, 614, 322, 324, 620, 622,
624, 626, 628, 336, 338, 634, 636,
638, 640, 642, 350, 352, 648, 650,
652, 654, 656, 70, T2, 662, 664,
666, 668, 670, 378, 380, 676, 678,
680, 682, 684, 392, 394, 690, 692,
694, 696, 698, 406, 408, 704, 706,
414, 416, 712, 126, 128, 718, 426,
428, 430, 432, 140, 142, 438, 440,
442, 444, 446, 154, 156, 452, 454,
456, 458, 460, 168, 170, 466, 468,
470, 472, 474, 182, 184, 480, 482,
484, 486, 488, 196, 198, 494, 496,
498, 500, 502, 210, 212, 508, 510,
512, 514, 516, 224, 226, 522, 524,
526, 528, 530, 238, 240, 536, 538,
540, 542, 544, 252, 254, 550, 552,
554, 556, 558, 266, 268, 564, 566,
568, 570, 572, 280, 282, 578, 580,
582, 584, 586, 294, 296, 592, 594,
596, 598, 600, 308, 310, 606, 608)

Table 2: Table of p™-filtration theta cycles for f
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5.1.2 Non-cusp forms

In this subsection, we just compute theta cycles for () and R.

f = ModularForms (Gammal(1), 4).q_integral_basis() [0]

=1 + 240%q + 2160%q~2 + 6720%q~3 + 17520%q~4 + 30240%q~5 + 0(q~6)

=Q

m=3

(12, 20, 28, 12, 20, 28)

(92, 94, 54, 98, 100, 60, 104,
106, 108, 68, 112, 114, 74, 76,
120, 80, 82, 84, 86, 88, 90,
92, 94, 96, 98, 100, 102, 104,
106, 108, 68, 112, 114, 74, 76,
120, 80, 82, 84, 86, 46, 90)

(598, 306, 602, 604, 312, 608,

612, 320, 616, 618, 326, 622,
626, 334, 630, 632, 340, 636,
640, 348, 644, 646, 354, 650,
654, 362, 658, 660, 368, 664,

668, 376, 672, 674, 88, 678, 680,
682, 96, 686, 688, 102, 692, 694,

696, 110, 700, 702, 116, 412,
416, 124, 420, 422, 130, 426,
430, 138, 434, 436, 144, 440,
444, 152, 448, 450, 158, 454,
458, 166, 462, 464, 172, 468,
472, 180, 476, 478, 186, 482,
486, 194, 490, 492, 200, 496,
500, 208, 504, 506, 214, 510,
514, 222, 518, 520, 228, 524,
528, 236, 532, 534, 242, 538,
542, 250, 546, 548, 256, 552,
556, 264, 560, 562, 270, 566,
570, 278, 574, 576, 284, 580,
584, 292, 588, 590, 298, 594,
598, 306, 602, 604, 312, 608,
612, 320, 616, 618, 326, 622,
626, 334, 630, 632, 340, 636,
640, 348, 644, 646, 354, 650,
654, 362, 658, 660, 368, 664,
668, 376, 672, 674, 382, 678,
682, 390, 686, 688, 396, 692,
696, 404, 700, 702, 410, 412,
416, 124, 420, 422, 130, 426,
430, 138, 434, 436, 144, 440,
444, 152, 448, 450, 158, 454,
458, 166, 462, 464, 172, 468,
472, 180, 476, 478, 186, 482,
486, 194, 490, 492, 200, 496,
500, 208, 504, 506, 214, 510,
514, 222, 518, 520, 228, 524,
528, 236, 532, 534, 242, 538,
542, 250, 546, 548, 256, 552,
556, 264, 560, 562, 270, 566,
570, 278, 574, 576, 284, 580,
584, 292, 588, 590, 298, 594,

610,
624,
638,
652,
666,

708,
428,
442,
456,
470,
484,
498,
512,
526,
540,
554,
568,
582,
596,
610,
624,
638,
652,
666,
680,
694,
708,
428,
442,
456,
470,
484,
498,
512,
526,
540,
554,
568,
582,
596)

(16, 28, 40, 52, 64, 76, 88,
20, 32, 44)

(228, 230, 232, 234, 236, 238, 130,
242, 244, 136, 248, 250, 252, 254,
256, 258, 260, 152, 264, 266, 158,
160, 272, 274, 276, 278, 280, 172,

174, 176, 68, 180, 182, 184, 296,

298, 300, 192, 194, 196, 198, 200,
202, 204, 206, 208, 320, 212, 214,
216, 218, 220, 222, 224, 226, 228,
230, 232, 234, 236, 238, 240, 242,
244, 246, 248, 250, 252, 254, 256,
148, 260, 262, 264, 266, 268, 270,
162, 164, 276, 168, 170, 172, 284,
176, 178, 290, 182, 184, 186, 188,
190, 192, 194, 196, 308, 310, 202,
204, 206, 208, 210, 212, 214, 216,

218, 220, 222, 114, 226)

Too long

Table 3: Table of p™-filtration theta cycles for f
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f = ModularForms (Gammal (1), 6).q_integral basis() [0]
=1 - 504%q - 16632%q~2 - 122076%q~3 - 532728%q~4 + 0(q"5)
=R

m=1 m =2 m =3

(212, 214, 116, 218, 220, 222, 224,
126, 228, 230, 232, 234, 136, 238,
240, 242, 244, 146, 248, 250, 252,
254, 156, 258, 260, 262, 264, 66,
168, 270, 272, 174, 76, 178, 180,
182, 184, 86, 188, 190, 192, 194,

(50, 52, 54, 36, 58, 60, 62, 96, 198, 200, 202, 204, 106, 208,
p = 5 (12, 18, 24, 30) 64, 46, 28, 70, 72, 54, 56, 210, 212, 214, 116, 218, 220, 222,
58, 60, 42, 64, 46, 68) 224, 126, 228, 230, 232, 234, 136,

238, 240, 242, 244, 146, 248, 250,
252, 254, 156, 258, 260, 162, 264,
66, 268, 170, 172, 174, 76, 178,
180, 182, 184, 86, 188, 190, 192,
194, 96, 198, 200, 202, 204, 106,
208, 210)

(230, 232, 234, 236, 128, 240, 242,
244, 246, 138, 250, 252, 254, 256,
258, 150, 262, 264, 266, 268, 160,
162, 274, 276, 278, 170, 172, 174,
286, 288, 180, 182, 184, 186, 298,
190, 192, 194, 196, 198, 90, 202,
204, 206, 208, 210, 212, 214, 216,
— (18, 30, 42, 54, 66, 18, 30, | 218, 220, 222, 224, 226, 228, 230,

b= 11 42, 54, 66) 232, 234, 236, 238, 240, 242, 244, Too long
246, 248, 250, 252, 254, 256, 258,
150, 262, 154, 156, 268, 160, 162,
274, 276, 278, 170, 172, 174, 286,
288, 180, 182, 184, 186, 298, 190,
192, 194, 196, 198, 200, 202, 204,
206, 208, 210, 212, 214, 216, 218,

220, 222, 224, 116, 228)

Table 4: Table of p™-filtration theta cycles for f

Page 47



MC-SCIMAT mkoumouris@student.unimelb.edu.au October, 2023

5.2 Level 2 modular forms

Modular forms of level N > 1 and fixed weight have bases that are computationally

expensive for Sage to fetch. So we compute theta cycles just for cusp forms.

5.2.1 Cusp forms

f = CuspForms (Gammal(2), 8).q_integral basis() [0]
—q - 8%q"2 + 12%q"3 + 64%q~4 - 210%q"5 - 96%q"6
+ 1016%q°7 - 512%q™8 - 2043%q~9 + 0(q"10)

m=1 m =2
(52, 34, 56, 38, 60, 62, 44,
p = 5 (14, 20, 10, 8) 46, 48, 50, 32, 54, 56, 58,

40, 42, 44, 66, 48, 50)

(96, 98, 100, 102, 104, 64, 108,
110, 70, 72, 116, 118, 78, 80,

_ 124, 126, 128, 130, 90, 92, 94,

b= 7 (16, 24, 32, 40, 48, 56) | 45" 140 142, 102, 104, 106, 108,

110, 112, 30, 116, 118, 120, 122,
124, 84, 86, 88, 132, 92, 136)

Table 5: Table of p™-filtration theta cycles for f

f = CuspForms (Gammal(2), 12).q_integral basis() [0]
=q + 252%q~3 - 2048xq~4 + 4830*q"5 - 16744*q"7 + 0(q"8)

m=1 m =2
(56, 58, 40, 42, 64, 66, 68,
p= 5 (18, 24, 30, 12) 50, 52, 54, 76, 58, 40, 42,

64, 46, 48, 70, 72, 54)
(100, 60, 104, 106, 108, 68, 112,
114, 74, 76, 78, 80, 82, 84,

_ 86, 88, 90, 92, 94, 96, 98,
p= 7| (20,28, 12, 20, 28, 12) 100, 102, 104, 106, 108, 68, 112,
114, 74, 76, 120, 80, 40, 84,
86, 88, 90, 92, 94, 96, 98)

Table 6: Table of p™-filtration theta cycles for f

Note that these are the same cycles as in Table 1.
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