Compactification of Siegel's quotient spaces II*

Ichiro Satake

10 March 1958

In this talk we consider the case of groups that are commensurable to the modular group. The notations Γ , \mathfrak{G}_r^n , Ω_n^* , \mathfrak{S}_n^* ,... are the same as in the previous talk [3].

1 Additional considerations on the space \mathfrak{S}_n^*

Let $\tilde{\Gamma} = \tilde{\Gamma}_n$ be the "transformation group" of $\Gamma = \operatorname{Sp}(n, \mathbb{Z})$, i.e. $\tilde{\Gamma} = \operatorname{Sp}(n, \mathbb{Q})$; we first show how $\tilde{\Gamma}$ acts on \mathfrak{S}_n^* .

For this consider the set $\tilde{\mathfrak{S}}_n^*$ constructed by the same method as in [3, Section 2], but using $\tilde{\Gamma}$ instead of Γ , that is the set of points $\tilde{M} \cdot Z$ (classes of pairs (\tilde{M}, Z)) with $\tilde{M} \in \tilde{\Gamma}, Z \in \mathfrak{S}_r$ ($0 \leq r \leq n$); moreover, we can assume that $\tilde{\mathfrak{S}}_n^*$ is endowed with a topology satisfying condition 1° and

 $\tilde{2}^{\circ}$ the actions of $\tilde{M} \in \tilde{\Gamma}$ on $\tilde{\mathfrak{S}}_n^*$ are continuous maps

(for instance, consider the finest topology satisfying conditions 1° and $\tilde{2}^{\circ}$, defined as in [3, Section 3]); then $\tilde{\mathfrak{S}}_n^*$ contains \mathfrak{S}_n^* as a subset; but in fact they are equal. Indeed, for each $\tilde{M} \in \tilde{\Gamma}$, there is a finite number of $M_i \in \Gamma$ such that

$$\tilde{M}\,\Omega_n\subset \bigcup_i M_i\,\Omega_n$$

(because Ω_n is a "fundamental open set" for the "Minkowskian" group Γ); since the topology on $\tilde{\mathfrak{S}}_n^*$ induces on \mathfrak{S}_n^* a topology satisfying conditions 1° and 2°, we can take the closure with respect to this topology (which we denote \cdot^* , notation that does not clash with the notation Ω_n^*) and get

$$\tilde{M} \Omega_n^* = \left(\tilde{M} \Omega_n\right)^* \subset \bigcup_i M_i \Omega_n^*,$$

therefore

$$\tilde{\mathfrak{S}}_n^* = \tilde{\Gamma} \, \Omega_n^* \subset \Gamma \, \Omega_n^* = \mathfrak{S}_n^*;$$

we conclude that $\tilde{\mathfrak{S}}_n^* = \mathfrak{S}_n^*$. In particular, we can view $\tilde{\Gamma}$ as acting on \mathfrak{S}_n^* .

If we decompose $\tilde{\Gamma}$ into right cosets for $\tilde{\Gamma} \cap \mathfrak{G}_r^n$, we get a disjoint union decomposition of the space $\tilde{\mathfrak{S}}_n^*$ similar to (2.3) in the previous talk [3]; the fact that $\tilde{\mathfrak{S}}_n^* = \mathfrak{S}_n^*$ means that we can use elements of Γ as representatives of the cosets $\tilde{\Gamma}/\tilde{\Gamma} \cap \mathfrak{G}_r^n$; this means that

(1.1)
$$\widetilde{\Gamma} = \Gamma \left(\widetilde{\Gamma} \cap \mathfrak{G}_r^n \right) \quad (0 \le r \le n).$$

^{*}This paper appeared in *Séminaire Henri Cartan*, pages 13-01 to 13-10 (1957/58).

Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>.

This fact was already indicated by Koecher [2] in the special case r = 0 (and not only for Γ , but for all groups satisfying certain conditions).

The actions of $\tilde{M} \in \tilde{\Gamma}$ are \mathcal{T}^{Γ} -continuous. Indeed, let F be a \mathcal{T}^{Γ} -closed subset of \mathfrak{S}_n^* ; we prove that for any $\tilde{M} \in \tilde{\Gamma}$, $\tilde{M}F$ is also \mathcal{T}^{Γ} -closed, that is that $M\tilde{M}F \cap \Omega_n^*$ is closed for all $M \in \Gamma$. There exist finitely many $M_i \in \Gamma$ such that

$$(M\tilde{M})^{-1}\Omega_n^* \subset \bigcup_i M_i \Omega_n^*;$$

then

$$M\tilde{M}F \cap \Omega_n^* = \bigcup_i M\tilde{M}M_i (M_i^{-1}F \cap \Omega_n^*) \cap \Omega_n^*$$

and, since $M_i^{-1}F \cap \Omega_n^*$ is closed, so is the latter set, by the "continuity" of $M\tilde{M}M_i$ in Ω_n^* (this follows from [3, Lemma 1]).

The actions of $\tilde{M} \in \tilde{\Gamma}$ are also \mathcal{T}_0^{Γ} -continuous. It suffices to show that if U is a \mathcal{T}^{Γ} -neighborhood of x and Γ_x -saturated, then $\tilde{M}U$ (for $\tilde{M} \in \tilde{\Gamma}$) contains a \mathcal{T}^{Γ} -neighborhood of $\tilde{M}x$ that is $\Gamma_{\tilde{M}x}$ -saturated. This follows immediately from the fact that $\tilde{M}U$ is $\tilde{M} \Gamma_x \tilde{M}^{-1}$ -saturated and that

$$\tilde{M}\,\Gamma_x\,\tilde{M}^{-1} = \left(\tilde{M}\,\Gamma\,\tilde{M}^{-1}\right)_{\tilde{M}x}$$

is commensurable to $\Gamma_{\tilde{M}x}$.

Now let $\Gamma'=\Gamma'_n$ be a group commensurable to $\Gamma;$ then there are finitely many $M_i\in \Gamma$ such that

(1.2)
$$\Omega'_n = \bigcup_i M_i \,\Omega_n$$

is a fundamental open for Γ' ; we can take, for instance, those M_i such that

$$\Gamma = \bigcup_{i} \left(\Gamma \cap \Gamma' \right) M_i.$$

We have then $\mathfrak{S}_n^* = \Gamma'(\Omega'_n)^*$ (where \cdot^* denotes the closure with respect to any topology that satisfies conditions 1° and 2°). Indeed, for any $M \in \Gamma$, there are finitely many $M'_i \in \Gamma'$ such that

$$M\,\Omega_n \subset \bigcup_j M'_j\,\Omega'_n$$

hence

$$M\,\Omega_n^* \subset \bigcup_j M_j'\big(\Omega_n'\big)^*,$$

from which we conclude that $\mathfrak{S}_n^* = \Gamma \Omega_n^* \subset \Gamma'(\Omega'_n)^*$.

We now consider conditions 1', 2', 3', and 4' that are obtained respectively from conditions 1°, 2°, 3°, and 4° by replacing Γ and Ω_n^* by Γ' and $(\Omega_n')^*$ (the "natural" topology on $(\Omega_n')^*$ is that induced by any topology on \mathfrak{S}_n^* that satisfies conditions 1° and 2°). It is clear that \mathcal{T}^{Γ} satisfies conditions 1' and 2'. Conversely, we can define the topology $\mathcal{T}^{\Gamma'}$ of \mathfrak{S}_n^* as the finest topology satisfying conditions 1' and 2' (we proceed as in [3, Section 3]); then $\mathcal{T}^{\Gamma'}$ satisfies conditions 1° and 2° (the "continuity" of the actions of $\tilde{M} \in \tilde{\Gamma}$ on $(\Omega_n')^*$); hence $\mathcal{T}^{\Gamma} = \mathcal{T}^{\Gamma'}$. We realize then by the same argument that the system of Γ_x -saturated \mathcal{T}^{Γ} -neighborhoods of x; hence, if we define the topology $\mathcal{T}_0^{\Gamma'}$ in the same way as \mathcal{T}_0^{Γ} , we have $\mathcal{T}_0^{\Gamma'} = \mathcal{T}_0^{\Gamma}$. It is easy to see that $\mathcal{T}_0^{\Gamma'} = \mathcal{T}_0^{\Gamma}$ satisfies conditions 1',

2', 3', and 4'; condition 3' is proved as follows: let $x, x' \in \mathfrak{S}_n^*$ be two non- Γ' -equivalent points, let

$$\Gamma' = \bigcup_{i} \left(\Gamma \cap \Gamma' \right) M'_{i},$$

and, for each *i*, let U_i , U'_i be neighborhoods of *x* and $(M'_i)^{-1}x'$ such that

• $\Gamma U_i \cap U'_i = \emptyset$ if x and $(M'_i)^{-1}x'$ are not Γ -equivalent;

•
$$((\Gamma - \Gamma_x)U_i) \cap U_i = \emptyset$$
, $U'_i = MU_i$, if $(M'_i)^{-1}x' = Mx$ with $M \in \Gamma$;

then, as $\Gamma' \cap M \Gamma_x = \emptyset$, we have $((\Gamma \cap \Gamma') U_i) \cap U'_i = \emptyset$; hence, setting

$$U = \bigcap_{i} U_{i}, \qquad U' = \bigcap_{i} M'_{i} U'_{i},$$

we have $(\Gamma' U) \cap U' = \emptyset$. If follows that \mathcal{T}^{Γ} satisfies condition 3'; we can prove, by the same reasoning as in [3], the uniqueness of the topology satisfying conditions 1', 2', 3', and 4'.

From now on we consider exclusively the topology $\mathcal{T}_0^{\Gamma} = \mathcal{T}_0^{\Gamma'}$; the results obtained above can be stated as follows:

Theorem 1. The actions of $\tilde{M} \in \tilde{\Gamma}$ on \mathfrak{S}_n^* are \mathcal{T}_0^{Γ} -continuous maps. For any group Γ' that is commensurable to Γ , the topology \mathcal{T}_0^{Γ} satisfies the conditions 1', 2', 3', and 4', and is entirely determined by these conditions.

2 The structure of the compactified spaces $\Gamma'ackslash \mathfrak{S}_n^*$

First, it is clear that Theorem 1 implies the following:

Theorem 2. The quotient space $\Gamma' \setminus \mathfrak{S}_n^*$ is Hausdorff and compact.

If Γ'' is a finite index subgroup of Γ' , obviously there is a canonical map

(2.1)
$$\pi_{\Gamma',\Gamma''}: \ \Gamma'' \backslash \mathfrak{S}_n^* \longrightarrow \Gamma' \backslash \mathfrak{S}_n^*$$

that is a "ramified covering" (which we make more precise below); $\pi_{\Gamma',\Gamma''}$ is continuous and maps open sets to open sets and closed sets to closed sets. If moreover Γ'' is a **normal** subgroup of Γ' , then $\Gamma'' \setminus \mathfrak{S}_n^*$ is "Galois" over $\Gamma' \setminus \mathfrak{S}_n^*$, which means that the finite group Γ'/Γ'' acts on $\Gamma'' \setminus \mathfrak{S}_n^*$ and we have

(2.2)
$$(\Gamma'/\Gamma'') \setminus (\Gamma'' \setminus \mathfrak{S}_n^*) = \Gamma' \setminus \mathfrak{S}_n^*.$$

We now study the structure of the space $\Gamma' \setminus \mathfrak{S}_n^*$. For this we decompose $\tilde{\Gamma}$ into left Γ' and right $(\tilde{\Gamma} \cap \mathfrak{G}_r^n)$ -cosets as follows:

(2.3)
$$\tilde{\Gamma} = \bigcup_{\lambda} \Gamma' M_{r,\lambda} \left(\tilde{\Gamma} \cap \mathfrak{G}_r^n \right),$$

where by (1.1) the number of cosets is finite; we have then the corresponding decomposition of \mathfrak{S}_n^* :

(2.4)
$$\mathfrak{S}_n^* = \bigcup_r \bigcup_{\lambda} \Gamma' M_{r,\lambda} \mathfrak{S}_r,$$

and therefore

$$\Gamma' \backslash \mathfrak{S}_n^* = \bigcup_r \bigcup_{\lambda} \Gamma' \backslash \big(\Gamma' M_{r,\lambda} \mathfrak{S}_r \big);$$

if we set

(2.5)
$$\Gamma'_{r,\lambda} = \varpi_r \left(M_{r,\lambda}^{-1} \, \Gamma' \, M_{r,\lambda} \cap \mathfrak{G}_r^n \right),$$

it is easy to see that $\Gamma'_{r,\lambda}$ is a discrete subgroup of $\operatorname{Sp}(r,\mathbb{R})$ that is commensurable to Γ_r , and that the quotient space $\Gamma' \setminus (\Gamma' M_{r,\lambda} \mathfrak{S}_r)$ is canonically identified with $\Gamma'_{r,\lambda} \setminus \mathfrak{S}_r$; hence the last relation can be written

(2.6)
$$\Gamma' \backslash \mathfrak{S}_n^* = \bigcup_{r,\lambda} \Gamma'_{r,\lambda} \backslash \mathfrak{S}_r.$$

We should note that if we set in (1.2)

$$M_i = M'_i M_{r,\lambda_i} L_i, \quad M'_i \in \Gamma', \, L_i \in \tilde{\Gamma} \cap \mathfrak{G}_r^n,$$

then

(2.7)
$$\Omega'_{r,\lambda} = \bigcup_{i : \lambda_i = \lambda} \varpi_r(L_i) \,\Omega_r$$

is a fundamental open for $\Gamma'_{r,\lambda}$; this is an immediate consequence of the fact that $\mathfrak{S}_n^* = \Gamma'(\Omega'_n)^*$.

We consider the relation between $\Gamma'_{r,\lambda} \setminus \mathfrak{S}^*_r$ and $\Gamma' \setminus \mathfrak{S}^*_n$. We first note that there is a canonical injective map from \mathfrak{S}^*_r to \mathfrak{S}^*_n given by

$$M.Z \mapsto \iota_n(M).Z \qquad (M \in \tilde{\Gamma}_r, Z \in \mathfrak{S}_s, 0 \le s \le r),$$

because $(M,Z) \sim (M',Z')$ is obviously equivalent to $(\iota_n(M),Z) \sim (\iota_n(M'),Z')$; this map, clearly a homeomorphism with respect to \mathcal{T}^{Γ} or \mathcal{T}_0^{Γ} , allows us to identify \mathfrak{S}_r^* with the closure of \mathfrak{S}_r in \mathfrak{S}_n^* .

Given Γ' , there exists also a map $\psi_{r,\lambda}$ from $\Gamma'_{r,\lambda} \backslash \mathfrak{S}^*_r$ to $\Gamma' \backslash \mathfrak{S}^*_n$ given by

(2.8)
$$\psi_{r,\lambda} \left(M.Z \pmod{\Gamma'_{r,\lambda}} \right) = M_{r,\lambda} \iota_n(M).Z \pmod{\Gamma'}$$

since, if M.Z and M'.Z' are $\Gamma'_{r,\lambda}$ -equivalent, there exists $M'_0 \in \Gamma'$ such that

$$\varpi_r \left(M_{r,\lambda}^{-1} M_0' M_{r,\lambda} \right) M.Z = M'.Z',$$

that is

$$\tilde{M}_0 = (M')^{-1} \varpi_r \left(M_{r,\lambda}^{-1} M'_0 M_{r,\lambda} \right) M \in \mathfrak{G}_s^r \quad \text{and} \quad \varpi_s \big(\tilde{M}_0 \big) Z = Z',$$

which implies that

$$\iota_n(M')^{-1}M_{r,\lambda}^{-1}M_0'M_{r,\lambda}\,\iota_n(M)\in\mathfrak{G}^n_s$$

and

$$\varpi_s\left(\iota_n(M')^{-1}M_{r,\lambda}^{-1}\,M'_0\,M_{r,\lambda}\,\iota_n(M)\right) = \varpi_s\big(\tilde{M}_0\big),$$

that is that $M_{r,\lambda}\iota(M).Z$ and $M_{r,\lambda}\iota_n(M').Z'$ are Γ' -equivalent.

As the following diagram is commutative, it is clear that the map $\psi_{r,\lambda}$ is **continuous**:

(2.9)

but, as we are about to see, it is in general **not injective**.

Indeed, let s < r < n and consider double coset decompositions

(2.10)

$$\widetilde{\Gamma}_{n} = \bigcup_{\lambda} \Gamma' M_{r,\lambda} (\widetilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n}) \\
= \bigcup_{\mu} \Gamma' M_{s,\mu} (\widetilde{\Gamma} \cap \mathfrak{G}_{s}^{n}), \\
\widetilde{\Gamma}_{r} = \bigcup_{\nu} \Gamma'_{r,\lambda} M_{s,\nu}^{(r,\lambda)} (\widetilde{\Gamma}_{r} \cap \mathfrak{G}_{s}^{r});$$

we have then

$$\tilde{\Gamma}_n \cap \mathfrak{G}_r^n = \bigcup_{\nu} \left(M_{r,\lambda}^{-1} \Gamma' M_{r,\lambda} \cap \mathfrak{G}_r^n \right) \iota_n \left(M_{s,\nu}^{(r,\lambda)} \right) \left(\tilde{\Gamma}_n \cap \mathfrak{G}_r^n \cap \mathfrak{G}_s^n \right),$$

since $\tilde{\Gamma}_r = \varpi_r (\tilde{\Gamma}_n \cap \mathfrak{G}_r^n)$ and $\varpi^{-1}(\mathfrak{G}_s^r) = \mathfrak{G}_r^n \cap \mathfrak{G}_s^n$; therefore

(2.11)
$$\tilde{\Gamma}_n = \bigcup_{\lambda,\nu} \Gamma' M_{r,\lambda} \iota_n (M_{s,\nu}^{(r,\lambda)}) (\tilde{\Gamma}_n \cap \mathfrak{G}_r^n \cap \mathfrak{G}_s^n);$$

this is the decomposition of $\tilde{\Gamma}_n$ into left- Γ' and right- $\tilde{\Gamma}_n \cap \mathfrak{G}_r^n \cap \mathfrak{G}_s^n$ double cosets, a refinement of the second decomposition of (2.10). We write

(2.12)
$$(\lambda,\nu) \longrightarrow \mu \quad \text{if} \quad M_{r,\lambda} \iota_n \left(M_{s,\nu}^{(r,\lambda)} \right) \in \Gamma' M_{s,\mu} \left(\tilde{\Gamma}_n \cap \mathfrak{G}_s^n \right).$$

Then the function $\psi_{r,\lambda}$ maps

$$\Gamma'_{r,\lambda} \backslash \Gamma'_{r,\lambda} M^{(r,\lambda)}_{s,\nu} \mathfrak{S}_s \longmapsto \Gamma' \backslash \Gamma' M_{r,\lambda} \iota_n \big(M^{(r,\lambda)}_{s,\nu} \big) \mathfrak{S}_s = \Gamma' \backslash \Gamma' M_{s,\mu} \mathfrak{S}_s,$$

or, setting

$$(\Gamma'_{r,\lambda})_{s,\nu} = \varpi_s \left(M_{s,\nu}^{(r,\lambda)^{-1}} \Gamma'_{r,\lambda} M_{s,\nu}^{(r,\lambda)} \cap \mathfrak{G}_s^r \right),$$

$$M_{r,\lambda} M_{s,\nu}^{(r,\lambda)} = M' M_{s,\mu} L, \quad M' \in \Gamma', L \in \tilde{\Gamma}_n \cap \mathfrak{G}_s^n,$$

 $\psi_{r,\lambda}$ maps

(2.13)
$$(\Gamma'_{r,\lambda})_{s,\nu} \setminus \mathfrak{S}_s \longrightarrow \Gamma'_{s,\mu} \setminus \mathfrak{S}$$
 via $Z \pmod{(\Gamma'_{r,\lambda})_{s,\nu}} \longmapsto L.Z \pmod{\Gamma'_{s,\mu}},$

for $(\lambda, \nu) \longrightarrow \mu$. It is possible that two distinct pairs (λ, ν) and (λ', ν') (even with $\lambda = \lambda'$) correspond to the same μ ; on the other hand, we have

$$\begin{split} \left(\Gamma_{r,\lambda}^{\prime} \right)_{s,\nu} &= \varpi_s \left(M_{s,\nu}^{(r,\lambda)^{-1}} \Gamma_{r,\lambda}^{\prime} M_{s,\nu}^{r,\lambda} \cap \mathfrak{G}_s^r \right) \\ &= \varpi_s \left(\iota_n \left(M_{s,\nu}^{(r,\lambda)} \right)^{-1} M_{r,\lambda}^{-1} \Gamma^{\prime} M_{r,\lambda} \, \iota_n \left(M_{s,\nu}^{r,\lambda} \right) \cap \mathfrak{G}_s^n \cap \mathfrak{G}_s^n \right) \\ &\subset \varpi_s \left(\iota_n \left(M_{s,\nu}^{(r,\lambda)} \right)^{-1} M_{r,\lambda}^{-1} \Gamma^{\prime} M_{r,\lambda} \, \iota_n \left(M_{s,\nu}^{r,\lambda} \right) \cap \mathfrak{G}_s^n \right) \\ &= \varpi_s \left(L^{-1} M_{s,\mu}^{-1} \Gamma^{\prime} M_{s,\mu} L \cap \mathfrak{G}_s^n \right) \\ &= \varpi_s (L)^{-1} \Gamma_{s,\mu}^{\prime} \varpi_s (L); \end{split}$$

and it is possible that $(\Gamma'_{r,\lambda})_{s,\nu}$ is strictly smaller than $\varpi_s(L)^{-1}\Gamma'_{s,\mu}\varpi_s(L)$. These two possible cases mean that, in general, $\psi_{r,\lambda}$ is not injective.

Example Let us consider the case of the "Hauptkongruenzgruppe":

$$\Gamma_n(q) = \{ M : M \in \Gamma_n, M \equiv E_n \pmod{q} \}.$$

In this case any $\Gamma'_{r,\lambda}$ is equal to $\Gamma_r(q)$, hence we are **not** in the second case

$$(\Gamma'_{r,\lambda})_{s,\nu} \subsetneq \varpi_s(L)^{-1} \Gamma'_{s,\mu} \varpi_s(L))$$

let us compute the "multiplicity" $\nu_{n,r}$ of $\Gamma_r(q).$ We have obviously

$$\nu_{n,r} = [\Gamma_n \colon \Gamma_n(q)(\Gamma_n \cap \mathfrak{G}_r^n)]$$

= $[\Gamma_n \colon \Gamma_n(q)] / [\Gamma_n \cap \mathfrak{G}_r^n \colon \Gamma_n(q) \cap \mathfrak{G}_r^n]$
= $[\Gamma_n \colon \Gamma_n(q)] / [\Gamma_r \colon \Gamma_r(q)] \cdot [\Gamma_n \cap \mathfrak{N}_r^n \colon \Gamma_n(q) \cap \mathfrak{N}_r^n],$

where \mathfrak{N}^n_r denotes the kernel of ϖ_r . But \mathfrak{N}^n_r decomposes as a semi-direct product

(2.14)
$$\mathfrak{N}_r^n = \mathfrak{U}_r^n \ltimes \mathfrak{T}_r^n,$$

where

(2.15)
$$\mathfrak{U}_r^n = \left\{ \begin{pmatrix} {}^t U & 0 \\ 0 & U^{-1} \end{pmatrix} : U = \begin{pmatrix} E_r & U_{12} \\ 0 & U_2 \end{pmatrix}, \det(U_2) \neq 0 \right\}$$

(2.16)
$$\mathfrak{T}_r^n = \left\{ \begin{pmatrix} E & T \\ 0 & E \end{pmatrix} : T = \begin{pmatrix} 0 & T_{12} \\ {}^tT_{12} & T_2 \end{pmatrix}, T_2 \text{ symmetric} \right\},$$

the latter being a normal subgroup of \mathfrak{N}_r^n . As

$$\Gamma_n(q) \cap \mathfrak{N}_r^n = \left(\Gamma_n(q) \cap \mathfrak{U}_r^n\right) \ltimes \left(\Gamma_n(q) \cap \mathfrak{T}_r^n\right)$$

and

$$\Gamma_n(q) \cap \mathfrak{U}_r^n = \left\{ \begin{pmatrix} {}^tU & 0\\ 0 & U^{-1} \end{pmatrix} : \ U = \begin{pmatrix} E_r & U_{12}\\ 0 & U_2 \end{pmatrix} \equiv E_n \pmod{q}, U \text{ unimodular} \right\},$$

$$\Gamma_n(q) \cap \mathfrak{T}_r^n = \left\{ \begin{pmatrix} E & T\\ 0 & E \end{pmatrix} : \ T = \begin{pmatrix} 0 & T_{12}\\ {}^tT_{12} & T_2 \end{pmatrix} \equiv E_n \pmod{q}, T \text{ integral, symmetric} \right\},$$

we have

$$[\Gamma_n \cap \mathfrak{N}_r^n \colon \Gamma_n(q) \cap \mathfrak{N}_r^n] = [\Gamma_n \cap \mathfrak{N}_r^n \colon \Gamma_n(q) \cap \mathfrak{U}_r^n] \cdot [\Gamma_n \cap \mathfrak{T}_r^n \colon \Gamma_n(q) \cap \mathfrak{T}_r^n]$$
$$= (2)[\gamma_{n-r} \colon \gamma_{n-r}(q)]q^{r(n-r)}q^{\frac{(n-r)(n-r+1)}{2}+r(n-r)},$$

where

$$\gamma_{n-r} = \operatorname{SL}(n-r,\mathbb{Z}), \quad \gamma_{n-r}(q) = \big\{ U \in \gamma_{n-r} : \ U \equiv E_{n-r} \pmod{q} \big\},$$

and the factor (2) appears if $n-r\geq 1$ and q>2. It is well-known that

$$[\gamma_n \colon \gamma_n(q)] = q^{n^2 - 1} \prod_{p|q} \prod_{2 \le k \le n} (1 - p^{-k}),$$
$$[\Gamma_n \colon \Gamma_n(q)] = q^{n(2n+1)} \prod_{p|q} \prod_{1 \le k \le n} (1 - p^{-2k})$$

(see [1]). We obtain

(2.17)
$$\nu_{n,r} = \frac{q^{n(2n+1)-r(2r+1)} \prod_{p|q} \prod_{r+1 \le k \le n} (1-p^{-2k})}{(2)q^{\frac{(n-r)(n-r+1)}{2}+2r(n-r)+(n-r)^2-1} \prod_{p|q} \prod_{2 \le k \le n-r} (1-p^{-k})} = q^{\frac{1}{2}(n-r)(n+3r+1)+1} (2)^{-1} \prod_{p|q} \frac{\prod_{r+1 \le k \le n} (1-p^{-2k})}{\prod_{2 \le k \le n-r} (1-p^{-k})}$$

for r < n. If s < r < n, we have therefore

$$\frac{\nu_{n,r}\nu_{r,s}}{\nu_{n,s}} = q^{(n-r)(r-s)+1}(2)^{-1} \prod_{p|q} \frac{\prod_{2}^{n-s} \left(1-p^{-k}\right)}{\prod_{2}^{n-r} \left(1-p^{-k}\right) \prod_{2}^{r-s} \left(1-p^{-k}\right)} > 1,$$

which shows that the map $\Gamma_r(q) \setminus \mathfrak{S}_r^* \longrightarrow \Gamma_n(q) \setminus \mathfrak{S}_n^*$ is certainly not injective if 0 < r < n.

3 A connectedness theorem

Finally we add a theorem that will be useful later.

Theorem 3. Every point of $\mathfrak{S}_n^* - \mathfrak{S}_n$ has a base of \mathcal{T}_0^{Γ} -neighborhoods whose intersection with \mathfrak{S}_n is connected and open.

Proof. We can assume that the point in question is $Z_0 \in \Omega_r$ (r < n). Let U_r be a connected, $(\Gamma_r)_{Z_0}$ -saturated neighborhood of Z_0 in Ω_r and let $U_s = V^{(s)}(U_r, K)$ $(r \le s \le n)$ be the set defined in [3, p. 3], that is the set of $Z \in \Omega_s$ such that

$$Z = \begin{pmatrix} Z_1^{(r)} & Z_{12} \\ {}^tZ_{12} & Z_2 \end{pmatrix} = X + iY, \quad Y = {}^tWDW, \quad D = \begin{pmatrix} d_1 & 0 \\ & \ddots & \\ 0 & & d_s \end{pmatrix}$$

with $Z_1^{(r)} \in U_r$, $d_{r+1} > K$; then

$$U = \bigcup_{r \le s \le n} U_s$$

is a neighborhood of Z_0 in Ω_n^* and therefore $\tilde{U} = \Gamma_{Z_0} U$ is a \mathcal{T}_0^{Γ} -neighborhood of Z_0 in \mathfrak{S}_n^* . We will prove that $\tilde{U} = \Gamma_{Z_0} U$ intersects \mathfrak{S}_n in a connected set, that is that $\Gamma_{Z_0} U_n$ is connected. It is easy to see that Γ_{Z_0} is *finitely generated* (note that $\Gamma \cap \mathfrak{N}_r^n$ is a finite index subgroup of Γ_{Z_0} and is finitely generated); let $\{M_i\}$ be a finite generating set for Γ_{Z_0} that contains the identity E; we may assume in addition that M_i is of one of the following forms:

(3.1)
$$M_{i} = \begin{pmatrix} E_{r} & 0 & 0 & 0 \\ 0 & {}^{t}U_{2} & 0 & 0 \\ 0 & 0 & E_{r} & 0 \\ 0 & 0 & 0 & U_{2}^{-1} \end{pmatrix}, \quad U_{2} \text{ unimodular},$$
(3.2)
$$M_{i} = \begin{pmatrix} A_{1} & 0 & B_{1} & B_{12} \\ A_{21} & E_{n-r} & B_{21} & B_{2} \\ C_{1} & 0 & D_{1} & D_{12} \\ 0 & 0 & 0 & E_{n-r} \end{pmatrix}.$$

(Indeed, Γ_{Z_0} is the semi-direct product of subgroups consisting of matrices of respective forms (3.1) and (3.2), with the latter subgroup being normal.) Decomposing $Z' = M_i Z$, $Z \in U_n$ as above, we see easily that if M_i is of the form (3.2), then Z' belongs to $\Omega_n(u')$, where $u' \ge u$ depends only on U_r , K, and M_i ; therefore $M_i U_n \subset \Omega_n(u')$ for u'sufficiently large. Now let M_i be of the form (3.1); for an arbitrary but fixed matrix Z_i in U_n we can again take u' such that $Z'_i = M_i Z_i \in \Omega_n(u')$; in this case we have the relations

$$X'_{1} = X_{1}, \qquad X'_{12} = X_{12}U_{2}, \qquad X'_{2} = {}^{t}U_{2}X_{2}U_{2}, \qquad W'_{1} = W_{1},$$
$$W'_{12} = W_{12}U_{2}, \qquad D'_{1} = D_{1}, \qquad {}^{t}W'_{2}D'_{2}W'_{2} = {}^{t}U_{2}{}^{t}W_{2}D_{2}W_{2}U_{2};$$

so if we denote by $Z_i(\lambda)$ and $Z'_i(\lambda)$ the matrices obtained by replacing D_2 and D'_2 by λD_2 and $\lambda D'_2$ ($\lambda \ge 1$) inside Z_i , respectively Z'_i , we see easily that $Z_i(\lambda) \in U_n$, $Z'_i(\lambda) \in \Omega_n(u')$, $Z'_i(\lambda) = M_i Z_i(\lambda)$ and hence $Z'_i(\lambda)$ ($\lambda \ge 1$) belongs to $M_i U_n \cap \Omega_n(u')$. Let u' be such that all the above conditions are satisfied; we define a neighborhood

$$U' = \bigcup_{r \le s \le n} U'_s$$

of Z_0 in $\Omega_n(u')^*$ exactly as above with $U'_r = U_r$ and K' large enough that $U' \subset \tilde{U}$; then $M_i U_n \cap U'_n = \emptyset$ for all i; indeed, if M_i is of the form (3.2), we can take, for a given K', K_1 such that $M_i V^{(n)}(U_r, K_1) \subset U'_n$; on the other hand, if M_i is of the form (3.1), $Z'_i(\lambda)$ belongs to $M_i U_n \subset U'_n$ for sufficiently large λ . Then, since U_n and U'_n are connected, so is $U_n \cup U'_n$, and $(U_n \cup U'_n) \cap M_i(U_n \cup U'_n) \neq \emptyset$ for all i, from which we conclude the connectedness of $\Gamma_{Z_0} U_n = \Gamma_{Z_0}(U_n \cup U'_n)$.

Bibliographic note

The two results of Koecher referred to in this talk can be found in [1, 2].

References

- Max Koecher. Zur Theorie der Modulformen *n*-ten Grades. I. Math. Z., 59:399–416, 1954.
- [2] Max Koecher. Zur Theorie der Modulformen n-ten Grades. II. Math. Z., 61:455–466, 1955.
- [3] Ichiro Satake. Compactification des espaces quotients de Siegel I. In Séminaire Henri Cartan, volume 10. E.N.S., 1957–1958. No. 2, Talk no. 12, 13 p.