Isogenies between elliptic curves* ${ }^{\text {t }}$

Jacques Vélu

26 July 1971

Given the equation of an elliptic curve E over a field k and the coordinates of the points of a finite subgroup F of E, we give the equations of the isogenous curve E / F and of the isogeny $f: E \rightarrow E / F$.

1 Background

Let E be an elliptic curve over an algebraically closed field k. To each point P of E we associate a valuation ν_{P} on the field $k(E)$ of functions defined over k, and for each function $t \in k(E)$ we write $t(P)$ for the value of t at the point P. If \mathcal{O} is a point of E, there exist x and y in $k(E)$ satisfying the conditions

$$
\begin{align*}
& \nu_{\mathcal{O}}(x)=-2 ; \quad \nu_{\mathcal{O}}(y)=-3 ; \quad \frac{y^{2}}{x^{3}}(\mathcal{O})=1 \tag{1}\\
& \nu_{P}(x) \geq 0 \quad \text { and } \quad \nu_{P}(y) \geq 0 \text { for } P \neq \mathcal{O}
\end{align*}
$$

These conditions imply that $k(E)=k(x, y)$ and that x and y are related by a nonsingular cubic equation that we can establish in the following manner: let $z=-x / y$ so that $\nu_{\mathcal{O}}(z)=1$; write x and y as

$$
\begin{align*}
& x=z^{-2}-\alpha_{1} z^{-1}-\alpha_{2}-\alpha_{3} z-\alpha_{4} z^{2}-\alpha_{5} z^{3}-\alpha_{6} z^{4}-\ldots \tag{2}\\
& y=-\frac{x}{z}=-z^{-3}+\alpha_{1} z^{-2}+\alpha_{2} z^{-1}+\alpha_{3}+\alpha_{4} z+\alpha_{5} z^{2}+\alpha_{6} z^{3}+\ldots
\end{align*}
$$

then x and y satisfy

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\alpha_{1}=a_{1}, & \alpha_{4}=a_{1} a_{3}+a_{4} \\
\alpha_{2}=a_{2}, & \alpha_{5}=a_{2} a_{3}+a_{1}^{2} a_{3}+a_{1} a_{4} \\
\alpha_{3}=a_{3}, & \alpha_{6}=a_{1}^{2} a_{4}+a_{1}^{3} a_{3}+a_{2} a_{4}+2 a_{1} a_{2} a_{3}+a_{3}^{2}+a_{6} \tag{4}
\end{array}
$$

[^0]It is customary to set

$$
\begin{align*}
b_{2} & =a_{1}^{2}+4 a_{2}, \quad b_{4}=a_{1} a_{3}+2 a_{4}, \quad b_{6}=a_{3}^{2}+4 a_{6}, \\
b_{8} & =a_{1}^{2} a_{6}-a_{1} a_{3} a_{4}+4 a_{2} a_{6}+a_{2} a_{3}^{2}-a_{4}^{2}, \quad \text { whence } \quad 4 b_{8}=b_{2} b_{6}-b_{4}^{2}, \tag{5}\\
\Delta & =-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} .
\end{align*}
$$

The nonsingularity of equation (3) amounts to $\Delta \neq 0$. Conversely, given five elements $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in k$ with $\Delta \neq 0$, equation (3) (once homogenized) defines an elliptic curve in \mathbb{P}^{2}, and, if we let \mathcal{O} be the point at infinity, the functions x and y satisfy conditions (1).
Let G be the polynomial

$$
G(\xi, \eta)=\xi^{3}+a_{2} \xi^{2}+a_{4} \xi+a_{6}-\eta^{2}-a_{1} \xi \eta-a_{3} \eta ;
$$

then the differential of the first kind

$$
\omega(x, y)=\frac{d x}{2 y+a_{1} x+a_{3}}=\frac{d x}{\frac{\partial G}{\partial \xi}(x, y)}=\frac{-d y}{\frac{\partial G}{\partial \eta}(x, y)}=\frac{d y}{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}
$$

can be written as

$$
\begin{align*}
\omega(x, y)=d z\left[1+a_{1} z\right. & +\left(a_{1}^{2}+a_{2}\right) z^{2}+\left(a_{1}^{3}+2 a_{1} a_{2}+a_{3}\right) z^{3} \tag{6}\\
& \left.+\left(a_{1}^{4}+3 a_{1}^{2} a_{2}+6 a_{1} a_{3}+a_{2}^{2}+2 a_{4}\right) z^{4}+\ldots\right] .
\end{align*}
$$

2 Isogenies

Let F be a finite subgroup of E and let f be the isogeny with kernel F from E to the elliptic curve $E^{\prime}=E / F$. For any point P of E we set $P^{\prime}=f(P)$. The function field $k\left(E^{\prime}\right)$ is identified with a subfield of $k(E)$. Consider the functions X and Y defined by

$$
\begin{align*}
& X(P)=x(P)+\sum_{Q \in F-\{\mathcal{O}\}}(x(P+Q)-x(Q)) ; \tag{7}\\
& Y(P)=y(P)+\sum_{Q \in F-\{\mathcal{O}\}}(y(P+Q)-y(Q)) ;
\end{align*}
$$

It is clear that $X, Y \in k\left(E^{\prime}\right)$ and satisfy $\nu_{\mathcal{O}^{\prime}}(X)=-2 ; \nu_{\mathcal{O}^{\prime}}(Y)=-3 ; Y^{2} / X^{3}\left(\mathcal{O}^{\prime}\right)=1$; $\nu_{P^{\prime}}(X) \geq 0$ and $\nu_{P^{\prime}}(Y) \geq 0$ for all $P^{\prime} \neq \mathcal{O}^{\prime}$. Hence $k\left(E^{\prime}\right)$ is isomorphic to $k(X, Y)$ and the isogeny f is identified with the map $(x, y) \mapsto(X, Y)$. We can write X and Y as rational functions of x and y; these will be the "equations" of the isogeny f, and the relation between X and Y will be the equation of E^{\prime}.

3 Results

Let F_{2} be the subset of points of order 2 of $F-\{\mathcal{O}\}$ and let R be a subset of $F-\{\mathcal{O}\}-F_{2}$ such that

$$
F-\{\mathcal{O}\}-F_{2}=R \cup(-R) \quad \text { and } \quad R \cap(-R)=\emptyset
$$

let $S=F_{2} \cup R$. The isogeny f has equations
(8) $X=x+\sum_{Q \in S}\left(\frac{t_{Q}}{x-x_{Q}}+\frac{u_{Q}}{\left(x-x_{Q}\right)^{2}}\right)$,

$$
Y=y-\sum_{Q \in S}\left(u_{Q} \frac{2 y+a_{1} x+a_{3}}{\left(x-x_{Q}\right)^{3}}+t_{Q} \frac{a_{1}\left(x-x_{Q}\right)+y-y_{Q}}{\left(x-x_{Q}\right)^{2}}+\frac{a_{1} u_{Q}-g_{Q}^{x} g_{Q}^{y}}{\left(x-x_{Q}\right)^{2}}\right)
$$

where

$$
\begin{align*}
Q & =\left(x_{Q}, y_{Q}\right), \\
g_{Q}^{x} & =\frac{\partial G}{\partial \xi}\left(x_{Q}, y_{Q}\right)=3 x_{Q}^{2}+2 a_{2} x_{Q}+a_{4}-a_{1} y_{Q}, \\
g_{Q}^{y} & =\frac{\partial G}{\partial \eta}\left(x_{Q}, y_{Q}\right)=-2 y_{Q}-a_{1} x_{Q}-a_{3}, \tag{9}\\
t_{Q} & = \begin{cases}g_{Q}^{x} & \text { if } Q \in F_{2}, \\
2 g_{Q}^{x}-a_{1} g_{Q}^{y}=6 x_{Q}^{2}+b_{2} x_{Q}+b_{4} & \text { if } Q \notin F_{2},\end{cases} \\
u_{Q} & =\left(g_{Q}^{y}\right)^{2}=4 x_{Q}^{3}+b_{2} x_{Q}^{2}+2 b_{4} x_{Q}+b_{6} .
\end{align*}
$$

We obtain these formulas via the addition formulas on E. Indeed, if $Q \in F_{2}$, we have

$$
\begin{aligned}
& x(P+Q)-x(Q)=\frac{t_{Q}}{x-x_{Q}} \\
& y(P+Q)-y(Q)=-\frac{a_{1}\left(x-x_{Q}\right)+y-y_{Q}}{\left(x-x_{Q}\right)^{2}} t_{Q} \quad \text { and } \quad u_{Q}=0
\end{aligned}
$$

and if $Q \notin F_{2}$, we have

$$
\begin{aligned}
x(P+Q) & -x(Q)+x(P-Q)-x(-Q)=\frac{t_{Q}}{\left(x-x_{Q}\right)^{2}}+\frac{u_{Q}}{\left(x-x_{Q}\right)^{3}}, \\
y(P+Q) & -y(Q)+y(P-Q)-y(-Q) \\
& =-u_{Q} \frac{2 y+a_{1} x+a_{3}}{\left(x-x_{Q}\right)^{3}}-t_{Q} \frac{a_{1}\left(x-x_{Q}\right)+y-y_{Q}}{\left(x-x_{Q}\right)^{2}}-\frac{a_{1} u_{Q}-g_{Q}^{x} g_{Q}^{y}}{\left(x-x_{Q}\right)^{2}} .
\end{aligned}
$$

We now consider the relation between X and Y. We set

$$
\begin{equation*}
t=\sum_{Q \in S} t_{Q}, \quad w=\sum_{Q \in S}\left(u_{Q}+x_{Q} t_{Q}\right) \tag{10}
\end{equation*}
$$

We get

$$
\begin{array}{r}
Y^{2}+A_{1} X Y+A_{3} Y=X^{3}+A_{2} X^{2}+A_{4} X+A_{6}, \\
\text { where } A_{1}=a_{1}, \quad A_{2}=a_{2}, \quad A_{3}=a_{3}, \tag{11}\\
A_{4}=a_{4}-5 t, \quad A_{6}=a_{6}-b_{2} t-7 w .
\end{array}
$$

To obtain this relation, we plug (2) into (8), which gives

$$
\begin{align*}
X= & z^{-2}-a_{1} z-a_{2}-a_{3} z \\
& -\left(\alpha_{4}-t\right) z^{2}-\left(\alpha_{5}-a_{1} t\right) z^{3}-\left(\alpha_{6}-a_{1}^{2} t-a_{2} t-w\right) z^{4}-\ldots, \tag{12}\\
Y= & -z^{-3}+a_{1} z^{-2}+a_{2} z^{-1}+a_{3}+\left(\alpha_{4}+t\right) z+\alpha_{5} z^{2}+\left(\alpha_{6}+a_{1}^{2} t+2 w\right) z^{3}+\ldots .
\end{align*}
$$

We set $Z=-X / Y$ and conclude from (12) that

$$
\begin{align*}
Z & =z+2 t z^{5}+3 a_{1} t z^{6}+\left(4 a_{1}^{2} t+4 a_{2} t+3 w\right) z^{7}+\ldots, \tag{13}\\
z & =Z-2 t Z^{5}-3 a_{1} t Z^{6}-\left(4 a_{1}^{2} t+4 a_{2} t+3 w\right) Z^{7}+\ldots .
\end{align*}
$$

We plug z into (12) again and find

$$
\begin{aligned}
X= & Z^{-2}-a_{1} Z^{-1}-a_{2}-a_{3} Z \\
& -\left(\alpha_{4}-5 t\right) Z^{2}-\left(\alpha_{5}-5 a_{1} t\right) Z^{3}-\left(\alpha_{6}-9 a_{2} t-6 a_{1}^{2} t-7 w\right) Z^{4}-\ldots,
\end{aligned}
$$

which give the formulas (11).
Remarks. 1. We can choose other functions for X and Y. The ones chosen in this paper are such that the uniformizers Z and z coincide to order 5 , which is the largest possible order.
2. If we set $\omega(X, Y)=d X /\left(2 Y+a_{1} X+a_{3}\right)$, we have $\omega(x, y)=\omega(X, Y)$.
3. If E is defined over a subfield k_{0} of k, and F is separable over k_{0} and stable under conjugation over k_{0}, then the elliptic curve E / F as well as the isogeny f are naturally defined over k_{0}, and the above formulas are valid over k_{0}.

4 Application

Consider the elliptic curve over \mathbb{Q} defined by the equation

$$
y^{2}+x y+y=x^{3}-x^{2}-3 x+3
$$

It has a subgroup F of order 7 consisting of the points $\mathcal{O}, Q=(1,0), 2 Q=(-1,-2)$,
$3 Q=(3,-6), 4 Q=(3,2), 5 Q=(-1,2), 6 Q=(1,-2)$. We have $\1

$$
\begin{align*}
& x_{Q}=1, \quad t_{Q}=-2, \quad u_{Q}=4, \quad g_{Q}^{x}=-2, \quad g_{Q}^{y}=-2, \\
& x_{2 Q}=-1, \quad t_{2 Q}=4, \quad u_{2 Q}=16, \quad g_{2 Q}^{x}=4, \quad g_{2 Q}^{y}=4, \tag{14}\\
& x_{3 Q}=3, \quad t_{3 Q}=40, \quad u_{3 Q}=64, \quad g_{3 Q}^{x}=24, \quad g_{3 Q}^{y}=8, \\
& b_{2}=-3, \quad b_{4}=-5, \quad b_{6}=13, \quad t=42, \quad w=198,
\end{align*}
$$

the curve $E^{\prime}=E / F$ has equation $y^{2}+x y+y=x^{3}-x^{2}-213 x-1257$, and the isogeny $f: E \rightarrow E^{\prime}$ is obtained by plugging the values (14) into (8).

[^1]
[^0]: *This note appeared in the Comptes rendus de l'Académie des Sciences de Paris, Série A, t. 273.
 ${ }^{\dagger}$ Translated from the original French by Alexandru Ghitza aghitza@alum.mit.edu.

[^1]: ${ }^{1}$ The French original lists the incorrect value $g_{Q}^{x}=-4$; we have listed the correct value $g_{Q}^{x}=-2$ in the table of results.

