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In this talk we consider the case of groups that are commensurable to the modular
group. The notations I', &}, 27, &, ... are the same as in the previous talk [3].

1 Additional considerations on the space G

Let T' = T, be the “transformation group” of I' = Sp(n, Z), i.e. I' = Sp(n, Q); we first
show how I acts on &7.

For this consider the set @5* constructed by the same method as in [3, Section 2],
but usmg I instead of I', that is the set of points M-Z (classes of pairs (M Z)) with
M eT, Z e &, (0 <r < n); moreover, we can assume that 6* is endowed with a
topology satisfying condition 1° and

2° the actions of M €T on é;ﬁ are continuous maps

(for instance, consider the finest topology satisfying conditions 1° and 2°, defined as
in [3] Section 3]); then &, contains &, as a subset; but in fact they are equal. Indeed,
for each M € T, there is a finite number of M; € I" such that

MQ, c| M Q,

(because (2, is a “fundamental open set” for the “Minkowskian” group I'); since the
topology on @5; induces on G;, a topology satisfying conditions 1° and 2°, we can take
the closure with respect to this topology (which we denote -*, notation that does not
clash with the notation (2}) and get

M = (MQ,) CUMQ

therefore
S, =TQ CcT'Q =67;

we conclude that &% = &7. In particular, we can view I as acting on &7,.

If we decompose [ into right cosets for rn &7, we get a disjoint union decomposition
of the space &* similar to (2.3) in the previous talk [3]; the fact that &% = &* means
that we can use elements of I as representatives of the cosets I'/T' N &"; this means
that

(1.1) r=r(ne’) (0<r<n).
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This fact was already indicated by Koecher [2] in the special case » = 0 (and not only
for T", but for all groups satisfying certain conditions).

The actions of M € T are T -continuous. Indeed, let F be a 7" -closed subset of &*;
we prove that for any M € T', M F is also 7' -closed, that is that MM F N Q is closed
for all M € T'. There exist finitely many M; € I" such that

(MM)~hy | My

then
MMFNQ;, = JMMM;(M;'FnQ;) NG,
i

and, since Mi_lF N2 is closed, so is the latter set, by the “continuity” of MM M; in
2, (this follows from [3) Lemma 1]).

The actions of M € T' are also T -continuous. It suffices to show that if U isa 77 -
neighborhood of = and I',-saturated, then MU (for M e I') contains a 7" -neighborhood
of Mz that is T i1.-Saturated. This follows immediately from the fact that MU is
M T, M~ '-saturated and that

MT, M= (MTM™"),.
is commensurable to I';, .
Now let I" = I/, be a group commensurable to I'; then there are finitely many M; € T’

such that

(1.2) o, =M,

is a fundamental open for I'V; we can take, for instance, those M; such that

r=J@nr)Mm.

We have then &), =T" (Q;l)* (where -* denotes the closure with respect to any topology
that satisfies conditions 1° and 2°). Indeed, for any M € T, there are finitely many
M} € T" such that
MQ, c | JMj,;
J

hence
ey e ()"
J
from which we conclude that &} = T'Q; C IV(,)".

We now consider conditions 1°, 2’, 3’, and 4’ that are obtained respectively from
conditions 1°, 2°, 3°, and 4° by replacing I" and Q} by I'" and (Qﬁl)* (the “natural”
topology on (Q;L)* is that induced by any topology on &} that satisfies conditions 1°
and 2°). It is clear that 7' satisfies conditions 1’ and 2’. Conversely, we can define the
topology T of &} as the finest topology satisfying conditions 1’ and 2’ (we proceed
as in [3| Section 3]); then T satisfies conditions 1° and 2° (the “continuity” of the
actions of M €T on (2,)"); hence 7' = 7'". We realize then by the same argument
that the system of I",-saturated 7- r’-neighborhoods of z is equivalent to the system of
I',-saturated 7' -neighborhoods of z; hence, if we define the topology ’76F/ in the same
way as Ty, we have 7@ = T4 . It is easy to see that 7, = 7, satisfies conditions 1’,



2’, 3’, and 4’; condition 3’ is proved as follows: let z, 2’ € &} be two non-I"-equivalent
points, let
=) @nr)M,

i
and, for each i, let Uj, U! be neighborhoods of = and (M) "2’ such that
« TU;NU! =) if z and (M]) "'z’ are not I'-equivalent;
« (C=T)U) NU; =0, U = MU, if (M]) ™2’ = Ma with M € T;

then, as I' N M T, = (), we have ((I'NI") U;) N U} = 0; hence, setting
U=, U =(\MU,
i i

we have (I"U) N U’ = 0. If follows that 7" satisfies condition 3’; we can prove, by the
same reasoning as in [3], the uniqueness of the topology satisfying conditions 1’, 2’, 3’,
and 4’.

From now on we consider exclusively the topology 74 = 7 ; the results obtained
above can be stated as follows:

Theorem 1. The actions of M € T on G, are %F-continuous maps. For any group I/
that is commensurable to I', the topology 76F satisfies the conditions 1°, 2’, 3’, and 4’,
and is entirely determined by these conditions.

2 The structure of the compactified spaces ['\&

First, it is clear that Theorem 1 implies the following:
Theorem 2. The quotient space I''\&, is Hausdorff and compact.

If I'” is a finite index subgroup of I, obviously there is a canonical map
(2.1) LSV FH\GZ — F,\GZ

that is a “ramified covering” (which we make more precise below); 7r/ r~ is continuous
and maps open sets to open sets and closed sets to closed sets. If moreover I'” is a
normal subgroup of I”, then I'"\ & is “Galois” over I'\ &}, which means that the finite
group I''/T” acts on I\ &} and we have

(2.2) (I'/T"N\(T"\&}) =T\&;,.

We now study the structure of the space I'\&%. For this we decompose I into left I"-
and right (I' N &7")-cosets as follows:

(2.3) [= "M, (Tney),
A

where by (I.I) the number of cosets is finite; we have then the corresponding decom-
position of G :

(2.4) e, =yrm.e,,
T

and therefore

me; =J U\ T' M., &,);

oA



if we set
(2.5) L= <M;A1 T M\ 0 63}) :

it is easy to see that F% \ is a discrete subgroup of Sp(r, R) that is commensurable to
I',, and that the quotient space I\ (I M,.,&,) is canonically identified with I'/ ,\&,;
hence the last relation can be written

(2.6) Me;, =Jr,\e..
A

We should note that if we set in (1.2)
M; = M M, L;, M]cT',L;cTN&",

then
(2.7) = U =)
is a fundamental open for I" ,; this is an immediate consequence of the fact that
Sy =T"()".

We consider the relation between I"n 4 \6; and I'"\&};. We first note that there is a
canonical injective map from &; to &}, given by

M.Z+—1,(M).Z (MeT,,Z€&,,0<s<r),

because (M, Z) ~ (M', Z') is obviously equivalent to (v,(M),Z) ~ (n(M'),Z’); this
map, clearly a homeomorphism with respect to 7' or 7, allows us to identify G with
the closure of &, in G;,.

Given I", there exists also a map ¢, from I', \\&] to I"\&;, given by

(2.8) Yrn (M.Z  (mod I7.y)) = My in(M).Z (mod IV),
since, if M.Z and M'.Z’ are I'] ,-equivalent, there exists M € I such that
@, <M;A1M{) MM> M.Z=M.Z,
that is
Ny = (M), (MM Myp ) M € ) and (1) Z = 7/,

which implies that
(M) TEM M My 1 (M) € &7
and

W (Ln(M/)flM;/\l M(/) M. Ln(M)> = Ws (MO)’

that is that M, \ «(M).Z and M, i, (M').Z' are I'-equivalent.
As the following diagram is commutative, it is clear that the map 1, ) is continuous:

MT,A
& — G,

1/]7")\
I \G* i nNG*
(2.9) ra\Sr ——— TG,



but, as we are about to see, it is in general not injective.
Indeed, let s < r < n and consider double coset decompositions

T, =M (Tn N &7)
A
(2.10) =Ur'm,,(Cney),

vV

"
T, =, MOM (T, ne));
v

we have then

T &7 = (M T M,y 0 &7)0, (M) (TN &) N 67),

v

since I'; = @, ([, N ") and @ }(®}) = S N B7; therefore

(2.11) Ly = UM tn (M) (T 0 &7 0 67);
AV

this is the decomposition of I',, into left-T' and right-T',, N & N &” double cosets, a
refinement of the second decomposition of (2.10). We write

(2.12) A\ v) — p i My o (MEY) € T'M, (T, N &7).

)

Then the function 1), \ maps

7\ MING, — T\ M,y 1 (MM &, = T\ M, &,

)

or, setting

(T7),, = @s (MS(L’*)*IFZ«,AMS(L’” N 62) ;

S,V
M M&N = M'M, L, M'e€T',Lel,na,
Yy \ Maps

(2.13) (F;A)syu\es—m’s,#\e via Z (mod (T},),, ) L.Z (modT},),

S,V

for (\,v) — u. It is possible that two distinct pairs (), v) and (X, ') (even with A = X)
correspond to the same u; on the other hand, we have

(Tha)., = s (MG T M2 N ©7)
S (Ln (MUY M T Moy 0 (MI2) N 87 N @g)
(e (MUY M My 0 (M) 0 67

=@, (LM, T'M, , LN &)
= WS(L)ilrls,MWS(L)Q

and it is possible that (I".,)_ is strictly smaller than w, (L)™', ,o,(L). These two
possible cases mean that, in general, 1, ) is not injective.



Example Let us consider the case of the “Hauptkongruenzgruppe”:
Inig)={M: MeTl,,M=E, (modq)}.
In this case any I} , is equal to I'.(¢), hence we are not in the second case
(Fr,)\)s v & wS(L)ilrls,uws(L));

let us compute the “multiplicity” v, , of I';(q). We have obviously

= [[n: Tn(g)(Tn N &7)]
= [[n: Dn(@)]/[Tn N &} Tn(q) N &7
= [[n: Du(@)]/[Tr: Tr(q)] - [T N OB Tn(gq) N O,
where 17 denotes the kernel of w,. But 91" decomposes as a semi-direct product
(2.14) My = x T,
where
" ‘oo E, Ui
i {(T )= (5 U i £0).
n E T\ . (0 T .
(2.16) T = {(0 E> T = (tle T2> , o symmetrlc},

the latter being a normal subgroup of 7. As
L(g) VO = (T(g) NUY) % (Tu(q) N'EY)

and

. U0 E, Up .
TNt = {(0 U1> U= (0 U, = FE, (mod ¢),U unimodular ; ,

E 1 0 Tio . .
n . — =
IgNn3) = { (0 E) T = <tT12 i > = FE, (mod q),T integral, symmetrlc} )

we have
LN Th(g) N = [0 NI T(g) N - [T, N E: Th(q) N T

r(n—r) =)ot 4oy gy

= (2)[Yn—r: m—r(9)lq q 2 )
where
Yn—r = SL(n —r,7Z), ’Yn—r(Q> = {U € Yn—r: U=Ey—p (mod Q)}>

and the factor (2) appears if n — r > 1 and ¢ > 2. It is well-known that

[’Yn ’Yn = 1H H 1_ 7k

plg 2<k<n

[Fn5 Fn( _q n(2n+1) H H —2k:

plg 1<k<n

(see [I1]). We obtain

qn(2n+1)fr(2r+1) H H (1 _ p72k)

plg r+1<k<n

2)(]("_7")(2%4-27‘(71—7’)4-(”_7')2_1 H H (1- p_k)

plg 2<k<n—r

H (1 o p72k)

— q% (n—r)(n+3r+1)+1(2)—1 H r+1<k<n

plg H (1 *p_k)

2<k<n—r

(2.17) Uy =




for r < n. If s < r < n, we have therefore
n—s
[Ta-»"

rT—S

o l;[ (=) (=27

2

Un,rVrs n—r)(r—s _
Vartns _ yn-)(e=s)41 ()1 T[ —

Un,s

> 1,

which shows that the map I',(¢)\& — T',(¢)\&:; is certainly not injective if 0 < r < n.

3 A connectedness theorem

Finally we add a theorem that will be useful later.

Theorem 3. Every point of &} —&,, has a base of T -neighborhoods whose intersection
with G,, is connected and open.

Proof. We can assume that the point in question is Z; € Q, (r < n). Let U, be
a connected, (FT)ZO—saturated neighborhood of Z; in Q, and let U, = V) (U,, K)
(r < s < n) be the set defined in [I3, p. 3], that is the set of Z € ), such that

) di 0
Z = tZI Z12 =X+4iY, Y='WDW, D=
Zia Ly 0 p

with 2" € U,, d,4, > K; then

v= |J U,

r<s<n

is a neighborhood of Zj in 2} and therefore U=T z,U 1s a %F-neighborhood of Zy in
G&;. We will prove that U=T z,U intersects G,, in a connected set, that is that 'z, U,
is connected. It is easy to see that I'z, is finitely generated (note that I' N 917 is a finite
index subgroup of I'z, and is finitely generated); let {);} be a finite generating set for
I'z, that contains the identity I; we may assume in addition that M; is of one of the
following forms:

E. 0 0 0
t

(3.1) M; = 8 (52 ]gr 8 , Us unimodular,
0o 0 0 U’
Ay 0 By  Bis
Azt Enr Ba  Bo

2 M; =
(3.2) ' Ci 0 Dy Dy

0 0 0 E,,

(Indeed, I'z, is the semi-direct product of subgroups consisting of matrices of respective
forms and (3.2), with the latter subgroup being normal.) Decomposing Z' = M, Z,
Z € U, as above, we see easily that if M; is of the form (3.2), then Z’ belongs to
O, (u'), where v’ > u depends only on U,, K, and M;; therefore M;U,, C Q,(u’) for «’
sufficiently large. Now let M; be of the form ; for an arbitrary but fixed matrix
Z; in U, we can again take v’ such that Z] = M;Z; € Q,(v'); in this case we have the
relations

X1 =X1, Xpp=Xpl, Xy="0XpUs, W]=W,
Wiy =WiaUs,  Dy= Dy, "WyDyWy = "Us' Wy Dy WoUs;



so if we denote by Z;(\) and Z/(\) the matrices obtained by replacing D, and D)
by AD; and ADj (A > 1) inside Z;, respectively Z!, we see easily that Z;(\) € U,,
ZI(\) € Q, ('), Z/(X\) = M; Z;(\) and hence Z/()\) (A > 1) belongs to M;U,, N Q,(v'). Let
u’ be such that all the above conditions are satisfied; we define a neighborhood

U= |J U

r<s<n

of Zy in Q,(u')* exactly as above with U’ = U, and K’ large enough that U’ C U; then
M,;U, NU}, = 0 for all i; indeed, if M; is of the form (3.2), we can take, for a given K’,
K such that M;V ™ (U,, K1) C U/; on the other hand, if M; is of the form (@.1), Z/(\)
belongs to M;U,, C U, for sufficiently large A. Then, since U,, and U], are connected,
sois U, UU/, and (U, UU}) N M;(U, UU/) # 0 for all i, from which we conclude the
connectedness of 'z, U,, = I'z,(U,, UU,)). O

Bibliographic note

The two results of Koecher referred to in this talk can be found in [1] 2].
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