Compactification of Siegel's quotient spaces II*

Ichiro Satake

10 March 1958

In this talk we consider the case of groups that are commensurable to the modular group. The notations $\Gamma, \mathfrak{G}_{r}^{n}, \Omega_{n}^{*}, \mathfrak{S}_{n}^{*}, \ldots$ are the same as in the previous talk [3].

1 Additional considerations on the space \mathfrak{S}_{n}^{*}

Let $\tilde{\Gamma}=\tilde{\Gamma}_{n}$ be the "transformation group" of $\Gamma=\operatorname{Sp}(n, \mathbb{Z})$, i.e. $\tilde{\Gamma}=\operatorname{Sp}(n, \mathbb{Q})$; we first show how $\tilde{\Gamma}$ acts on \mathfrak{S}_{n}^{*}.
For this consider the set $\tilde{\mathfrak{S}}_{n}^{*}$ constructed by the same method as in [3, Section 2], but using $\tilde{\Gamma}$ instead of Γ, that is the set of points $\tilde{M} \cdot Z$ (classes of pairs (\tilde{M}, Z)) with $\tilde{M} \in \tilde{\Gamma}, Z \in \mathfrak{S}_{r}(0 \leq r \leq n)$; moreover, we can assume that $\tilde{\mathfrak{S}}_{n}^{*}$ is endowed with a topology satisfying condition 1° and
$\tilde{2}^{\circ}$ the actions of $\tilde{M} \in \tilde{\Gamma}$ on $\tilde{\mathfrak{S}}_{n}^{*}$ are continuous maps
(for instance, consider the finest topology satisfying conditions 1° and $\tilde{2}^{\circ}$, defined as in [3, Section 3]); then $\tilde{\mathfrak{S}}_{n}^{*}$ contains \mathfrak{S}_{n}^{*} as a subset; but in fact they are equal. Indeed, for each $\tilde{M} \in \tilde{\Gamma}$, there is a finite number of $M_{i} \in \Gamma$ such that

$$
\tilde{M} \Omega_{n} \subset \bigcup_{i} M_{i} \Omega_{n}
$$

(because Ω_{n} is a "fundamental open set" for the "Minkowskian" group Γ); since the topology on $\tilde{\mathfrak{S}}_{n}^{*}$ induces on \mathfrak{S}_{n}^{*} a topology satisfying conditions 1° and 2°, we can take the closure with respect to this topology (which we denote $\cdot{ }^{*}$, notation that does not clash with the notation Ω_{n}^{*}) and get

$$
\tilde{M} \Omega_{n}^{*}=\left(\tilde{M} \Omega_{n}\right)^{*} \subset \bigcup_{i} M_{i} \Omega_{n}^{*}
$$

therefore

$$
\tilde{\mathfrak{S}}_{n}^{*}=\tilde{\Gamma} \Omega_{n}^{*} \subset \Gamma \Omega_{n}^{*}=\mathfrak{S}_{n}^{*}
$$

we conclude that $\tilde{\mathfrak{S}}_{n}^{*}=\mathfrak{S}_{n}^{*}$. In particular, we can view $\tilde{\Gamma}$ as acting on \mathfrak{S}_{n}^{*}.
If we decompose $\tilde{\Gamma}$ into right cosets for $\tilde{\Gamma} \cap \mathfrak{G}_{r}^{n}$, we get a disjoint union decomposition of the space $\tilde{\mathfrak{S}}_{n}^{*}$ similar to (2.3) in the previous talk [3]; the fact that $\tilde{\mathfrak{S}}_{n}^{*}=\mathfrak{S}_{n}^{*}$ means that we can use elements of Γ as representatives of the cosets $\tilde{\Gamma} / \tilde{\Gamma} \cap \mathfrak{G}_{r}^{n}$; this means that

$$
\begin{equation*}
\tilde{\Gamma}=\Gamma\left(\tilde{\Gamma} \cap \mathfrak{G}_{r}^{n}\right) \quad(0 \leq r \leq n) . \tag{1.1}
\end{equation*}
$$

[^0]This fact was already indicated by Koecher [2] in the special case $r=0$ (and not only for Γ, but for all groups satisfying certain conditions).

The actions of $\tilde{M} \in \tilde{\Gamma}$ are \mathcal{T}^{Γ}-continuous. Indeed, let F be a \mathcal{T}^{Γ}-closed subset of \mathfrak{S}_{n}^{*}; we prove that for any $\tilde{M} \in \tilde{\Gamma}, \tilde{M} F$ is also \mathcal{T}^{Γ}-closed, that is that $M \tilde{M} F \cap \Omega_{n}^{*}$ is closed for all $M \in \Gamma$. There exist finitely many $M_{i} \in \Gamma$ such that

$$
(M \tilde{M})^{-1} \Omega_{n}^{*} \subset \bigcup_{i} M_{i} \Omega_{n}^{*}
$$

then

$$
M \tilde{M} F \cap \Omega_{n}^{*}=\bigcup_{i} M \tilde{M} M_{i}\left(M_{i}^{-1} F \cap \Omega_{n}^{*}\right) \cap \Omega_{n}^{*}
$$

and, since $M_{i}^{-1} F \cap \Omega_{n}^{*}$ is closed, so is the latter set, by the "continuity" of $M \tilde{M} M_{i}$ in Ω_{n}^{*} (this follows from [3 , Lemma 1]).
The actions of $\tilde{M} \in \tilde{\Gamma}$ are also \mathcal{T}_{0}^{Γ}-continuous. It suffices to show that if U is a \mathcal{T}^{Γ} neighborhood of x and Γ_{x}-saturated, then $\tilde{M} U$ (for $\tilde{M} \in \tilde{\Gamma}$) contains a \mathcal{T}^{Γ}-neighborhood of $\tilde{M} x$ that is $\Gamma_{\tilde{M} x}$-saturated. This follows immediately from the fact that $\tilde{M} U$ is $\tilde{M} \Gamma_{x} \tilde{M}^{-1}$-saturated and that

$$
\tilde{M} \Gamma_{x} \tilde{M}^{-1}=\left(\tilde{M} \Gamma \tilde{M}^{-1}\right)_{\tilde{M} x}
$$

is commensurable to $\Gamma_{\tilde{M} x}$.
Now let $\Gamma^{\prime}=\Gamma_{n}^{\prime}$ be a group commensurable to Γ; then there are finitely many $M_{i} \in \Gamma$ such that

$$
\begin{equation*}
\Omega_{n}^{\prime}=\bigcup_{i} M_{i} \Omega_{n} \tag{1.2}
\end{equation*}
$$

is a fundamental open for Γ^{\prime}; we can take, for instance, those M_{i} such that

$$
\Gamma=\bigcup_{i}\left(\Gamma \cap \Gamma^{\prime}\right) M_{i}
$$

We have then $\mathfrak{S}_{n}^{*}=\Gamma^{\prime}\left(\Omega_{n}^{\prime}\right)^{*}$ (where.* denotes the closure with respect to any topology that satisfies conditions 1° and 2°). Indeed, for any $M \in \Gamma$, there are finitely many $M_{j}^{\prime} \in \Gamma^{\prime}$ such that

$$
M \Omega_{n} \subset \bigcup_{j} M_{j}^{\prime} \Omega_{n}^{\prime}
$$

hence

$$
M \Omega_{n}^{*} \subset \bigcup_{j} M_{j}^{\prime}\left(\Omega_{n}^{\prime}\right)^{*}
$$

from which we conclude that $\mathfrak{S}_{n}^{*}=\Gamma \Omega_{n}^{*} \subset \Gamma^{\prime}\left(\Omega_{n}^{\prime}\right)^{*}$.
We now consider conditions $1^{\prime}, 2^{\prime}, 3^{\prime}$, and 4^{\prime} that are obtained respectively from conditions $1^{\circ}, 2^{\circ}, 3^{\circ}$, and 4° by replacing Γ and Ω_{n}^{*} by Γ^{\prime} and $\left(\Omega_{n}^{\prime}\right)^{*}$ (the "natural" topology on $\left(\Omega_{n}^{\prime}\right)^{*}$ is that induced by any topology on \mathfrak{S}_{n}^{*} that satisfies conditions 1° and 2°). It is clear that \mathcal{T}^{Γ} satisfies conditions 1^{\prime} and 2^{\prime}. Conversely, we can define the topology $\mathcal{T}^{\Gamma^{\prime}}$ of \mathfrak{S}_{n}^{*} as the finest topology satisfying conditions 1^{\prime} and 2^{\prime} (we proceed as in [3, Section 3]); then $\mathcal{T}^{\Gamma^{\prime}}$ satisfies conditions 1° and 2° (the "continuity" of the actions of $\tilde{M} \in \tilde{\Gamma}$ on $\left(\Omega_{n}^{\prime}\right)^{*}$); hence $\mathcal{T}^{\Gamma}=\mathcal{T}^{\Gamma^{\prime}}$. We realize then by the same argument that the system of Γ_{x}^{\prime}-saturated $\mathcal{T}^{\Gamma^{\prime}}$-neighborhoods of x is equivalent to the system of Γ_{x}-saturated \mathcal{T}^{Γ}-neighborhoods of x; hence, if we define the topology $\mathcal{T}_{0}^{\Gamma^{\prime}}$ in the same way as \mathcal{T}_{0}^{Γ}, we have $\mathcal{T}_{0}^{\Gamma^{\prime}}=\mathcal{T}_{0}^{\Gamma}$. It is easy to see that $\mathcal{T}_{0}^{\Gamma^{\prime}}=\mathcal{T}_{0}^{\Gamma}$ satisfies conditions 1^{\prime},
$2^{\prime}, 3^{\prime}$, and 4^{\prime}; condition 3^{\prime} is proved as follows: let $x, x^{\prime} \in \mathfrak{S}_{n}^{*}$ be two non- Γ^{\prime}-equivalent points, let

$$
\Gamma^{\prime}=\bigcup_{i}\left(\Gamma \cap \Gamma^{\prime}\right) M_{i}^{\prime},
$$

and, for each i, let U_{i}, U_{i}^{\prime} be neighborhoods of x and $\left(M_{i}^{\prime}\right)^{-1} x^{\prime}$ such that

- $\Gamma U_{i} \cap U_{i}^{\prime}=\emptyset$ if x and $\left(M_{i}^{\prime}\right)^{-1} x^{\prime}$ are not Γ-equivalent;
- $\left(\left(\Gamma-\Gamma_{x}\right) U_{i}\right) \cap U_{i}=\emptyset, U_{i}^{\prime}=M U_{i}$, if $\left(M_{i}^{\prime}\right)^{-1} x^{\prime}=M x$ with $M \in \Gamma$;
then, as $\Gamma^{\prime} \cap M \Gamma_{x}=\emptyset$, we have $\left(\left(\Gamma \cap \Gamma^{\prime}\right) U_{i}\right) \cap U_{i}^{\prime}=\emptyset$; hence, setting

$$
U=\bigcap_{i} U_{i}, \quad U^{\prime}=\bigcap_{i} M_{i}^{\prime} U_{i}^{\prime}
$$

we have $\left(\Gamma^{\prime} U\right) \cap U^{\prime}=\emptyset$. If follows that \mathcal{T}^{Γ} satisfies condition 3^{\prime}; we can prove, by the same reasoning as in [3], the uniqueness of the topology satisfying conditions $1^{\prime}, 2^{\prime}, 3^{\prime}$, and 4^{\prime}.
From now on we consider exclusively the topology $\mathcal{T}_{0}^{\Gamma}=\mathcal{T}_{0}^{\Gamma^{\prime}}$; the results obtained above can be stated as follows:

Theorem 1. The actions of $\tilde{M} \in \tilde{\Gamma}$ on \mathfrak{S}_{n}^{*} are \mathcal{T}_{0}^{Γ}-continuous maps. For any group Γ^{\prime} that is commensurable to Γ, the topology \mathcal{T}_{0}^{Γ} satisfies the conditions $1^{\prime}, 2^{\prime}, 3^{\prime}$, and 4', and is entirely determined by these conditions.

2 The structure of the compactified spaces $\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}$

First, it is clear that Theorem 1 implies the following:
Theorem 2. The quotient space $\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}$ is Hausdorff and compact.
If $\Gamma^{\prime \prime}$ is a finite index subgroup of Γ^{\prime}, obviously there is a canonical map

$$
\begin{equation*}
\pi_{\Gamma^{\prime}, \Gamma^{\prime \prime}}: \Gamma^{\prime \prime} \backslash \mathfrak{S}_{n}^{*} \longrightarrow \Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*} \tag{2.1}
\end{equation*}
$$

that is a "ramified covering" (which we make more precise below); $\pi_{\Gamma^{\prime}, \Gamma^{\prime \prime}}$ is continuous and maps open sets to open sets and closed sets to closed sets. If moreover $\Gamma^{\prime \prime}$ is a normal subgroup of Γ^{\prime}, then $\Gamma^{\prime \prime} \backslash \mathfrak{S}_{n}^{*}$ is "Galois" over $\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}$, which means that the finite group $\Gamma^{\prime} / \Gamma^{\prime \prime}$ acts on $\Gamma^{\prime \prime} \backslash \mathfrak{S}_{n}^{*}$ and we have

$$
\begin{equation*}
\left(\Gamma^{\prime} / \Gamma^{\prime \prime}\right) \backslash\left(\Gamma^{\prime \prime} \backslash \mathfrak{S}_{n}^{*}\right)=\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*} \tag{2.2}
\end{equation*}
$$

We now study the structure of the space $\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}$. For this we decompose $\tilde{\Gamma}$ into left Γ^{\prime} and right $\left(\tilde{\Gamma} \cap \mathfrak{G}_{r}^{n}\right)$-cosets as follows:

$$
\begin{equation*}
\tilde{\Gamma}=\bigcup_{\lambda} \Gamma^{\prime} M_{r, \lambda}\left(\tilde{\Gamma} \cap \mathfrak{G}_{r}^{n}\right), \tag{2.3}
\end{equation*}
$$

where by (1.1) the number of cosets is finite; we have then the corresponding decomposition of \mathfrak{S}_{n}^{*} :

$$
\begin{equation*}
\mathfrak{S}_{n}^{*}=\bigcup_{r} \bigcup_{\lambda} \Gamma^{\prime} M_{r, \lambda} \mathfrak{S}_{r}, \tag{2.4}
\end{equation*}
$$

and therefore

$$
\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}=\bigcup_{r} \bigcup_{\lambda} \Gamma^{\prime} \backslash\left(\Gamma^{\prime} M_{r, \lambda} \mathfrak{S}_{r}\right) ;
$$

if we set

$$
\begin{equation*}
\Gamma_{r, \lambda}^{\prime}=\varpi_{r}\left(M_{r, \lambda}^{-1} \Gamma^{\prime} M_{r, \lambda} \cap \mathfrak{G}_{r}^{n}\right), \tag{2.5}
\end{equation*}
$$

it is easy to see that $\Gamma_{r, \lambda}^{\prime}$ is a discrete subgroup of $\operatorname{Sp}(r, \mathbb{R})$ that is commensurable to Γ_{r}, and that the quotient space $\Gamma^{\prime} \backslash\left(\Gamma^{\prime} M_{r, \lambda} \mathfrak{S}_{r}\right)$ is canonically identified with $\Gamma_{r, \lambda}^{\prime} \backslash \mathfrak{S}_{r}$; hence the last relation can be written

$$
\begin{equation*}
\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}=\bigcup_{r, \lambda} \Gamma_{r, \lambda}^{\prime} \backslash \mathfrak{S}_{r} \tag{2.6}
\end{equation*}
$$

We should note that if we set in (1.2)

$$
M_{i}=M_{i}^{\prime} M_{r, \lambda_{i}} L_{i}, \quad M_{i}^{\prime} \in \Gamma^{\prime}, L_{i} \in \tilde{\Gamma} \cap \mathfrak{G}_{r}^{n},
$$

then

$$
\begin{equation*}
\Omega_{r, \lambda}^{\prime}=\bigcup_{i: \lambda_{i}=\lambda} \varpi_{r}\left(L_{i}\right) \Omega_{r} \tag{2.7}
\end{equation*}
$$

is a fundamental open for $\Gamma_{r, \lambda}^{\prime}$; this is an immediate consequence of the fact that $\mathfrak{S}_{n}^{*}=\Gamma^{\prime}\left(\Omega_{n}^{\prime}\right)^{*}$.
We consider the relation between $\Gamma_{r, \lambda}^{\prime} \backslash \mathfrak{S}_{r}^{*}$ and $\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}$. We first note that there is a canonical injective map from \mathfrak{S}_{r}^{*} to \mathfrak{S}_{n}^{*} given by

$$
M . Z \longmapsto \iota_{n}(M) . Z \quad\left(M \in \tilde{\Gamma}_{r}, Z \in \mathfrak{S}_{s}, 0 \leq s \leq r\right),
$$

because $(M, Z) \sim\left(M^{\prime}, Z^{\prime}\right)$ is obviously equivalent to $\left(\iota_{n}(M), Z\right) \sim\left(\iota_{n}\left(M^{\prime}\right), Z^{\prime}\right)$; this map, clearly a homeomorphism with respect to \mathcal{T}^{Γ} or \mathcal{T}_{0}^{Γ}, allows us to identify \mathfrak{S}_{r}^{*} with the closure of \mathfrak{S}_{r} in \mathfrak{S}_{n}^{*}.
Given Γ^{\prime}, there exists also a map $\psi_{r, \lambda}$ from $\Gamma_{r, \lambda}^{\prime} \backslash \mathfrak{S}_{r}^{*}$ to $\Gamma^{\prime} \backslash \mathfrak{S}_{n}^{*}$ given by

$$
\begin{equation*}
\psi_{r, \lambda}\left(M . Z \quad\left(\bmod \Gamma_{r, \lambda}^{\prime}\right)\right)=M_{r, \lambda} \iota_{n}(M) . Z \quad\left(\bmod \Gamma^{\prime}\right), \tag{2.8}
\end{equation*}
$$

since, if $M . Z$ and $M^{\prime} . Z^{\prime}$ are $\Gamma_{r, \lambda}^{\prime}$-equivalent, there exists $M_{0}^{\prime} \in \Gamma^{\prime}$ such that

$$
\varpi_{r}\left(M_{r, \lambda}^{-1} M_{0}^{\prime} M_{r, \lambda}\right) M . Z=M^{\prime} \cdot Z^{\prime}
$$

that is

$$
\tilde{M}_{0}=\left(M^{\prime}\right)^{-1} \varpi_{r}\left(M_{r, \lambda}^{-1} M_{0}^{\prime} M_{r, \lambda}\right) M \in \mathfrak{G}_{s}^{r} \quad \text { and } \quad \varpi_{s}\left(\tilde{M}_{0}\right) Z=Z^{\prime}
$$

which implies that

$$
\iota_{n}\left(M^{\prime}\right)^{-1} M_{r, \lambda}^{-1} M_{0}^{\prime} M_{r, \lambda} \iota_{n}(M) \in \mathfrak{G}_{s}^{n}
$$

and

$$
\varpi_{s}\left(\iota_{n}\left(M^{\prime}\right)^{-1} M_{r, \lambda}^{-1} M_{0}^{\prime} M_{r, \lambda} \iota_{n}(M)\right)=\varpi_{s}\left(\tilde{M}_{0}\right),
$$

that is that $M_{r, \lambda} \iota(M) . Z$ and $M_{r, \lambda} \iota_{n}\left(M^{\prime}\right) . Z^{\prime}$ are Γ^{\prime}-equivalent.
As the following diagram is commutative, it is clear that the map $\psi_{r, \lambda}$ is continuous:

but, as we are about to see, it is in general not injective.
Indeed, let $s<r<n$ and consider double coset decompositions

$$
\begin{align*}
\tilde{\Gamma}_{n} & =\bigcup_{\lambda} \Gamma^{\prime} M_{r, \lambda}\left(\tilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n}\right) \\
& =\bigcup_{\mu} \Gamma^{\prime} M_{s, \mu}\left(\tilde{\Gamma} \cap \mathfrak{G}_{s}^{n}\right), \tag{2.10}\\
\tilde{\Gamma}_{r} & =\bigcup_{\nu} \Gamma_{r, \lambda}^{\prime} M_{s, \nu}^{(r, \lambda)}\left(\tilde{\Gamma}_{r} \cap \mathfrak{G}_{s}^{r}\right) ;
\end{align*}
$$

we have then

$$
\tilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n}=\bigcup_{\nu}\left(M_{r, \lambda}^{-1} \Gamma^{\prime} M_{r, \lambda} \cap \mathfrak{G}_{r}^{n}\right) \iota \iota_{n}\left(M_{s, \nu}^{(r, \lambda)}\right)\left(\tilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n} \cap \mathfrak{G}_{s}^{n}\right),
$$

since $\tilde{\Gamma}_{r}=\varpi_{r}\left(\tilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n}\right)$ and $\varpi^{-1}\left(\mathfrak{G}_{s}^{r}\right)=\mathfrak{G}_{r}^{n} \cap \mathfrak{G}_{s}^{n}$; therefore

$$
\begin{equation*}
\tilde{\Gamma}_{n}=\bigcup_{\lambda, \nu} \Gamma^{\prime} M_{r, \lambda} \iota_{n}\left(M_{s, \nu}^{(r, \lambda)}\right)\left(\tilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n} \cap \mathfrak{G}_{s}^{n}\right) ; \tag{2.11}
\end{equation*}
$$

this is the decomposition of $\tilde{\Gamma}_{n}$ into left- $-\Gamma^{\prime}$ and right- $\tilde{\Gamma}_{n} \cap \mathfrak{G}_{r}^{n} \cap \mathfrak{G}_{s}^{n}$ double cosets, a refinement of the second decomposition of (2.10). We write

$$
\begin{equation*}
(\lambda, \nu) \longrightarrow \mu \quad \text { if } \quad M_{r, \lambda} \iota_{n}\left(M_{s, \nu}^{(r, \lambda)}\right) \in \Gamma^{\prime} M_{s, \mu}\left(\tilde{\Gamma}_{n} \cap \mathfrak{G}_{s}^{n}\right) . \tag{2.12}
\end{equation*}
$$

Then the function $\psi_{r, \lambda}$ maps

$$
\Gamma_{r, \lambda}^{\prime} \backslash \Gamma_{r, \lambda}^{\prime} M_{s, \nu}^{(r, \lambda)} \mathfrak{S}_{s} \longmapsto \Gamma^{\prime} \backslash \Gamma^{\prime} M_{r, \lambda} \iota_{n}\left(M_{s, \nu}^{(r, \lambda)}\right) \mathfrak{S}_{s}=\Gamma^{\prime} \backslash \Gamma^{\prime} M_{s, \mu} \mathfrak{S}_{s},
$$

or, setting

$$
\begin{aligned}
\left(\Gamma_{r, \lambda}^{\prime}\right)_{s, \nu} & =\varpi_{s}\left(M_{s, \nu}^{(r, \lambda)^{-1}} \Gamma_{r, \lambda}^{\prime} M_{s, \nu}^{(r, \lambda)} \cap \mathfrak{G}_{s}^{r}\right), \\
M_{r, \lambda} M_{s, \nu}^{(r, \lambda)} & =M^{\prime} M_{s, \mu} L, \quad M^{\prime} \in \Gamma^{\prime}, L \in \tilde{\Gamma}_{n} \cap \mathfrak{G}_{s}^{n},
\end{aligned}
$$

$\psi_{r, \lambda}$ maps
(2.13) $\quad\left(\Gamma_{r, \lambda}^{\prime}\right)_{s, \nu} \backslash \mathfrak{S}_{s} \longrightarrow \Gamma_{s, \mu}^{\prime} \backslash \mathfrak{S} \quad$ via $\quad Z \quad\left(\bmod \left(\Gamma_{r, \lambda}^{\prime}\right)_{s, \nu}\right) \longmapsto L . Z \quad\left(\bmod \Gamma_{s, \mu}^{\prime}\right)$,
for $(\lambda, \nu) \longrightarrow \mu$. It is possible that two distinct pairs (λ, ν) and ($\lambda^{\prime}, \nu^{\prime}$) (even with $\lambda=\lambda^{\prime}$) correspond to the same μ; on the other hand, we have

$$
\begin{aligned}
\left(\Gamma_{r, \lambda}^{\prime}\right)_{s, \nu} & =\varpi_{s}\left(M_{s, \nu}^{(r, \lambda)-1} \Gamma_{r, \lambda}^{\prime} M_{s, \nu}^{r, \lambda} \cap \mathfrak{G}_{s}^{r}\right) \\
& =\varpi_{s}\left(\iota_{n}\left(M_{s, \nu}^{(r, \lambda)}\right)^{-1} M_{r, \lambda}^{-1} \Gamma^{\prime} M_{r, \lambda} \iota_{n}\left(M_{s, \nu}^{r, \lambda}\right) \cap \mathfrak{G}_{r}^{n} \cap \mathfrak{G}_{s}^{n}\right) \\
& \subset \varpi_{s}\left(\iota_{n}\left(M_{s, \nu}^{(r, \lambda)}\right)^{-1} M_{r, \lambda}^{-1} \Gamma^{\prime} M_{r, \lambda} \iota_{n}\left(M_{s, \nu}^{r, \lambda}\right) \cap \mathfrak{G}_{s}^{n}\right) \\
& =\varpi_{s}\left(L^{-1} M_{s, \mu}^{-1} \Gamma^{\prime} M_{s, \mu} L \cap \mathfrak{G}_{s}^{n}\right) \\
& =\varpi_{s}(L)^{-1} \Gamma_{s, \mu}^{\prime} \varpi_{s}(L) ;
\end{aligned}
$$

and it is possible that $\left(\Gamma_{r, \lambda}^{\prime}\right)_{s, \nu}$ is strictly smaller than $\varpi_{s}(L)^{-1} \Gamma_{s, \mu}^{\prime} \varpi_{s}(L)$. These two possible cases mean that, in general, $\psi_{r, \lambda}$ is not injective.

Example Let us consider the case of the "Hauptkongruenzgruppe":

$$
\Gamma_{n}(q)=\left\{M: M \in \Gamma_{n}, M \equiv E_{n} \quad(\bmod q)\right\}
$$

In this case any $\Gamma_{r, \lambda}^{\prime}$ is equal to $\Gamma_{r}(q)$, hence we are not in the second case

$$
\left.\left(\Gamma_{r, \lambda}^{\prime}\right)_{s, \nu} \subsetneq \varpi_{s}(L)^{-1} \Gamma_{s, \mu}^{\prime} \varpi_{s}(L)\right)
$$

let us compute the "multiplicity" $\nu_{n, r}$ of $\Gamma_{r}(q)$. We have obviously

$$
\begin{aligned}
\nu_{n, r} & =\left[\Gamma_{n}: \Gamma_{n}(q)\left(\Gamma_{n} \cap \mathfrak{G}_{r}^{n}\right)\right] \\
& =\left[\Gamma_{n}: \Gamma_{n}(q)\right] /\left[\Gamma_{n} \cap \mathfrak{G}_{r}^{n}: \Gamma_{n}(q) \cap \mathfrak{G}_{r}^{n}\right] \\
& =\left[\Gamma_{n}: \Gamma_{n}(q)\right] /\left[\Gamma_{r}: \Gamma_{r}(q)\right] \cdot\left[\Gamma_{n} \cap \mathfrak{N}_{r}^{n}: \Gamma_{n}(q) \cap \mathfrak{N}_{r}^{n}\right],
\end{aligned}
$$

where \mathfrak{N}_{r}^{n} denotes the kernel of ϖ_{r}. But \mathfrak{N}_{r}^{n} decomposes as a semi-direct product

$$
\begin{equation*}
\mathfrak{N}_{r}^{n}=\mathfrak{U}_{r}^{n} \ltimes \mathfrak{T}_{r}^{n} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{align*}
\mathfrak{U}_{r}^{n} & =\left\{\left(\begin{array}{cc}
{ }^{t} U & 0 \\
0 & U^{-1}
\end{array}\right): U=\left(\begin{array}{cc}
E_{r} & U_{12} \\
0 & U_{2}
\end{array}\right), \operatorname{det}\left(U_{2}\right) \neq 0\right\}, \tag{2.15}\\
\mathfrak{T}_{r}^{n} & =\left\{\left(\begin{array}{cc}
E & T \\
0 & E
\end{array}\right): T=\left(\begin{array}{cc}
0 & T_{12} \\
{ }^{t} T_{12} & T_{2}
\end{array}\right), T_{2} \text { symmetric }\right\}, \tag{2.16}
\end{align*}
$$

the latter being a normal subgroup of \mathfrak{N}_{r}^{n}. As

$$
\Gamma_{n}(q) \cap \mathfrak{N}_{r}^{n}=\left(\Gamma_{n}(q) \cap \mathfrak{U}_{r}^{n}\right) \ltimes\left(\Gamma_{n}(q) \cap \mathfrak{T}_{r}^{n}\right)
$$

and

$$
\begin{aligned}
& \Gamma_{n}(q) \cap \mathfrak{U}_{r}^{n}=\left\{\left(\begin{array}{cc}
{ }^{t} U & 0 \\
0 & U^{-1}
\end{array}\right): U=\left(\begin{array}{cc}
E_{r} & U_{12} \\
0 & U_{2}
\end{array}\right) \equiv E_{n} \quad(\bmod q), U \text { unimodular }\right\} \\
& \Gamma_{n}(q) \cap \mathfrak{T}_{r}^{n}=\left\{\left(\begin{array}{cc}
E & T \\
0 & E
\end{array}\right): T=\left(\begin{array}{cc}
0 & T_{12} \\
{ }^{t} T_{12} & T_{2}
\end{array}\right) \equiv E_{n} \quad(\bmod q), T \text { integral, symmetric }\right\}
\end{aligned}
$$

we have

$$
\begin{aligned}
{\left[\Gamma_{n} \cap \mathfrak{N}_{r}^{n}: \Gamma_{n}(q) \cap \mathfrak{N}_{r}^{n}\right] } & =\left[\Gamma_{n} \cap \mathfrak{N}_{r}^{n}: \Gamma_{n}(q) \cap \mathfrak{U}_{r}^{n}\right] \cdot\left[\Gamma_{n} \cap \mathfrak{T}_{r}^{n}: \Gamma_{n}(q) \cap \mathfrak{T}_{r}^{n}\right] \\
& =(2)\left[\gamma_{n-r}: \gamma_{n-r}(q)\right] q^{r(n-r)} q^{\frac{(n-r)(n-r+1)}{2}+r(n-r)},
\end{aligned}
$$

where

$$
\gamma_{n-r}=\operatorname{SL}(n-r, \mathbb{Z}), \quad \gamma_{n-r}(q)=\left\{U \in \gamma_{n-r}: U \equiv E_{n-r} \quad(\bmod q)\right\}
$$

and the factor (2) appears if $n-r \geq 1$ and $q>2$. It is well-known that

$$
\begin{aligned}
& {\left[\gamma_{n}: \gamma_{n}(q)\right]=q^{n^{2}-1} \prod_{p \mid q} \prod_{2 \leq k \leq n}\left(1-p^{-k}\right)} \\
& {\left[\Gamma_{n}: \Gamma_{n}(q)\right]=q^{n(2 n+1)} \prod_{p \mid q} \prod_{1 \leq k \leq n}\left(1-p^{-2 k}\right)}
\end{aligned}
$$

(see [1]). We obtain

$$
\begin{align*}
\nu_{n, r} & =\frac{q^{n(2 n+1)-r(2 r+1)} \prod_{p \mid q} \prod_{r+1 \leq k \leq n}\left(1-p^{-2 k}\right)}{(2) q^{\frac{(n-r)(n-r+1)}{2}+2 r(n-r)+(n-r)^{2}-1} \prod_{p \mid q} \prod_{2 \leq k \leq n-r}\left(1-p^{-k}\right)} \\
& =q^{\frac{1}{2}(n-r)(n+3 r+1)+1}(2)^{-1} \prod_{p \mid q} \frac{\prod_{2 \leq k \leq n-r}\left(1-p^{-2 k}\right)}{\prod_{2 \leq n}\left(1-p^{-k}\right)} \tag{2.17}
\end{align*}
$$

for $r<n$. If $s<r<n$, we have therefore

$$
\frac{\nu_{n, r} \nu_{r, s}}{\nu_{n, s}}=q^{(n-r)(r-s)+1}(2)^{-1} \prod_{p \mid q} \frac{\prod_{2}^{n-s}\left(1-p^{-k}\right)}{\prod_{2}^{n-r}\left(1-p^{-k}\right) \prod_{2}^{r-s}\left(1-p^{-k}\right)}>1
$$

which shows that the map $\Gamma_{r}(q) \backslash \mathfrak{S}_{r}^{*} \longrightarrow \Gamma_{n}(q) \backslash \mathfrak{S}_{n}^{*}$ is certainly not injective if $0<r<n$.

3 A connectedness theorem

Finally we add a theorem that will be useful later.
Theorem 3. Every point of $\mathfrak{S}_{n}^{*}-\mathfrak{S}_{n}$ has a base of \mathcal{T}_{0}^{Γ}-neighborhoods whose intersection with \mathfrak{S}_{n} is connected and open.

Proof. We can assume that the point in question is $Z_{0} \in \Omega_{r}(r<n)$. Let U_{r} be a connected, $\left(\Gamma_{r}\right)_{Z_{0}}$-saturated neighborhood of Z_{0} in Ω_{r} and let $U_{s}=V^{(s)}\left(U_{r}, K\right)$ ($r \leq s \leq n$) be the set defined in [3, p. 3], that is the set of $Z \in \Omega_{s}$ such that

$$
Z=\left(\begin{array}{cc}
Z_{1}^{(r)} & Z_{12} \\
{ }^{t} Z_{12} & Z_{2}
\end{array}\right)=X+i Y, \quad Y={ }^{t} W D W, \quad D=\left(\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{s}
\end{array}\right)
$$

with $Z_{1}^{(r)} \in U_{r}, d_{r+1}>K$; then

$$
U=\bigcup_{r \leq s \leq n} U_{s}
$$

is a neighborhood of Z_{0} in Ω_{n}^{*} and therefore $\tilde{U}=\Gamma_{Z_{0}} U$ is a \mathcal{T}_{0}^{Γ}-neighborhood of Z_{0} in \mathfrak{S}_{n}^{*}. We will prove that $\tilde{U}=\Gamma_{Z_{0}} U$ intersects \mathfrak{S}_{n} in a connected set, that is that $\Gamma_{Z_{0}} U_{n}$ is connected. It is easy to see that $\Gamma_{Z_{0}}$ is finitely generated (note that $\Gamma \cap \mathfrak{N}_{r}^{n}$ is a finite index subgroup of $\Gamma_{Z_{0}}$ and is finitely generated); let $\left\{M_{i}\right\}$ be a finite generating set for $\Gamma_{Z_{0}}$ that contains the identity E; we may assume in addition that M_{i} is of one of the following forms:

$$
\begin{align*}
M_{i} & =\left(\begin{array}{cccc}
E_{r} & 0 & 0 & 0 \\
0 & { }^{t} U_{2} & 0 & 0 \\
0 & 0 & E_{r} & 0 \\
0 & 0 & 0 & U_{2}^{-1}
\end{array}\right), \quad U_{2} \text { unimodular, } \tag{3.1}\\
M_{i} & =\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & B_{12} \\
A_{21} & E_{n-r} & B_{21} & B_{2} \\
C_{1} & 0 & D_{1} & D_{12} \\
0 & 0 & 0 & E_{n-r}
\end{array}\right) \tag{3.2}
\end{align*}
$$

(Indeed, $\Gamma_{Z_{0}}$ is the semi-direct product of subgroups consisting of matrices of respective forms (3.1) and (3.2), with the latter subgroup being normal.) Decomposing $Z^{\prime}=M_{i} Z$, $Z \in U_{n}$ as above, we see easily that if M_{i} is of the form (3.2), then Z^{\prime} belongs to $\Omega_{n}\left(u^{\prime}\right)$, where $u^{\prime} \geq u$ depends only on U_{r}, K, and M_{i}; therefore $M_{i} U_{n} \subset \Omega_{n}\left(u^{\prime}\right)$ for u^{\prime} sufficiently large. Now let M_{i} be of the form (3.1); for an arbitrary but fixed matrix Z_{i} in U_{n} we can again take u^{\prime} such that $Z_{i}^{\prime}=M_{i} Z_{i} \in \Omega_{n}\left(u^{\prime}\right)$; in this case we have the relations

$$
\begin{aligned}
X_{1}^{\prime} & =X_{1}, \quad X_{12}^{\prime}=X_{12} U_{2}, \quad X_{2}^{\prime}={ }^{t} U_{2} X_{2} U_{2}, \quad W_{1}^{\prime}=W_{1}, \\
W_{12}^{\prime} & =W_{12} U_{2}, \quad D_{1}^{\prime}=D_{1}, \quad{ }^{t} W_{2}^{\prime} D_{2}^{\prime} W_{2}^{\prime}={ }^{t} U_{2}{ }^{t} W_{2} D_{2} W_{2} U_{2}
\end{aligned}
$$

so if we denote by $Z_{i}(\lambda)$ and $Z_{i}^{\prime}(\lambda)$ the matrices obtained by replacing D_{2} and D_{2}^{\prime} by λD_{2} and $\lambda D_{2}^{\prime}(\lambda \geq 1)$ inside Z_{i}, respectively Z_{i}^{\prime}, we see easily that $Z_{i}(\lambda) \in U_{n}$, $Z_{i}^{\prime}(\lambda) \in \Omega_{n}\left(u^{\prime}\right), Z_{i}^{\prime}(\lambda)=M_{i} Z_{i}(\lambda)$ and hence $Z_{i}^{\prime}(\lambda)(\lambda \geq 1)$ belongs to $M_{i} U_{n} \cap \Omega_{n}\left(u^{\prime}\right)$. Let u^{\prime} be such that all the above conditions are satisfied; we define a neighborhood

$$
U^{\prime}=\bigcup_{r \leq s \leq n} U_{s}^{\prime}
$$

of Z_{0} in $\Omega_{n}\left(u^{\prime}\right)^{*}$ exactly as above with $U_{r}^{\prime}=U_{r}$ and K^{\prime} large enough that $U^{\prime} \subset \tilde{U}$; then $M_{i} U_{n} \cap U_{n}^{\prime}=\emptyset$ for all i; indeed, if M_{i} is of the form (3.2), we can take, for a given K^{\prime}, K_{1} such that $M_{i} V^{(n)}\left(U_{r}, K_{1}\right) \subset U_{n}^{\prime}$; on the other hand, if M_{i} is of the form (3.1), $Z_{i}^{\prime}(\lambda)$ belongs to $M_{i} U_{n} \subset U_{n}^{\prime}$ for sufficiently large λ. Then, since U_{n} and U_{n}^{\prime} are connected, so is $U_{n} \cup U_{n}^{\prime}$, and $\left(U_{n} \cup U_{n}^{\prime}\right) \cap M_{i}\left(U_{n} \cup U_{n}^{\prime}\right) \neq \emptyset$ for all i, from which we conclude the connectedness of $\Gamma_{Z_{0}} U_{n}=\Gamma_{Z_{0}}\left(U_{n} \cup U_{n}^{\prime}\right)$.

Bibliographic note

The two results of Koecher referred to in this talk can be found in [1, 2].

References

[1] Max Koecher. Zur Theorie der Modulformen n-ten Grades. I. Math. Z., 59:399-416, 1954.
[2] Max Koecher. Zur Theorie der Modulformen n-ten Grades. II. Math. Z., 61:455-466, 1955.
[3] Ichiro Satake. Compactification des espaces quotients de Siegel I. In Séminaire Henri Cartan, volume 10. E.N.S., 1957-1958. No. 2, Talk no. 12, 13 p.

[^0]: *This paper appeared in Séminaire Henri Cartan, pages 13-01 to 13-10 (1957/58).
 Translated from the original French by Alexandru Ghitza aghitza@alum.mit.edu

