Compactification of Siegel's quotient spaces I*

Ichiro Satake

3 March 1958

[Translator's note: We have attempted, as much as possible, to keep the notation in the original article. Some items may be confusing to a modern reader:

- E is an identity matrix, E_{n} if we want to make the size explicit;
- "neighborhood" means "open neighborhood".]

Let \mathfrak{S}_{n} be the Siegel space and Γ_{n} the Siegel modular group; we aim to construct a compactification of the quotient space $\Gamma_{n} \backslash \mathfrak{S}_{n}$. Of course, there are several possible compactifications; but, as we shall see, it is natural to consider a compactification of the form

$$
\left(\Gamma_{n} \backslash \mathfrak{S}_{n}\right)^{*}=\Gamma_{n} \backslash \mathfrak{S}_{n} \cup \Gamma_{n-1} \backslash \mathfrak{S}_{n-1} \cup \cdots \cup \Gamma_{0} \backslash \mathfrak{S}_{0},
$$

where \mathfrak{S}_{0} denotes a single point, and Γ_{0} is the trivial group. The aim of this talk is to give the topological construction of this compactification. We then show, in the following talks, that $\left(\Gamma_{n} \backslash \mathfrak{S}_{n}\right)^{*}$, endowed with a canonically defined ringed space structure, is a normal analytic space that can be realized as a normal algebraic subvariety of a projective space; we will consider at the same time the corresponding problems for all the groups commensurable to the group Γ_{n}.
To describe our method, recall the case $n=1$; in this case, it is well-known that the classical fundamental domain for Γ_{1} has a single cusp (point at infinity), so that the quotient space $\Gamma_{1} \backslash \mathfrak{S}_{1}$ can be compactified by adjoining a single point P_{∞} corresponding to this point, or more precisely to the class of this point; the compactified space $\left(\Gamma_{1} \backslash \mathfrak{S}_{1}\right)^{*}$ is a compact Riemann surface, whose local parameter around the point P_{∞} is given by $e^{2 \pi i z}$, which maps the subset $y>c$ of the upper half plane \mathfrak{S}_{1} onto a neighborhood of P_{∞} in $\left(\Gamma_{1} \backslash \mathfrak{S}_{1}\right)^{*}$. But the orbit of the point at infinity under Γ_{1} consists precisely of the rational points on the real axis, and the images of the set $y>c$ under Γ_{1} are horocycles at these points (i.e. cycles tangential to the real axis). Therefore the compactification $\left(\Gamma_{1} \backslash \mathfrak{S}_{1}\right)^{*}$ is obtained as follows: first let the space \mathfrak{S}_{1}^{*} be the disjoint union of the upper half plane \mathfrak{S}_{1} and all its rational points, then topologize it by taking the horocycles to be the neighborhoods of the rational points, and finally take the quotient $\Gamma_{1} \backslash \mathfrak{S}_{1}^{*}$ of \mathfrak{S}_{1}^{*} by Γ_{1}. Our objective is to prove that this method generalizes to the case of arbitrary n.

[^0]
1 Preliminary considerations

Let \mathfrak{S}_{n} be the Siegel space; we always denote an element of \mathfrak{S}_{n} as

$$
Z=X+i Y, \quad X=\left(x_{i j}\right), \quad Y=\left(y_{i j}\right), \quad Y={ }^{t} W D W,
$$

with a diagonal matrix $D=\left(d_{i} \delta_{i j}\right)$ and a strictly upper triangular matrix $W=\left(w_{i j}\right)$. Denote by $\Omega_{n}(u)(u>0)$ the set of $Z \in \mathfrak{S}_{n}$ satisfying
(i) $\left|x_{i j}\right|<u$,
(ii) $\left|w_{i j}\right|<u \quad(1 \leq i<j \leq n)$,
(iii) $1<u d_{1}, d_{i}<u d_{i+1} \quad(1 \leq i \leq n-1)$.

We already know ([1, Section 5]) that the collection of $\Omega_{n}(u)$ for sufficiently large $u>0$ is a collection of "fundamental open sets" for the modular group Γ_{n}. (We deviate here from the definition given in [1]; but setting

$$
M_{0}=\left(\begin{array}{cc}
e_{n} & 0 \\
0 & e_{n}
\end{array}\right), \quad e_{n}=\left(\delta_{i, n+1-j}\right),
$$

it is easy to see that the collection defined in [1] is equivalent to the collection $\left\{M_{0} \Omega_{n}(u)\right\}$ in the current notation.)
Let $0 \leq r \leq n$; we decompose matrices into $(r, n-r)$ blocks:

$$
Z=\left(\begin{array}{cc}
Z_{1} & Z_{12} \\
{ }^{t} Z_{12} & Z_{2}
\end{array}\right), \quad D=\left(\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right), \quad W=\left(\begin{array}{cc}
W_{1} & W_{12} \\
0 & W_{2}
\end{array}\right), \ldots
$$

Then $Z \in \Omega_{n}(u)$ implies that $Z_{1} \in \Omega_{r}(u)$, given the relation

$$
{ }^{t} W D W=\left(\begin{array}{cc}
{ }^{t} W_{1} D_{1} W_{1} & { }^{t} W_{1} D_{1} W_{12} \tag{1.1}\\
0 & { }^{t} W_{12} D_{1} W_{12}+{ }^{t} W_{2} D_{2} W_{2}
\end{array}\right) .
$$

From now on, we fix a number u such that $\Omega_{r}(u)$ is a fundamental open set of Γ_{r} for all $r \leq n$ and we write Ω_{r} instead of $\Omega_{r}(u)$.
Consider the set

$$
\begin{equation*}
\Omega_{n}^{*}=\bar{\Omega}_{n} \sqcup \bar{\Omega}_{n-1} \sqcup \cdots \sqcup \bar{\Omega}_{0} \tag{1.2}
\end{equation*}
$$

(disjoint union in the abstract sense), where $\bar{\Omega}_{r}$ denotes the closure of Ω_{r} in \mathfrak{S}_{r} and $\Omega_{0}=\mathfrak{S}_{0}$ (a one-point set). We introduce the following "natural" topology: let U be a neighborhood of $Z_{0} \in \bar{\Omega}_{r}$ in $\bar{\Omega}_{r}$ and K a positive number; we denote by $V^{(s)}(U, K)$ ($r \leq s \leq n$) the set of $Z \in \bar{\Omega}_{s}$ such that $Z_{1} \in U$ and $d_{r+1}>K$, where Z_{1} is as above the matrix of degree r in the $(r, s-r)$ block decomposition of Z, and d_{r+1} is the $(r+1)$-st diagonal element of D such that $Z=X+i Y, Y={ }^{t} W D W$; then a neighborhood of Z in Ω_{n}^{*} is given by the union

$$
\bigcup_{r \leq s \leq n} V^{(s)}(U, K) ;
$$

in other words, a sequence $\left(Z_{\nu}\right)$ contained in $\bar{\Omega}_{s}$ converges to Z_{0} in $\bar{\Omega}_{r}$ if and only if $Z_{\nu, 1} \longrightarrow Z_{0}$ and $d_{\nu, r+1} \longrightarrow \infty$. It is clear that these definitions give a Hausdorff topology on Ω_{n}^{*} inducing the original topology on each $\bar{\Omega}_{r}$. It is also clear that any sequence (Z_{ν}) contained in $\bar{\Omega}_{s}$ has a subsequence that converges in our sense (for an appropriately chosen r); hence Ω_{n}^{*} is a Hausdorff and compact space.
Let $0 \leq r \leq n$; we decompose

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(n, \mathbb{R})
$$

as follows:

$$
A=\left(\begin{array}{cc}
A_{1} & A_{12} \\
A_{21} & A_{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & B_{12} \\
B_{21} & B_{2}
\end{array}\right), \ldots
$$

into $(r, n-r)$ blocks. We consider the subgroup \mathfrak{G}_{r}^{n} of $\operatorname{Sp}(n, \mathbb{R})$ consisting of matrices of the form

$$
M=\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & B_{12} \tag{1.3}\\
A_{21} & A_{2} & B_{21} & B_{2} \\
C_{1} & 0 & D_{1} & D_{12} \\
0 & 0 & 0 & D_{2}
\end{array}\right)
$$

It is trivial that the set of all matrices of this form is in fact a subgroup; we note that simplecticity implies that the conditions $A_{12}=0, C_{12}=0, C_{0}$ (or the conditions $C_{21}=0$, $C_{2}=0, D_{21}=0$) are equivalent to conclude that an element M of $\operatorname{Sp}(n, \mathbb{R})$ belongs to \mathfrak{G}_{r}^{n}.

It also follows that

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \mathfrak{G}_{r}^{n}
$$

implies that

$$
M_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right) \in \operatorname{Sp}(r, \mathbb{R})
$$

and that the map

$$
\varpi_{r}: M \in \mathfrak{G}_{r}^{n} \longmapsto M_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \tag{1.4}\\
C_{1} & D_{1}
\end{array}\right) \in \operatorname{Sp}(r, \mathbb{R})
$$

is a homomorphism from \mathfrak{G}_{r}^{n} to $\operatorname{Sp}(r, \mathbb{R})$. On the other hand, let ι_{n} be the canonical embedding of $\operatorname{Sp}(r, \mathbb{R})$ to $\operatorname{Sp}(n, \mathbb{R})$ defined by

$$
\iota_{n}: M_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \tag{1.5}\\
C_{1} & D_{1}
\end{array}\right) \longmapsto M=\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & 0 \\
0 & E & 0 & 0 \\
C_{1} & 0 & D_{1} & 0 \\
0 & 0 & 0 & E
\end{array}\right)
$$

We have then $\varpi_{r} \circ \iota_{n}=1$ (the identity), which means that ϖ_{r} is surjective, and letting \mathfrak{N}_{r}^{n} denote the kernel of ϖ_{r}, we can decompose \mathfrak{G}_{r}^{n} into a semidirect product as follows:

$$
\begin{equation*}
\mathfrak{G}_{r}^{n}=\iota_{n}(\operatorname{Sp}(r, \mathbb{R})) \ltimes \mathfrak{N}_{r}^{n} \tag{1.6}
\end{equation*}
$$

We note that for the modular group Γ_{n} we have the relation

$$
\begin{equation*}
\Gamma_{n} \cap \mathfrak{G}_{r}^{n}=\iota_{n}\left(\Gamma_{r}\right) \ltimes\left(\Gamma_{n} \cap \mathfrak{N}_{r}^{n}\right) \tag{1.7}
\end{equation*}
$$

The significance of the group \mathfrak{G}_{r}^{n} is shown by the following lemma:
Lemma 1 (Godement). Let $\left(Z_{\nu}\right),\left(Z_{\nu}^{\prime}\right)$ be sequences in $\bar{\Omega}_{n}$.
$1^{\circ}\left(Z_{\nu}\right)$ converges to $Z_{0} \in \bar{\Omega}_{r}$ if and only if

$$
\left(Z_{\nu}^{-1}\right) \text { converges to }\left(\begin{array}{rr}
Z_{0}^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

in the usual sense.
2° If $\left(Z_{\nu}\right)$ and $\left(Z_{\nu}^{\prime}\right)$ converge to $Z_{0} \in \bar{\Omega}_{r}$, respectively $Z_{0}^{\prime} \in \bar{\Omega}_{r^{\prime}}$, and if $Z_{\nu}^{\prime}=M Z_{\nu}$ $(\nu=1,2, \ldots)$ for a matrix $M \in \operatorname{Sp}(n, \mathbb{R})$, then we have $r=r^{\prime}, M \in \mathfrak{G}_{r}^{n}$, and $Z_{0}^{\prime}=\varpi_{r}(M) Z_{0}$.

Proof. Suppose $\left(Z_{\nu}\right)$ converges to Z_{0} and set

$$
\begin{aligned}
Z_{\nu} & =X_{\nu}+i Y_{\nu}, \\
Y_{\nu} & ={ }^{t} W_{\nu} D_{\nu} W_{\nu}, \\
D_{\nu} & =\left(\begin{array}{cc}
D_{\nu, 1} & 0 \\
0 & D_{\nu, 2}
\end{array}\right), \\
X_{\nu} & =\left(\begin{array}{cc}
X_{\nu, 1} & X_{\nu, 12} \\
{ }^{t} X_{\nu, 12} & X_{\nu, 2}
\end{array}\right), \\
W_{\nu} & =\left(\begin{array}{cc}
W_{\nu, 1} & W_{\nu, 12} \\
0 & W_{\nu, 2}
\end{array}\right), \\
Z_{0} & =X_{0}+i Y_{0}, \\
W_{0} & ={ }^{t} W_{0} D_{0} W_{0} ;
\end{aligned}
$$

then $X_{\nu, 1} \longrightarrow X_{0}, W_{\nu, 1} \longrightarrow W_{0}, D_{\nu, 1} \longrightarrow D_{0}$.
By passing to a subsequence, we can moreover assume that (X_{ν}) and (W_{ν}) (and not only ($X_{\nu, 1}$) and ($W_{\nu, 1}$) converge, because for $Z \in \bar{\Omega}_{n}$ all the coefficients of X and of W are bounded; we have therefore

$$
\begin{aligned}
Z_{\nu}^{-1}=W_{\nu}^{-1} D_{\nu}^{-1 / 2} & \left(i E+D_{\nu}^{-1 / 2}{ }^{t} W_{\nu}^{-1} X_{\nu} W_{\nu}^{-1} D_{\nu}^{-1 / 2}\right)^{-1} D_{\nu}^{-1 / 2}{ }^{t} W_{\nu}^{-1} \\
& \longrightarrow\left(\begin{array}{cc}
W_{0}^{-1} & * \\
0 & *
\end{array}\right)\left(\begin{array}{cc}
D_{0}^{-1 / 2} & 0 \\
0 & 0
\end{array}\right)\left(i E+M_{0}\right)^{-1}\left(\begin{array}{cc}
D_{0}^{-1 / 2} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
t & W_{0}^{-1} \\
* & *
\end{array}\right),
\end{aligned}
$$

where

$$
M_{0}=\left(\begin{array}{cc}
D_{0}^{-1 / 2} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
t & W_{0}^{-1} \\
* & *
\end{array}\right)\left(\begin{array}{cc}
X_{0} & * \\
* & *
\end{array}\right)\left(\begin{array}{cc}
W_{0}^{-1} & * \\
0 & *
\end{array}\right)\left(\begin{array}{cc}
D_{0}^{-1 / 2} & 0 \\
0 & 0
\end{array}\right) .
$$

This is equal to

$$
\begin{aligned}
& \left(\begin{array}{cc}
W_{0}^{-1} D_{0}^{-1 / 2} & 0 \\
0 & 0
\end{array}\right)\left(i E+\left(\begin{array}{cc}
D_{0}^{-1 / 2} t \\
W_{0}^{-1} X_{0} W_{0}^{-1} D_{0}^{-1 / 2} & 0 \\
0 & 0
\end{array}\right)\right)\left(\begin{array}{cc}
D_{0}^{-1 / 2}{ }^{t} W_{0}^{-1} & 0 \\
& 0
\end{array}\right. \\
= & \left(\begin{array}{cc}
W_{0}^{-1} D_{0}^{-1 / 2}\left(i E_{r}+D_{0}^{-1 / 2}{ }^{t} W_{0}^{-1} X_{0} W_{0}^{-1} D_{0}^{-1 / 2}\right)^{-1} D_{0}^{-1 / 2}{ }^{t} W_{0}^{-1} & 0 \\
0 & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
Z_{0}^{-1} & 0 \\
0 & 0
\end{array}\right),
\end{aligned}
$$

whence the first statement in 1°. The converse follows immediately from this and the fact that every sequence in $\bar{\Omega}_{n}$ has a converging subsequence.
Now let (Z_{ν}^{\prime}) be another sequence converging to $Z_{0}^{\prime} \in \bar{\Omega}_{r}$, and let

$$
Z_{\nu}^{\prime}=\left(A Z_{\nu}+B\right)\left(C Z_{\nu}+D\right)^{-1} \quad \text { with } M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(n, \mathbb{R}) ;
$$

without loss of generality $r^{\prime} \leq r$. We have then

$$
\left(Z_{\nu}^{\prime}\right)^{-1}=\left(D Z_{\nu}^{-1}+C\right)\left(B Z_{\nu}^{-1}+A\right)^{-1}
$$

and, by passage to the limit,

$$
\begin{aligned}
\left(\begin{array}{cc}
\left(Z_{0}^{\prime}\right)^{-1} & 0 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{cc}
B_{1} & B_{12} \\
B_{21} & B_{2}
\end{array}\right)\left(\begin{array}{cc}
Z_{0}^{-1} & 0 \\
0 & 0
\end{array}\right)\right. & \left.+\left(\begin{array}{cc}
A_{1} & A_{12} \\
A_{21} & A_{2}
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
D_{1} & D_{12} \\
D_{21} & D_{2}
\end{array}\right)\left(\begin{array}{cc}
Z_{0}^{-1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
C_{1} & C_{12} \\
C_{21} & C_{2}
\end{array}\right),
\end{aligned}
$$

where the blocks are ($r, n-r$). By comparing the corresponding coefficients, we get the relations

$$
\begin{gather*}
\left(\begin{array}{cc}
\left(Z_{0}^{\prime}\right)^{-1} & 0 \\
0 & 0
\end{array}\right)\left(B_{1} Z_{0}^{-1}+A_{1}\right)=D_{1} Z_{0}^{-1}+C_{1} \tag{1.8}\\
\left(\begin{array}{cc}
\left(Z_{0}^{\prime}\right)^{-1} & 0 \\
0 & 0
\end{array}\right) A_{12}=C_{12}, \tag{1.9}
\end{gather*}
$$

$$
\begin{equation*}
0=D_{21} Z_{0}^{-1}+C_{21}, \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
0=C_{2} . \tag{1.11}
\end{equation*}
$$

As the imaginary part Y_{0} of Z_{0} is $\gg 0$, it follows from (1.10) that $C_{21}=D_{21}=0$, which, together with (1.11), shows that $M \in \mathfrak{G}_{r}^{n}$; we have therefore that

$$
M_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right) \in \operatorname{Sp}(r, \mathbb{R})
$$

and then (1.8) shows that $\left(\begin{array}{cc}\left(Z_{0}^{\prime}\right)^{-1} & 0 \\ 0 & 0\end{array}\right)$ has rank r; hence $r=r^{\prime}$ and $Z_{0}^{\prime}=M_{1} Z_{0}$.

2 Construction of the space \mathfrak{S}_{n}^{*}

We now construct the space \mathfrak{S}^{*} which is a generalization to the case of arbitrary n of the \mathfrak{S}_{1}^{*} stated above. We could use the bounded model of the Siegel space, i.e. the space of complex symmetric matrices W of degree n such that $\bar{W} W \ll E_{n}$. But we will instead construct directly the space corresponding to the half-plane \mathfrak{S}_{n}.
Let $\Gamma=\Gamma_{n}$ be the Siegel modular group; consider the set of pairs (M, Z) with $M \in \Gamma$, $Z \in \mathfrak{S}_{r}(0 \leq r \leq n)$; take the equivalence relation defined by

$$
(M, Z) \sim\left(M^{\prime}, Z^{\prime}\right), Z \in \mathfrak{S}_{r}, Z^{\prime} \in \mathfrak{S}_{r^{\prime}} \Longleftrightarrow r=r^{\prime},\left(M^{\prime}\right)^{-1} M \in \mathfrak{G}_{r}^{n}, Z^{\prime}=\varpi_{r}\left(\left(M^{\prime}\right)^{-1} M\right) Z
$$

This is clearly an equivalence relation; we write $M . Z$ for the equivalence class of (M, Z) and we denote by \mathfrak{S}_{n}^{*} the set of equivalence classes. We can view \mathfrak{S}_{r} as a subset of \mathfrak{S}_{n}^{*} via the natural injective map $Z \longmapsto 1 . Z$; similarly we can make Γ act on \mathfrak{S}_{n}^{*} via the obvious formula $M_{1}(M . Z)=\left(M_{1} M\right) . Z$, since $(M, Z) \sim\left(M^{\prime}, Z^{\prime}\right)$ obviously implies that $\left(M_{1} M, Z\right) \sim\left(M_{1} M^{\prime}, Z^{\prime}\right)$. All of this agrees with the usual notations when $n=r$.
We have therefore

$$
\begin{equation*}
\mathfrak{S}_{n}^{*}=\bigcup_{0 \leq r \leq n} \Gamma \mathfrak{S}_{r} . \tag{2.1}
\end{equation*}
$$

More precisely, if we decompose Γ into right cosets for $\Gamma \cap \mathfrak{G}_{r}^{n}$:

$$
\begin{equation*}
\Gamma=\bigcup_{i} M_{r, i}\left(\Gamma \cap \mathfrak{G}_{r}^{n}\right), \tag{2.2}
\end{equation*}
$$

we have the following decomposition of \mathfrak{S}_{n}^{*} :

$$
\begin{equation*}
\mathfrak{S}_{n}^{*}=\bigsqcup_{r, i} M_{r, i} \mathfrak{S}_{r} \tag{2.3}
\end{equation*}
$$

Note that we can consider $\Omega_{n}^{*} \subset \mathfrak{S}_{n}^{*}$ and obtain $\mathfrak{S}_{n}^{*}=\Gamma \Omega_{n}^{*}$.
We now define a topology on \mathfrak{S}_{n}^{*}; we are interested in a topology \mathcal{T} on \mathfrak{S}_{n}^{*} satisfying
$1^{\circ} \mathcal{T}$ induces the "natural" topology on Ω_{n}^{*}.
2° The actions of $M \in \Gamma$ on \mathfrak{S}_{n}^{*} are continuous maps.
3° If two points x, x^{\prime} of \mathfrak{S}_{n}^{*} are not Γ-equivalent, there exist neighborhoods U of x and U^{\prime} of x^{\prime} such that $\Gamma U \cap U^{\prime}=\emptyset$.
4° Each point $x \in \mathfrak{S}_{n}^{*}$ has a system of open neighborhoods $\{U\}$ such that $\Gamma_{x} U=U$ and if $M U \cap U \neq \emptyset$ then $M \in \Gamma_{x}$, where Γ_{x} is the stabilizer of x in Γ.

Our main results consist of the following theorems:
Theorem 1. Among the topologies satisfying conditions 1° and 2°, there is a finest one, denoted \mathcal{T}^{Γ}; it also satisfies condition 3°.

Theorem 2. There exists a unique topology, denoted \mathcal{T}_{0}^{Γ}, satisfying conditions $1^{\circ}, 2^{\circ}$, 3°, and 4°.

Before giving the proofs, we discuss the consequences of these theorems. We start by considering the quotient space $\Gamma \backslash \mathfrak{S}_{n}^{*}$ with the topology induced by \mathcal{T}^{Γ} : the open sets of $\Gamma \backslash \mathfrak{S}_{n}^{*}$ are the images of the \mathcal{T}^{Γ}-open sets of \mathfrak{S}_{n}^{*} under the canonical projection $\pi_{n}^{*}: \mathfrak{S}_{n}^{*} \longrightarrow \Gamma \backslash \mathfrak{S}_{n}^{*}$. We have then

Theorem 3. The quotient space $\Gamma \backslash \mathfrak{S}_{n}^{*}$ is Hausdorff and compact.
Proof. The space is Hausdorff by condition 3° above; it is compact since it is the continuous image of the compact space Ω_{n}^{*}.

We now have

$$
\Gamma \backslash \mathfrak{S}_{n}^{*}=\bigcup_{0 \leq r \leq n} \Gamma \backslash \Gamma \mathfrak{S}_{r}
$$

by (2.1); as the stabilizer of \mathfrak{S}_{r} in Γ is $\Gamma \cap \mathfrak{G}_{r}^{n}$ and the action of $\Gamma \cap \mathfrak{G}_{r}^{n}$ on \mathfrak{S}_{r} is the same as that of $\varpi_{r}\left(\Gamma \cap \mathfrak{G}_{r}^{n}\right)=\Gamma_{r}, \Gamma \backslash \Gamma \mathfrak{S}_{r}$ is canonically identified with $\Gamma_{r} \backslash \mathfrak{S}_{r}$; we have therefore

$$
\begin{equation*}
\Gamma \backslash \mathfrak{S}_{n}^{*}=\bigcup_{0 \leq r \leq n} \Gamma_{r} \backslash \mathfrak{S}_{r} . \tag{2.4}
\end{equation*}
$$

There are several topologies satisfying conditions 1° and 2°; but they all induce the same topology on any finite union of $M_{i} \Omega_{n}^{*}\left(M_{i} \in \Gamma\right)$. If they also satisfy condition 3°, they induce the same topology on the quotient space $\Gamma \backslash \mathfrak{S}_{n}^{*}$, so that we can assume in Theorem 3 that the topology on $\Gamma \backslash \mathfrak{S}_{n}^{*}$ is defined by any topology on \mathfrak{S}_{n}^{*} satisfying conditions $1^{\circ}, 2^{\circ}$, and 3°.

3 Proof of Theorems 1 and 2

We first define the topology \mathcal{T}^{Γ}, as follows: we declare a subset F of \mathfrak{S}_{n}^{*} to be \mathcal{T}^{Γ}-closed if and only if for all $M \in \Gamma$ we have that $M F \cap \Omega_{n}^{*}$ is closed in the "natural" topology on Ω_{n}^{*}. It is clear that this defines a topology \mathcal{T}^{Γ} and that the latter satisfies condition 2°. To verify condition 1°, it suffices to prove that if F is closed in Ω_{n}^{*} (in the "natural" topology), then $M F \cap \Omega_{n}^{*}$ is also closed, for all $M \in \Gamma$; but this follows immediately from Lemma 1. It is clear that \mathcal{T}^{Γ} is the finest topology satisfying conditions 1° and 2°.

To prove the last statement of Theorem 1, we need several lemmas:
Lemma 2. For each r there exists a finite number of $M_{i}^{(r)} \in \mathfrak{G}_{r}^{n}$ such that the relations $M \bar{\Omega}_{r} \cap \bar{\Omega}_{r} \neq \emptyset$ for $M \in \Gamma$ (and hence $M \in \mathfrak{G}_{r}^{n}$) imply that $\varpi_{r}(M)=\varpi_{r}\left(M_{i}^{(r)}\right)$ for some i.

This is an immediate consequence of the fact that Ω_{r} is a "fundamental open" of Γ_{r}. We note in fact that, if $r<n$, there are infinitely many $M \in \Gamma$ such that $M \bar{\Omega}_{r} \cap \bar{\Omega}_{r} \neq \emptyset$.

Lemma 3. For each $Z \in \bar{\Omega}_{r}$, there exists a neighborhood U of Z in Ω_{n}^{*} such that
1° if $M \in \Gamma$ and $M U \cap \Omega^{*} \neq \emptyset$, then $M \in \mathfrak{G}_{r}^{n}$ and $M Z \in \bar{\Omega}_{r}$;
2° if $M \in \Gamma$ and $M U \cap U \neq \emptyset$, then $M \in \Gamma_{Z}$, the stabilizer of Z in Γ.
Proof. Suppose $M \in \Gamma$ is fixed. It is clear that if $M U \cap \Omega_{n}^{*} \neq \emptyset$ for all neighborhoods U of Z in Ω_{n}^{*}, then $M Z \in \Omega_{n}^{*}$ and hence $M \in \mathfrak{G}_{r}^{n}, M Z \in \bar{\Omega}_{r}$. Therefore we can take a neighborhood U of Z such that

$$
U \subset \bigcup_{r \leq s \leq n} \bar{\Omega}_{s}
$$

and that the statement of the Lemma holds for all $M_{i}^{(s)}(r \leq s \leq n)$ stated in Lemma 2. We then prove that the statement of the Lemma holds for all $M \in \Gamma$. Indeed, if $M U \cap \Omega_{n}^{*} \neq \emptyset$, there exists $s(r \leq s \leq n)$ such that $M U \cap \bar{\Omega}_{s} \neq \emptyset$; by Lemma 2 we then have $M \in \mathfrak{G}_{s}^{n}$ and $\varpi_{s}(M)=\varpi_{s}\left(M_{i}^{(s)}\right)$. Hence $M_{i}^{(s)} \cap \bar{\Omega}_{s} \neq \emptyset$ and by our choice of U we have $M_{i}^{(s)} \in \mathfrak{G}_{r}^{n}, M_{i}^{(s)} Z \in \bar{\Omega}_{r}$; next $\varpi_{s}(M)=\varpi_{s}\left(M_{i}^{(s)}\right) \in \mathfrak{G}_{r}^{s}$, hence $M \in \mathfrak{G}_{r}^{n}$, $\varpi_{r}(M)=\varpi_{r}\left(M_{i}^{(s)}\right)$ and so $M Z=M_{i}^{(s)} Z \in \bar{\Omega}_{r}$, which proves the first statement in the Lemma. The second statement can be proved similarly.

Lemma 4. Let $Z \in \Omega_{r}$; if U is a neighborhood of Z in Ω_{n}^{*}, then $\tilde{U}=\Gamma_{Z} U$ is a \mathcal{T}^{Γ}. neighborhood of Z.

Proof. We may assume that U satisfies property 1° stated in Lemma 3; therefore if $M \tilde{U} \cap \Omega_{n}^{*} \neq \emptyset$ with $M \in \Gamma$ then $M \in \mathfrak{G}_{r}^{n}, M Z \in \bar{\Omega}_{r}$. So there are only finitely many possibilities for M (up to right multiplication by Γ_{Z}) such that $M U \cap \Omega_{n}^{*} \neq \emptyset$. Hence it suffices to prove that $M \tilde{U} \cap \Omega_{n}^{*}$ is a neighborhood of $M Z$ in Ω_{n}^{*} for these finitely many representatives M modulo Γ_{Z}. Let $r \leq s \leq n, U_{s}=U \cap \bar{\Omega}_{s}$; then

$$
M \tilde{U} \cap \Omega_{n}^{*}=\bigcup_{r \leq s \leq n} M \Gamma_{Z} U_{s} \cap \bar{\Omega}_{s}
$$

But as $\Gamma_{Z} \supset \Gamma \cap \mathfrak{N}_{r}^{n}$ and $\Gamma=\iota_{n}\left(\Gamma_{r}\right) \ltimes\left(\Gamma \cap \mathfrak{N}_{r}^{n}\right)$, we can take M such that $M \in \iota_{n}\left(\Gamma_{r}\right)$. Then $M \Gamma_{Z} U_{s} \cap \bar{\Omega}_{s}$ contains all the matrices $Z^{(s)} \in \bar{\Omega}_{s}$ such that

$$
Z^{(s)}=\left(\begin{array}{ll}
Z_{1}^{(r)} & Z_{12} \\
{ }^{t} Z_{12} & Z_{2}
\end{array}\right)=X+i Y, \quad Y={ }^{t} W D W, \quad D=\left(d_{i} \delta_{i j}\right)
$$

with $Z_{1}^{(r)}$ close enough to $M Z$ and d_{r+1} sufficiently large. (This follows from the Proposition proven in the Appendix.) Therefore $M \tilde{U} \cap \Omega_{n}^{*}$ is a neighborhood of $M Z$ in Ω_{n}^{*}.

We now prove the last statement of Theorem 1. Let x, x^{\prime} be two points of \mathfrak{S}_{n}^{*} that are not Γ-equivalent; we need to construct neighborhoods \tilde{U} and \tilde{U}^{\prime} of x, respectively x^{\prime}, that are Γ-saturated and disjoint; it suffices to do this for two points

$$
Z, Z^{\prime} \in \bigcup_{0 \leq r \leq n} \Omega_{r}
$$

Let U, U^{\prime} be respective neighborhoods of Z and Z^{\prime} in Ω_{n}^{*} such that $M_{i}^{(r)} U \cap U^{\prime}=\emptyset$ for all $M_{i}^{(r)}$ from Lemma 2; it is clear then that $M U \cap U^{\prime}=\emptyset$ for all $M \in \Gamma$. Let $\tilde{U}=\Gamma U$, $\tilde{U}^{\prime}=\Gamma U^{\prime}$; by Lemma 4 these are \mathcal{T}^{Γ}-neighborhoods of Z and Z^{\prime} in \mathfrak{S}_{n}^{\star}, and they are Γ-saturated and disjoint, from which we deduce the desired statement.

We now prove Theorem 2. We define the topology \mathcal{T}_{0}^{Γ} as follows: we say that U is a \mathcal{T}_{0}^{Γ}-neighborhood of $x \in \mathfrak{S}_{n}^{*}$ if and only if U is a Γ_{x}-saturated \mathcal{T}^{Γ}-neighborhood of x. For

$$
Z \in \bigcup_{0 \leq r \leq n} \Omega_{r}
$$

such a neighborhood always contains a neighborhood $\tilde{U}=\Gamma_{Z} U$ as given in Lemma 4; taking U sufficiently small so that condition 2° of Lemma 3 is satisfied, $\tilde{U}=\Gamma_{Z} U$ is a \mathcal{T}_{0}^{Γ}-neighborhood of Z satisfying condition 4°; it follows immediately that the conditions for the systems of neighborhoods are satisfied for \mathcal{T}_{0}^{Γ}; it is then clear that \mathcal{T}_{0}^{Γ} is a topology satisfying conditions $1^{\circ}, 2^{\circ}, 3^{\circ}$, and 4°; condition 1° is satisfied since for $\tilde{U}=\Gamma_{Z} U$, we can make

$$
\tilde{U} \cap \Omega_{n}^{*}=\bigcup_{M_{i}^{(s)} \in \Gamma_{Z}} M_{i}^{(s)} U \cap \Omega_{n}^{*}
$$

as small as we want by taking U to be sufficiently small.
Finally, we prove the uniqueness of the topology satisfying conditions $1^{\circ}, 2^{\circ}, 3^{\circ}$, and 4°. Let \mathcal{T} be such a topology and let \tilde{U}_{1} be a \mathcal{T}-neighborhood of $Z \in \Omega_{r}$ satisfying condition 4°; setting $U=\tilde{U}_{1} \cap \Omega_{n}^{*}, \tilde{U}=\Gamma_{Z} U$, we get a \mathcal{T}_{0}^{Γ}-neighborhood \tilde{U} of Z, clearly contained in \tilde{U}_{1}; conversely let $\tilde{U}=\Gamma_{Z} U$ be a \mathcal{T}_{0}^{Γ}-neighborhood of $Z \in \Omega_{r}$; we may assume that \tilde{U} is contained in a \mathcal{T}-neighborhood of \tilde{U}_{1} of Z satisfying condition 4°; let $\tilde{U}_{2}=\Gamma U ; \tilde{U}_{2}$ is a \mathcal{T}-neighborhood of Z, because it is a Γ-saturated \mathcal{T}_{0}^{Γ}-neighborhood of Z, and because \mathcal{T} and \mathcal{T}_{0}^{Γ} define the same topology on the quotient space $\Gamma \backslash \mathfrak{S}_{n}^{*}$ due to conditions $1^{\circ}, 2^{\circ}$, and 3°; we have then

$$
\tilde{U}_{1} \cap \tilde{U}_{2}=\tilde{U}_{1} \cap \bigcup_{M_{i} \in \Gamma / \Gamma_{Z}} M_{i} \tilde{U}=\tilde{U}_{1} \cap \tilde{U}=\tilde{U}
$$

hence \tilde{U} is a \mathcal{T}-neighborhood of Z, which proves our statement.
The classical topology of \mathfrak{S}_{1}^{*} is \mathcal{T}_{0}^{Γ}; we see easily that the two topologies \mathcal{T}^{Γ} and \mathcal{T}_{0}^{Γ} are in fact different; we note also that these topologies are not locally compact. We also note that the topologies \mathcal{T}^{Γ} and \mathcal{T}_{0}^{Γ} induce the same topology on $\mathfrak{S}_{r}(0 \leq r \leq n)$, namely the original topology on \mathfrak{S}_{r}.

Appendix

We complete here the proof of Lemma 4. By changing notation, this involves the following setup: let U_{r} and U_{r}^{\prime} be neighborhoods of $Z_{0} \in \Omega_{r}$ in Ω_{r}; let K and K^{\prime} be positive numbers, $U_{s}=V^{(s)}\left(U_{r}, K\right)$ the set of all matrices $Z \in \Omega_{s}$ such that

$$
Z=\left(\begin{array}{cc}
Z_{1} & Z_{12} \\
{ }^{t} Z_{12} & Z_{2}
\end{array}\right)=X+i Y, \quad Y={ }^{t} W D W, \quad D=\left(d_{i} \delta_{i j}\right)
$$

with $Z_{1} \in U_{r}, d_{r+1}>K$. Let U_{s}^{\prime} the analogue of U_{s} obtained by replacing Ω_{s}, U_{r}, and K by $M_{0}^{-1} \Omega_{s}, U_{r}^{\prime}$, and K^{\prime}, where M_{0} is an element of $\iota_{s}\left(\Gamma_{r}\right)$. We have to prove that, given U_{r}, K, and M_{0}, we can choose U_{r}^{\prime} and K^{\prime} such that

$$
\begin{equation*}
U_{s}^{\prime} \subset\left(\Gamma_{s}\right)_{Z_{0}} U_{s} \tag{3.1}
\end{equation*}
$$

Then it suffices to take $K^{\prime \prime}$ such that

$$
M_{0}^{-1} V^{(s)}\left(M_{0} U_{r}^{\prime}, K^{\prime \prime}\right) \subset U_{s}^{\prime}
$$

which is possible thanks to the continuity of M_{0}^{-1} in $\Omega_{s}^{*} \cup M_{0}^{-1} \Omega_{s}^{*}$.
We will use the following result:

Proposition. With the above notation, given M_{0} and a bounded U_{r}^{\prime}, we can choose K^{\prime} such that U_{s}^{\prime} is contained in $\left(\Gamma_{s} \cap \mathfrak{N}_{r}^{s}\right) \Omega_{s}$.

The statement we want to prove follows from the Proposition: indeed we get finitely many $M_{i} \in \Gamma_{s} \cap \mathfrak{N}_{r}^{s}$ such that

$$
U_{s}^{\prime} \subset \bigcup_{i} M_{i} \Omega_{s}
$$

and hence, modifying U_{r}^{\prime} and K^{\prime} so that

$$
\left(M_{i}^{-1} U_{s}^{\prime}\right) \cap \Omega_{s} \subset U_{s} \quad \text { for all } i
$$

(which is possible thanks to the continuity of M_{i}^{-1} in Ω_{s}^{*}), we get

$$
U_{s}^{\prime} \subset \bigcup_{i} M_{i} U_{s},
$$

and therefore (3.1).
So it remains to prove the Proposition. Let

$$
Z^{\prime}=\left(\begin{array}{cc}
Z_{1}^{\prime} & Z_{12}^{\prime} \\
{ }^{t} Z_{12}^{\prime} & Z_{2}^{\prime}
\end{array}\right) \in U_{s}^{\prime} .
$$

We will show that, if we take K^{\prime} sufficiently large, there exists $M \in \Gamma_{s} \cap \mathfrak{N}_{r}^{s}$ such that $M Z^{\prime} \in \Omega_{s}$. But the group $\Gamma_{s} \cap \mathfrak{N}_{r}^{s}$ is generated by transformations of the form
(i) $M=\left(\begin{array}{cc}{ }^{t} U & 0 \\ 0 & U^{-1}\end{array}\right)$, with $U=\left(\begin{array}{cc}E & 0 \\ 0 & U_{2}\end{array}\right), U_{2}$ being integral and unimodular;
(ii) $M=\left(\begin{array}{cc}{ }^{t} U & 0 \\ 0 & U^{-1}\end{array}\right)$, with $U=\left(\begin{array}{cc}E & U_{12} \\ 0 & E\end{array}\right), U_{12}$ integral;
(iii) $M=\left(\begin{array}{cc}E & T \\ 0 & E\end{array}\right)$, with $T=\left(\begin{array}{cc}0 & T_{12} \\ { }^{t} T_{12} & T_{2}\end{array}\right)$, where T_{12} and T_{2} are integral, and $T_{2}={ }^{t} T_{2}$.

If we set

$$
\begin{array}{lll}
Z^{\prime}=X^{\prime}+i Y^{\prime}, & X^{\prime}=\left(\begin{array}{cc}
X_{1}^{\prime} & X_{12}^{\prime} \\
{ }^{t} X_{12}^{\prime} & X_{2}^{\prime}
\end{array}\right), & \\
Y^{\prime}={ }^{t} W^{\prime} D^{\prime} W^{\prime}, & W^{\prime}=\left(\begin{array}{cc}
W_{1}^{\prime} & W_{12}^{\prime} \\
0 & W_{2}^{\prime}
\end{array}\right), & D^{\prime}=\left(\begin{array}{cc}
D_{1}^{\prime} & 0 \\
0 & D_{2}^{\prime}
\end{array}\right),
\end{array}
$$

then these transformations act as follows:
(i) $W_{12}^{\prime} \longmapsto W_{12}^{\prime} U_{2}^{\prime}, \quad{ }^{t} W_{2}^{\prime} D_{2}^{\prime} W_{2}^{\prime} \longmapsto{ }^{t} U_{2}{ }^{t} W_{2}^{\prime} D_{2}^{\prime} W_{2}^{\prime} U_{2}$;
(ii) $W_{12}^{\prime} \longmapsto W_{12}^{\prime}+W_{1}^{\prime} U_{12}, \quad{ }^{t} W_{2}^{\prime} D_{2}^{\prime} W_{2}^{\prime}$ unchanged;
(iii) $X_{12}^{\prime} \longmapsto X_{12}^{\prime}+T_{12}, \quad X_{2}^{\prime} \longmapsto X_{2}^{\prime}+T_{2}, \quad Y^{\prime}$ unchanged;
and these transformations do not change $X_{1}^{\prime}, W_{1}^{\prime}$, and D_{1}^{\prime}. By setting $Z^{\prime \prime}=M Z^{\prime}$ for some M of type (i), we can arrange that ${ }^{t} W_{2}^{\prime \prime} D_{2}^{\prime \prime} W_{2}^{\prime \prime} \in S^{\prime}(u)$ (in the notation of [6, 5]), that is that

$$
\left|w_{i j}^{\prime \prime}\right|<u \quad(\text { for } r+1 \leq i<j \leq s), \quad d_{i}^{\prime \prime}<u d_{i+1}^{\prime \prime} \quad \text { (for } r+1 \leq i<s \text {). }
$$

Next, using a transformation of type (ii), we can arrange that

$$
\left|w_{i j}^{\prime \prime}\right| \leq \frac{1}{2} \quad(\text { for } 1 \leq i \leq r, r+1 \leq j \leq s) .
$$

Finally, using a transformation of type (iii), we can arrange that

$$
\left|x_{i j}^{\prime \prime}\right| \leq \frac{1}{2} \quad(\text { for } r+1 \leq j \leq s, \text { any } i)
$$

Under all these transformations $Z_{1}^{\prime \prime}=Z_{1}^{\prime}$ does not change. Finally, we see that we can choose $M \in \Gamma_{s} \cap \mathfrak{N}_{r}^{s}$ so that $Z^{\prime \prime}=M Z^{\prime}$ satisfies all the conditions of belonging to Ω_{s}, with the exception of

$$
d_{r}^{\prime \prime}<u d_{r+1}^{\prime \prime}
$$

But $d_{r}^{\prime \prime}=d_{r}^{\prime}$ is bounded as Z_{1}^{\prime} ranges through U_{r}^{\prime}. Moreover, there are only finitely many transformations of type (i) as Z^{\prime} ranges through $M_{0}^{-1} \Omega_{s}$ such that $Z_{1}^{\prime} \in U_{r}^{\prime}$ (indeed, for $Z^{\prime}=M_{0}^{-1} Z \in M_{0}^{-1} \Omega_{s}$ and $Z_{1}^{\prime} \in U_{r}^{\prime}$, all the coefficients of $Y_{2}^{\prime}-Y_{2}$ are bounded). We can therefore choose K^{\prime} depending only on U_{r}^{\prime}, u, and M_{0}, in such a way that, for all $Z^{\prime} \in U_{s}^{\prime}, Z^{\prime \prime}=M Z^{\prime}$ also satisfies $d_{r}^{\prime \prime}<u d_{r+1}^{\prime \prime}$, that is $M Z^{\prime} \in \Omega_{s}$. This concludes the proof of the Proposition.

Bibliographic note

The above compactification was given in [3] (but without using the space \mathfrak{S}_{n}^{*}). Lemma 2 of [3] corresponds to Lemma 1 of the present talk, but the proof is much simplified by an idea of Godement. In any case the introduction of the space \mathfrak{S}_{n}^{*} is preferable, especially in view of its usefulness in the consideration of groups commensurable to Γ. Other methods of compactification can be found in [2, 4].

References

[1] Henri Cartan. Ouverts fondamentaux pour le groupe modulaire. In Séminaire Henri Cartan, volume 10. E.N.S., 1957-1958. No. 1, Talk no. 3, 12 p.
[2] Ichiro Satake. On Siegel's modular functions. In Proceedings of the international symposium on algebraic number theory, Tokyo \& Nikko, 1955, pages 107-129. Science Council of Japan, Tokyo, 1956.
[3] Ichiro Satake. On the compactification of the Siegel space. J. Indian Math. Soc. (N.S.), 20:259-281, 1956.
[4] Carl Ludwig Siegel. Zur Theorie der Modulfunktionen n-ten Grades. Comm. Pure Appl. Math., 8:677-681, 1955.
[5] André Weil. Groupes des formes quadratiques indéfinies et des formes bilinéaires alternées. In Séminaire Henri Cartan, volume 10. E.N.S., 1957-1958. No. 1, Talk no. 2, 14 p.
[6] André Weil. Réduction des formes quadratiques. In Séminaire Henri Cartan, volume 10. E.N.S., 1957-1958. No. 1, Talk no. 1, 9 p.

[^0]: *This paper appeared in Séminaire Henri Cartan, pages 12-01 to 12-13 (1957/58).
 Translated from the original French by Alexandru Ghitzaaghitza@alum.mit.edu

