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[Translator’s note: We have attempted, as much as possible, to keep the notation in
the original article. Some items may be confusing to a modern reader:

• E is an identity matrix, En if we want to make the size explicit;

• “neighborhood” means “open neighborhood”.]

Let Sn be the Siegel space and Γn the Siegel modular group; we aim to construct a
compactification of the quotient space Γn\Sn. Of course, there are several possible
compactifications; but, as we shall see, it is natural to consider a compactification of
the form (

Γn\Sn

)∗
= Γn\Sn ∪ Γn−1\Sn−1 ∪ · · · ∪ Γ0\S0,

where S0 denotes a single point, and Γ0 is the trivial group. The aim of this talk
is to give the topological construction of this compactification. We then show, in
the following talks, that

(
Γn\Sn

)∗
, endowed with a canonically defined ringed space

structure, is a normal analytic space that can be realized as a normal algebraic
subvariety of a projective space; we will consider at the same time the corresponding
problems for all the groups commensurable to the group Γn.

To describe our method, recall the case n = 1; in this case, it is well-known that the
classical fundamental domain for Γ1 has a single cusp (point at infinity), so that the
quotient space Γ1\S1 can be compactified by adjoining a single point P∞ corresponding
to this point, or more precisely to the class of this point; the compactified space(
Γ1\S1

)∗
is a compact Riemann surface, whose local parameter around the point

P∞ is given by e2πiz, which maps the subset y > c of the upper half plane S1 onto a
neighborhood of P∞ in

(
Γ1\S1

)∗
. But the orbit of the point at infinity under Γ1 consists

precisely of the rational points on the real axis, and the images of the set y > c under
Γ1 are horocycles at these points (i.e. cycles tangential to the real axis). Therefore the
compactification

(
Γ1\S1

)∗
is obtained as follows: first let the space S∗

1 be the disjoint
union of the upper half plane S1 and all its rational points, then topologize it by taking
the horocycles to be the neighborhoods of the rational points, and finally take the
quotient Γ1\S∗

1 of S∗
1 by Γ1. Our objective is to prove that this method generalizes to

the case of arbitrary n.

*This paper appeared in Séminaire Henri Cartan, pages 12-01 to 12-13 (1957/58).
Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>.
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1 Preliminary considerations

Let Sn be the Siegel space; we always denote an element of Sn as

Z = X + iY, X =
(
xij
)
, Y =

(
yij
)
, Y = tWDW,

with a diagonal matrix D =
(
diδij

)
and a strictly upper triangular matrix W =

(
wij

)
.

Denote by Ωn(u) (u > 0) the set of Z ∈ Sn satisfying

(i) |xij | < u,

(ii) |wij | < u (1 ≤ i < j ≤ n),

(iii) 1 < ud1, di < udi+1 (1 ≤ i ≤ n− 1).

We already know ([1, Section 5]) that the collection of Ωn(u) for sufficiently large u > 0

is a collection of “fundamental open sets” for the modular group Γn. (We deviate here
from the definition given in [1]; but setting

M0 =

(
en 0

0 en

)
, en =

(
δi,n+1−j

)
,

it is easy to see that the collection defined in [1] is equivalent to the collection{
M0Ωn(u)

}
in the current notation.)

Let 0 ≤ r ≤ n; we decompose matrices into (r, n− r) blocks:

Z =

(
Z1 Z12
tZ12 Z2

)
, D =

(
D1 0

0 D2

)
, W =

(
W1 W12

0 W2

)
, . . .

Then Z ∈ Ωn(u) implies that Z1 ∈ Ωr(u), given the relation

(1.1) tWDW =

(
tW1D1W1

tW1D1W12

0 tW12D1W12 +
tW2D2W2

)
.

From now on, we fix a number u such that Ωr(u) is a fundamental open set of Γr for all
r ≤ n and we write Ωr instead of Ωr(u).

Consider the set

(1.2) Ω∗
n = Ωn ⊔ Ωn−1 ⊔ · · · ⊔ Ω0

(disjoint union in the abstract sense), where Ωr denotes the closure of Ωr in Sr and
Ω0 = S0 (a one-point set). We introduce the following “natural” topology: let U be
a neighborhood of Z0 ∈ Ωr in Ωr and K a positive number; we denote by V (s)(U,K)

(r ≤ s ≤ n) the set of Z ∈ Ωs such that Z1 ∈ U and dr+1 > K, where Z1 is as above the
matrix of degree r in the (r, s− r) block decomposition of Z, and dr+1 is the (r + 1)-st
diagonal element of D such that Z = X + iY , Y = tWDW ; then a neighborhood of Z
in Ω∗

n is given by the union ⋃
r≤s≤n

V (s)(U,K);

in other words, a sequence (Zν) contained in Ωs converges to Z0 in Ωr if and only
if Zν,1 −→ Z0 and dν,r+1 −→ ∞. It is clear that these definitions give a Hausdorff
topology on Ω∗

n inducing the original topology on each Ωr. It is also clear that any
sequence (Zν) contained in Ωs has a subsequence that converges in our sense (for an
appropriately chosen r); hence Ω∗

n is a Hausdorff and compact space.
Let 0 ≤ r ≤ n; we decompose

M =

(
A B

C D

)
∈ Sp(n,R)
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as follows:

A =

(
A1 A12

A21 A2

)
, B =

(
B1 B12

B21 B2

)
, . . .

into (r, n− r) blocks. We consider the subgroup Gn
r of Sp(n,R) consisting of matrices

of the form

(1.3) M =


A1 0 B1 B12

A21 A2 B21 B2

C1 0 D1 D12

0 0 0 D2

 .

It is trivial that the set of all matrices of this form is in fact a subgroup; we note that
simplecticity implies that the conditions A12 = 0, C12 = 0, C0 (or the conditions C21 = 0,
C2 = 0, D21 = 0) are equivalent to conclude that an element M of Sp(n,R) belongs to
Gn

r .
It also follows that

M =

(
A B

C D

)
∈ Gn

r

implies that

M1 =

(
A1 B1

C1 D1

)
∈ Sp(r,R)

and that the map

(1.4) ϖr : M ∈ Gn
r 7−→ M1 =

(
A1 B1

C1 D1

)
∈ Sp(r,R)

is a homomorphism from Gn
r to Sp(r,R). On the other hand, let ιn be the canonical

embedding of Sp(r,R) to Sp(n,R) defined by

(1.5) ιn : M1 =

(
A1 B1

C1 D1

)
7−→ M =


A1 0 B1 0

0 E 0 0

C1 0 D1 0

0 0 0 E

 .

We have then ϖr ◦ ιn = 1 (the identity), which means that ϖr is surjective, and letting
Nn

r denote the kernel of ϖr, we can decompose Gn
r into a semidirect product as follows:

(1.6) Gn
r = ιn

(
Sp(r,R)

)
⋉Nn

r .

We note that for the modular group Γn we have the relation

(1.7) Γn ∩Gn
r = ιn

(
Γr

)
⋉
(
Γn ∩Nn

r

)
.

The significance of the group Gn
r is shown by the following lemma:

Lemma 1 (Godement). Let (Zν), (Z ′
ν) be sequences in Ωn.

1◦ (Zν) converges to Z0 ∈ Ωr if and only if

(Z−1
ν ) converges to

(
Z−1
0 0

0 0

)
in the usual sense.

2◦ If (Zν) and (Z ′
ν) converge to Z0 ∈ Ωr, respectively Z ′

0 ∈ Ωr′ , and if Z ′
ν = MZν

(ν = 1, 2, . . . ) for a matrix M ∈ Sp(n,R), then we have r = r′, M ∈ Gn
r , and

Z ′
0 = ϖr(M)Z0.
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Proof. Suppose (Zν) converges to Z0 and set

Zν = Xν + iYν ,

Yν = tWνDνWν ,

Dν =

(
Dν,1 0

0 Dν,2

)
,

Xν =

(
Xν,1 Xν,12
tXν,12 Xν,2

)
,

Wν =

(
Wν,1 Wν,12

0 Wν,2

)
,

Z0 = X0 + iY0,

W0 =
tW0D0W0;

then Xν,1 −→ X0, Wν,1 −→ W0, Dν,1 −→ D0.
By passing to a subsequence, we can moreover assume that (Xν) and (Wν) (and not

only (Xν,1) and (Wν,1)) converge, because for Z ∈ Ωn all the coefficients of X and of
W are bounded; we have therefore

Z−1
ν = W−1

ν D−1/2
ν

(
iE +D−1/2

ν
tW−1

ν XνW
−1
ν D−1/2

ν

)−1

D−1/2
ν

tW−1
ν

−→
(
W−1

0 ∗
0 ∗

)(
D

−1/2
0 0

0 0

)(
iE +M0

)−1
(
D

−1/2
0 0

0 0

)(
tW−1

0 0

∗ ∗

)
,

where

M0 =

(
D

−1/2
0 0

0 0

)(
tW−1

0 0

∗ ∗

)(
X0 ∗
∗ ∗

)(
W−1

0 ∗
0 ∗

)(
D

−1/2
0 0

0 0

)
.

This is equal to(
W−1

0 D
−1/2
0 0

0 0

)(
iE +

(
D

−1/2
0

tW−1
0 X0W

−1
0 D

−1/2
0 0

0 0

))(
D

−1/2
0

tW−1
0 0

0 0

)

=

(
W−1

0 D
−1/2
0

(
iEr +D

−1/2
0

tW−1
0 X0W

−1
0 D

−1/2
0

)−1
D

−1/2
0

tW−1
0 0

0 0

)

=

(
Z−1
0 0

0 0

)
,

whence the first statement in 1◦. The converse follows immediately from this and the
fact that every sequence in Ωn has a converging subsequence.

Now let (Z ′
ν) be another sequence converging to Z ′

0 ∈ Ωr, and let

Z ′
ν =

(
AZν +B

)(
CZν +D

)−1
with M =

(
A B

C D

)
∈ Sp(n,R);

without loss of generality r′ ≤ r. We have then

(Z ′
ν)

−1 =
(
DZ−1

ν + C
)(
BZ−1

ν +A
)−1

and, by passage to the limit,(
(Z ′

0)
−1 0

0 0

)((
B1 B12

B21 B2

)(
Z−1
0 0

0 0

)
+

(
A1 A12

A21 A2

))
=

(
D1 D12

D21 D2

)(
Z−1
0 0

0 0

)
+

(
C1 C12

C21 C2

)
,
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where the blocks are (r, n− r). By comparing the corresponding coefficients, we get
the relations (

(Z ′
0)

−1 0

0 0

)(
B1Z

−1
0 +A1

)
= D1Z

−1
0 + C1,(1.8) (

(Z ′
0)

−1 0

0 0

)
A12 = C12,(1.9)

0 = D21Z
−1
0 + C21,(1.10)

0 = C2.(1.11)

As the imaginary part Y0 of Z0 is ≫ 0, it follows from (1.10) that C21 = D21 = 0, which,
together with (1.11), shows that M ∈ Gn

r ; we have therefore that

M1 =

(
A1 B1

C1 D1

)
∈ Sp(r,R)

and then (1.8) shows that

(
(Z ′

0)
−1 0

0 0

)
has rank r; hence r = r′ and Z ′

0 = M1Z0.

2 Construction of the space S∗
n

We now construct the space S∗ which is a generalization to the case of arbitrary n

of the S∗
1 stated above. We could use the bounded model of the Siegel space, i.e. the

space of complex symmetric matrices W of degree n such that WW ≪ En. But we will
instead construct directly the space corresponding to the half-plane Sn.

Let Γ = Γn be the Siegel modular group; consider the set of pairs (M,Z) with M ∈ Γ,
Z ∈ Sr (0 ≤ r ≤ n); take the equivalence relation defined by

(M,Z) ∼ (M ′, Z ′), Z ∈ Sr, Z
′ ∈ Sr′ ⇐⇒ r = r′, (M ′)−1M ∈ Gn

r , Z
′ = ϖr

(
(M ′)−1M

)
Z.

This is clearly an equivalence relation; we write M.Z for the equivalence class of
(M,Z) and we denote by S∗

n the set of equivalence classes. We can view Sr as a subset
of S∗

n via the natural injective map Z 7−→ 1.Z; similarly we can make Γ act on S∗
n via

the obvious formula M1 (M.Z) = (M1M).Z, since (M,Z) ∼ (M ′, Z ′) obviously implies
that (M1M,Z) ∼ (M1M

′, Z ′). All of this agrees with the usual notations when n = r.
We have therefore

(2.1) S∗
n =

⋃
0≤r≤n

ΓSr.

More precisely, if we decompose Γ into right cosets for Γ ∩Gn
r :

(2.2) Γ =
⋃
i

Mr,i

(
Γ ∩Gn

r

)
,

we have the following decomposition of S∗
n:

(2.3) S∗
n =

⊔
r,i

Mr,iSr.

Note that we can consider Ω∗
n ⊂ S∗

n and obtain S∗
n = ΓΩ∗

n.
We now define a topology on S∗

n; we are interested in a topology T on S∗
n satisfying

1◦ T induces the “natural” topology on Ω∗
n.

2◦ The actions of M ∈ Γ on S∗
n are continuous maps.
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3◦ If two points x, x′ of S∗
n are not Γ-equivalent, there exist neighborhoods U of x and

U ′ of x′ such that ΓU ∩ U ′ = ∅.

4◦ Each point x ∈ S∗
n has a system of open neighborhoods {U} such that ΓxU = U and

if MU ∩ U ̸= ∅ then M ∈ Γx, where Γx is the stabilizer of x in Γ.

Our main results consist of the following theorems:

Theorem 1. Among the topologies satisfying conditions 1◦ and 2◦, there is a finest
one, denoted T Γ; it also satisfies condition 3◦.

Theorem 2. There exists a unique topology, denoted T Γ
0 , satisfying conditions 1◦, 2◦,

3◦, and 4◦.

Before giving the proofs, we discuss the consequences of these theorems. We start
by considering the quotient space Γ\S∗

n with the topology induced by T Γ: the open
sets of Γ\S∗

n are the images of the T Γ-open sets of S∗
n under the canonical projection

π∗
n : S∗

n −→ Γ\S∗
n. We have then

Theorem 3. The quotient space Γ\S∗
n is Hausdorff and compact.

Proof. The space is Hausdorff by condition 3◦ above; it is compact since it is the
continuous image of the compact space Ω∗

n.

We now have
Γ\S∗

n =
⋃

0≤r≤n

Γ\ΓSr

by (2.1); as the stabilizer of Sr in Γ is Γ ∩ Gn
r and the action of Γ ∩ Gn

r on Sr is the
same as that of ϖr(Γ ∩Gn

r ) = Γr, Γ\ΓSr is canonically identified with Γr\Sr; we have
therefore

(2.4) Γ\S∗
n =

⋃
0≤r≤n

Γr\Sr.

There are several topologies satisfying conditions 1◦ and 2◦; but they all induce the
same topology on any finite union of MiΩ

∗
n (Mi ∈ Γ). If they also satisfy condition 3◦,

they induce the same topology on the quotient space Γ\S∗
n, so that we can assume

in Theorem 3 that the topology on Γ\S∗
n is defined by any topology on S∗

n satisfying
conditions 1◦, 2◦, and 3◦.

3 Proof of Theorems 1 and 2

We first define the topology T Γ, as follows: we declare a subset F of S∗
n to be T Γ-closed

if and only if for all M ∈ Γ we have that MF ∩ Ω∗
n is closed in the “natural” topology

on Ω∗
n. It is clear that this defines a topology T Γ and that the latter satisfies condition

2◦. To verify condition 1◦, it suffices to prove that if F is closed in Ω∗
n (in the “natural”

topology), then MF ∩ Ω∗
n is also closed, for all M ∈ Γ; but this follows immediately

from Lemma 1. It is clear that T Γ is the finest topology satisfying conditions 1◦ and 2◦.
To prove the last statement of Theorem 1, we need several lemmas:

Lemma 2. For each r there exists a finite number of M
(r)
i ∈ Gn

r such that the relations

MΩr ∩Ωr ̸= ∅ for M ∈ Γ (and hence M ∈ Gn
r ) imply that ϖr(M) = ϖr

(
M

(r)
i

)
for some

i.

This is an immediate consequence of the fact that Ωr is a “fundamental open” of Γr.
We note in fact that, if r < n, there are infinitely many M ∈ Γ such that MΩr ∩Ωr ̸= ∅.
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Lemma 3. For each Z ∈ Ωr, there exists a neighborhood U of Z in Ω∗
n such that

1◦ if M ∈ Γ and MU ∩ Ω∗ ̸= ∅, then M ∈ Gn
r and MZ ∈ Ωr;

2◦ if M ∈ Γ and MU ∩ U ̸= ∅, then M ∈ ΓZ , the stabilizer of Z in Γ.

Proof. Suppose M ∈ Γ is fixed. It is clear that if MU ∩ Ω∗
n ̸= ∅ for all neighborhoods

U of Z in Ω∗
n, then MZ ∈ Ω∗

n and hence M ∈ Gn
r , MZ ∈ Ωr. Therefore we can take a

neighborhood U of Z such that
U ⊂

⋃
r≤s≤n

Ωs

and that the statement of the Lemma holds for all M
(s)
i (r ≤ s ≤ n) stated in Lemma

2. We then prove that the statement of the Lemma holds for all M ∈ Γ. Indeed, if
MU ∩ Ω∗

n ̸= ∅, there exists s (r ≤ s ≤ n) such that MU ∩ Ωs ̸= ∅; by Lemma 2 we

then have M ∈ Gn
s and ϖs(M) = ϖs

(
M

(s)
i

)
. Hence M

(s)
i ∩ Ωs ̸= ∅ and by our choice

of U we have M
(s)
i ∈ Gn

r , M
(s)
i Z ∈ Ωr; next ϖs(M) = ϖs

(
M

(s)
i

)
∈ Gs

r, hence M ∈ Gn
r ,

ϖr(M) = ϖr

(
M

(s)
i

)
and so MZ = M

(s)
i Z ∈ Ωr, which proves the first statement in the

Lemma. The second statement can be proved similarly.

Lemma 4. Let Z ∈ Ωr; if U is a neighborhood of Z in Ω∗
n, then Ũ = ΓZU is a T Γ-

neighborhood of Z.

Proof. We may assume that U satisfies property 1◦ stated in Lemma 3; therefore if
MŨ ∩ Ω∗

n ̸= ∅ with M ∈ Γ then M ∈ Gn
r , MZ ∈ Ωr. So there are only finitely many

possibilities for M (up to right multiplication by ΓZ) such that MU ∩ Ω∗
n ̸= ∅. Hence it

suffices to prove that MŨ ∩ Ω∗
n is a neighborhood of MZ in Ω∗

n for these finitely many
representatives M modulo ΓZ . Let r ≤ s ≤ n, Us = U ∩ Ωs; then

MŨ ∩ Ω∗
n =

⋃
r≤s≤n

MΓZUs ∩ Ωs.

But as ΓZ ⊃ Γ ∩Nn
r and Γ = ιn(Γr)⋉

(
Γ ∩Nn

r

)
, we can take M such that M ∈ ιn(Γr).

Then MΓZUs ∩ Ωs contains all the matrices Z(s) ∈ Ωs such that

Z(s) =

(
Z

(r)
1 Z12

tZ12 Z2

)
= X + iY, Y = tWDW, D = (diδij),

with Z
(r)
1 close enough to MZ and dr+1 sufficiently large. (This follows from the

Proposition proven in the Appendix.) Therefore MŨ ∩ Ω∗
n is a neighborhood of MZ in

Ω∗
n.

We now prove the last statement of Theorem 1. Let x, x′ be two points of S∗
n that are

not Γ-equivalent; we need to construct neighborhoods Ũ and Ũ ′ of x, respectively x′,
that are Γ-saturated and disjoint; it suffices to do this for two points

Z,Z ′ ∈
⋃

0≤r≤n

Ωr.

Let U,U ′ be respective neighborhoods of Z and Z ′ in Ω∗
n such that M

(r)
i U ∩ U ′ = ∅ for

all M
(r)
i from Lemma 2; it is clear then that MU ∩ U ′ = ∅ for all M ∈ Γ. Let Ũ = ΓU ,

Ũ ′ = ΓU ′; by Lemma 4 these are T Γ-neighborhoods of Z and Z ′ in S⋆
n, and they are

Γ-saturated and disjoint, from which we deduce the desired statement.
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We now prove Theorem 2. We define the topology T Γ
0 as follows: we say that U is

a T Γ
0 -neighborhood of x ∈ S∗

n if and only if U is a Γx-saturated T Γ-neighborhood of x.
For

Z ∈
⋃

0≤r≤n

Ωr

such a neighborhood always contains a neighborhood Ũ = ΓZU as given in Lemma
4; taking U sufficiently small so that condition 2◦ of Lemma 3 is satisfied, Ũ = ΓZU

is a T Γ
0 -neighborhood of Z satisfying condition 4◦; it follows immediately that the

conditions for the systems of neighborhoods are satisfied for T Γ
0 ; it is then clear that

T Γ
0 is a topology satisfying conditions 1◦, 2◦, 3◦, and 4◦; condition 1◦ is satisfied since

for Ũ = ΓZU , we can make

Ũ ∩ Ω∗
n =

⋃
M

(s)
i ∈ΓZ

M
(s)
i U ∩ Ω∗

n

as small as we want by taking U to be sufficiently small.
Finally, we prove the uniqueness of the topology satisfying conditions 1◦, 2◦, 3◦, and

4◦. Let T be such a topology and let Ũ1 be a T -neighborhood of Z ∈ Ωr satisfying
condition 4◦; setting U = Ũ1 ∩Ω∗

n, Ũ = ΓZU , we get a T Γ
0 -neighborhood Ũ of Z, clearly

contained in Ũ1; conversely let Ũ = ΓZU be a T Γ
0 -neighborhood of Z ∈ Ωr; we may

assume that Ũ is contained in a T -neighborhood of Ũ1 of Z satisfying condition 4◦; let
Ũ2 = ΓU ; Ũ2 is a T -neighborhood of Z, because it is a Γ-saturated T Γ

0 -neighborhood of
Z, and because T and T Γ

0 define the same topology on the quotient space Γ\S∗
n due to

conditions 1◦, 2◦, and 3◦; we have then

Ũ1 ∩ Ũ2 = Ũ1 ∩
⋃

Mi∈Γ/ΓZ

MiŨ = Ũ1 ∩ Ũ = Ũ ,

hence Ũ is a T -neighborhood of Z, which proves our statement.
The classical topology of S∗

1 is T Γ
0 ; we see easily that the two topologies T Γ and T Γ

0

are in fact different; we note also that these topologies are not locally compact. We
also note that the topologies T Γ and T Γ

0 induce the same topology on Sr (0 ≤ r ≤ n),
namely the original topology on Sr.

Appendix

We complete here the proof of Lemma 4. By changing notation, this involves the
following setup: let Ur and U ′

r be neighborhoods of Z0 ∈ Ωr in Ωr; let K and K ′ be
positive numbers, Us = V (s)

(
Ur,K

)
the set of all matrices Z ∈ Ωs such that

Z =

(
Z1 Z12
tZ12 Z2

)
= X + iY, Y = tWDW, D = (diδij),

with Z1 ∈ Ur, dr+1 > K. Let U ′
s the analogue of Us obtained by replacing Ωs, Ur, and K

by M−1
0 Ωs, U ′

r, and K ′, where M0 is an element of ιs(Γr). We have to prove that, given
Ur, K, and M0, we can choose U ′

r and K ′ such that

(3.1) U ′
s ⊂ (Γs)Z0Us.

Then it suffices to take K ′′ such that

M−1
0 V (s)

(
M0U

′
r,K

′′) ⊂ U ′
s,

which is possible thanks to the continuity of M−1
0 in Ω∗

s ∪M−1
0 Ω∗

s.
We will use the following result:
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Proposition. With the above notation, given M0 and a bounded U ′
r, we can choose K ′

such that U ′
s is contained in

(
Γs ∩Ns

r

)
Ωs.

The statement we want to prove follows from the Proposition: indeed we get finitely
many Mi ∈ Γs ∩Ns

r such that
U ′
s ⊂

⋃
i

MiΩs

and hence, modifying U ′
r and K ′ so that

(M−1
i U ′

s) ∩ Ωs ⊂ Us for all i

(which is possible thanks to the continuity of M−1
i in Ω∗

s), we get

U ′
s ⊂

⋃
i

MiUs,

and therefore (3.1).
So it remains to prove the Proposition. Let

Z ′ =

(
Z ′
1 Z ′

12
tZ ′

12 Z ′
2

)
∈ U ′

s.

We will show that, if we take K ′ sufficiently large, there exists M ∈ Γs ∩Ns
r such that

MZ ′ ∈ Ωs. But the group Γs ∩Ns
r is generated by transformations of the form

(i) M =

(
tU 0

0 U−1

)
, with U =

(
E 0

0 U2

)
, U2 being integral and unimodular;

(ii) M =

(
tU 0

0 U−1

)
, with U =

(
E U12

0 E

)
, U12 integral;

(iii) M =

(
E T

0 E

)
, with T =

(
0 T12

tT12 T2

)
, where T12 and T2 are integral, and T2 =

tT2.

If we set

Z ′ = X ′ + iY ′, X ′ =

(
X ′

1 X ′
12

tX ′
12 X ′

2

)
,

Y ′ = tW ′D′W ′, W ′ =

(
W ′

1 W ′
12

0 W ′
2

)
, D′ =

(
D′

1 0

0 D′
2

)
,

then these transformations act as follows:

(i) W ′
12 7−→ W ′

12U
′
2,

tW ′
2D

′
2W

′
2 7−→ tU2

tW ′
2D

′
2W

′
2U2;

(ii) W ′
12 7−→ W ′

12 +W ′
1U12,

tW ′
2D

′
2W

′
2 unchanged;

(iii) X ′
12 7−→ X ′

12 + T12, X ′
2 7−→ X ′

2 + T2, Y ′ unchanged;

and these transformations do not change X ′
1, W

′
1, and D′

1. By setting Z ′′ = MZ ′ for
some M of type (i), we can arrange that tW ′′

2 D
′′
2W

′′
2 ∈ S′(u) (in the notation of [6, 5]),

that is that

|w′′
ij | < u (for r + 1 ≤ i < j ≤ s), d′′i < ud′′i+1 (for r + 1 ≤ i < s).

Next, using a transformation of type (ii), we can arrange that

|w′′
ij | ≤

1

2
(for 1 ≤ i ≤ r, r + 1 ≤ j ≤ s).
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Finally, using a transformation of type (iii), we can arrange that

|x′′ij | ≤
1

2
(for r + 1 ≤ j ≤ s, any i).

Under all these transformations Z ′′
1 = Z ′

1 does not change. Finally, we see that we can
choose M ∈ Γs ∩Ns

r so that Z ′′ = MZ ′ satisfies all the conditions of belonging to Ωs,
with the exception of

d′′r < ud′′r+1.

But d′′r = d′r is bounded as Z ′
1 ranges through U ′

r. Moreover, there are only finitely many
transformations of type (i) as Z ′ ranges through M−1

0 Ωs such that Z ′
1 ∈ U ′

r (indeed, for
Z ′ = M−1

0 Z ∈ M−1
0 Ωs and Z ′

1 ∈ U ′
r, all the coefficients of Y ′

2 − Y2 are bounded). We
can therefore choose K ′ depending only on U ′

r, u, and M0, in such a way that, for all
Z ′ ∈ U ′

s, Z
′′ = MZ ′ also satisfies d′′r < ud′′r+1, that is MZ ′ ∈ Ωs. This concludes the

proof of the Proposition.

Bibliographic note

The above compactification was given in [3] (but without using the space S∗
n). Lemma

2 of [3] corresponds to Lemma 1 of the present talk, but the proof is much simplified
by an idea of Godement. In any case the introduction of the space S∗

n is preferable,
especially in view of its usefulness in the consideration of groups commensurable to Γ.

Other methods of compactification can be found in [2, 4].
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