Compactification of Siegel's quotient spaces I*

Ichiro Satake

3 March 1958

[*Translator's note*: We have attempted, as much as possible, to keep the notation in the original article. Some items may be confusing to a modern reader:

- *E* is an identity matrix, E_n if we want to make the size explicit;
- "neighborhood" means "open neighborhood".]

Let \mathfrak{S}_n be the Siegel space and Γ_n the Siegel modular group; we aim to construct a compactification of the quotient space $\Gamma_n \setminus \mathfrak{S}_n$. Of course, there are several possible compactifications; but, as we shall see, it is natural to consider a compactification of the form

 $(\Gamma_n \setminus \mathfrak{S}_n)^* = \Gamma_n \setminus \mathfrak{S}_n \cup \Gamma_{n-1} \setminus \mathfrak{S}_{n-1} \cup \cdots \cup \Gamma_0 \setminus \mathfrak{S}_0,$

where \mathfrak{S}_0 denotes a single point, and Γ_0 is the trivial group. The aim of this talk is to give the topological construction of this compactification. We then show, in the following talks, that $(\Gamma_n \setminus \mathfrak{S}_n)^*$, endowed with a canonically defined ringed space structure, is a normal analytic space that can be realized as a normal algebraic subvariety of a projective space; we will consider at the same time the corresponding problems for all the groups commensurable to the group Γ_n .

To describe our method, recall the case n = 1; in this case, it is well-known that the classical fundamental domain for Γ_1 has a single cusp (point at infinity), so that the quotient space $\Gamma_1 \setminus \mathfrak{S}_1$ can be compactified by adjoining a single point P_{∞} corresponding to this point, or more precisely to the class of this point; the compactified space $(\Gamma_1 \setminus \mathfrak{S}_1)^*$ is a compact Riemann surface, whose local parameter around the point P_{∞} is given by $e^{2\pi i z}$, which maps the subset y > c of the upper half plane \mathfrak{S}_1 onto a neighborhood of P_{∞} in $(\Gamma_1 \setminus \mathfrak{S}_1)^*$. But the orbit of the point at infinity under Γ_1 consists precisely of the rational points on the real axis, and the images of the set y > c under Γ_1 are horocycles at these points (i.e. cycles tangential to the real axis). Therefore the compactification $(\Gamma_1 \setminus \mathfrak{S}_1)^*$ is obtained as follows: first let the space \mathfrak{S}_1^* be the disjoint union of the upper half plane \mathfrak{S}_1 and all its rational points, and finally take the quotient $\Gamma_1 \setminus \mathfrak{S}_1^*$ of \mathfrak{S}_1^* by Γ_1 . Our objective is to prove that this method generalizes to the case of arbitrary n.

^{*}This paper appeared in *Séminaire Henri Cartan*, pages 12-01 to 12-13 (1957/58). Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>.

1 Preliminary considerations

Let \mathfrak{S}_n be the Siegel space; we always denote an element of \mathfrak{S}_n as

$$Z = X + iY$$
, $X = (x_{ij})$, $Y = (y_{ij})$, $Y = {}^tWDW$,

with a diagonal matrix $D = (d_i \delta_{ij})$ and a strictly upper triangular matrix $W = (w_{ij})$. Denote by $\Omega_n(u)$ (u > 0) the set of $Z \in \mathfrak{S}_n$ satisfying

- (i) $|x_{ij}| < u$,
- (ii) $|w_{ij}| < u$ ($1 \le i < j \le n$),
- (iii) $1 < ud_1$, $d_i < ud_{i+1}$ $(1 \le i \le n-1)$.

We already know ([1, Section 5]) that the collection of $\Omega_n(u)$ for sufficiently large u > 0 is a collection of "fundamental open sets" for the modular group Γ_n . (We deviate here from the definition given in [1]; but setting

$$M_0 = \begin{pmatrix} e_n & 0\\ 0 & e_n \end{pmatrix}, \quad e_n = (\delta_{i,n+1-j}),$$

it is easy to see that the collection defined in [1] is equivalent to the collection $\{M_0\Omega_n(u)\}$ in the current notation.)

Let $0 \le r \le n$; we decompose matrices into (r, n - r) blocks:

$$Z = \begin{pmatrix} Z_1 & Z_{12} \\ {}^tZ_{12} & Z_2 \end{pmatrix}, \quad D = \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix}, \quad W = \begin{pmatrix} W_1 & W_{12} \\ 0 & W_2 \end{pmatrix}, \dots$$

Then $Z \in \Omega_n(u)$ implies that $Z_1 \in \Omega_r(u)$, given the relation

(1.1)
$${}^{t}WDW = \begin{pmatrix} {}^{t}W_{1}D_{1}W_{1} & {}^{t}W_{1}D_{1}W_{12} \\ 0 & {}^{t}W_{12}D_{1}W_{12} + {}^{t}W_{2}D_{2}W_{2} \end{pmatrix}$$

From now on, we fix a number u such that $\Omega_r(u)$ is a fundamental open set of Γ_r for all $r \leq n$ and we write Ω_r instead of $\Omega_r(u)$.

Consider the set

(1.2)
$$\Omega_n^* = \overline{\Omega}_n \sqcup \overline{\Omega}_{n-1} \sqcup \cdots \sqcup \overline{\Omega}_0$$

(disjoint union in the abstract sense), where $\overline{\Omega}_r$ denotes the closure of Ω_r in \mathfrak{S}_r and $\Omega_0 = \mathfrak{S}_0$ (a one-point set). We introduce the following "natural" topology: let U be a neighborhood of $Z_0 \in \overline{\Omega}_r$ in $\overline{\Omega}_r$ and K a positive number; we denote by $V^{(s)}(U, K)$ $(r \leq s \leq n)$ the set of $Z \in \overline{\Omega}_s$ such that $Z_1 \in U$ and $d_{r+1} > K$, where Z_1 is as above the matrix of degree r in the (r, s - r) block decomposition of Z, and d_{r+1} is the (r + 1)-st diagonal element of D such that Z = X + iY, $Y = {}^tWDW$; then a neighborhood of Z in Ω_n^* is given by the union

$$\bigcup_{r \le s \le n} V^{(s)}(U,K);$$

in other words, a sequence (Z_{ν}) contained in $\overline{\Omega}_s$ converges to Z_0 in $\overline{\Omega}_r$ if and only if $Z_{\nu,1} \longrightarrow Z_0$ and $d_{\nu,r+1} \longrightarrow \infty$. It is clear that these definitions give a Hausdorff topology on Ω_n^* inducing the original topology on each $\overline{\Omega}_r$. It is also clear that any sequence (Z_{ν}) contained in $\overline{\Omega}_s$ has a subsequence that converges in our sense (for an appropriately chosen r); hence Ω_n^* is a Hausdorff and **compact** space.

Let $0 \le r \le n$; we decompose

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(n, \mathbb{R})$$

as follows:

$$A = \begin{pmatrix} A_1 & A_{12} \\ A_{21} & A_2 \end{pmatrix}, \quad B = \begin{pmatrix} B_1 & B_{12} \\ B_{21} & B_2 \end{pmatrix}, \dots$$

into (r,n-r) blocks. We consider the subgroup \mathfrak{G}_r^n of $\mathrm{Sp}(n,\mathbb{R})$ consisting of matrices of the form

(1.3)
$$M = \begin{pmatrix} A_1 & 0 & B_1 & B_{12} \\ A_{21} & A_2 & B_{21} & B_2 \\ C_1 & 0 & D_1 & D_{12} \\ 0 & 0 & 0 & D_2 \end{pmatrix}.$$

It is trivial that the set of all matrices of this form is in fact a subgroup; we note that simplecticity implies that the conditions $A_{12} = 0$, $C_{12} = 0$, C_0 (or the conditions $C_{21} = 0$, $C_2 = 0$, $D_{21} = 0$) are equivalent to conclude that an element M of $\text{Sp}(n, \mathbb{R})$ belongs to \mathfrak{G}_r^n .

It also follows that

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathfrak{G}_r^n$$

implies that

$$M_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \in \operatorname{Sp}(r, \mathbb{R})$$

and that the map

(1.4)
$$\varpi_r: \ M \in \mathfrak{G}_r^n \longmapsto M_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \in \operatorname{Sp}(r, \mathbb{R})$$

is a homomorphism from \mathfrak{G}_r^n to $\operatorname{Sp}(r,\mathbb{R})$. On the other hand, let ι_n be the canonical embedding of $\operatorname{Sp}(r,\mathbb{R})$ to $\operatorname{Sp}(n,\mathbb{R})$ defined by

(1.5)
$$\iota_n: \ M_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \longmapsto M = \begin{pmatrix} A_1 & 0 & B_1 & 0 \\ 0 & E & 0 & 0 \\ C_1 & 0 & D_1 & 0 \\ 0 & 0 & 0 & E \end{pmatrix}.$$

We have then $\varpi_r \circ \iota_n = 1$ (the identity), which means that ϖ_r is surjective, and letting \mathfrak{N}_r^n denote the kernel of ϖ_r , we can decompose \mathfrak{G}_r^n into a semidirect product as follows:

(1.6)
$$\mathfrak{G}_r^n = \iota_n \big(\operatorname{Sp}(r, \mathbb{R}) \big) \ltimes \mathfrak{N}_r^n.$$

We note that for the modular group Γ_n we have the relation

(1.7)
$$\Gamma_n \cap \mathfrak{G}_r^n = \iota_n(\Gamma_r) \ltimes (\Gamma_n \cap \mathfrak{N}_r^n).$$

The significance of the group \mathfrak{G}_r^n is shown by the following lemma:

Lemma 1 (Godement). Let (Z_{ν}) , (Z'_{ν}) be sequences in $\overline{\Omega}_n$.

 1° (Z_{ν}) converges to $Z_0 \in \overline{\Omega}_r$ if and only if

$$(Z_{\nu}^{-1})$$
 converges to $\begin{pmatrix} Z_0^{-1} & 0\\ 0 & 0 \end{pmatrix}$

in the usual sense.

2° If (Z_{ν}) and (Z'_{ν}) converge to $Z_0 \in \overline{\Omega}_r$, respectively $Z'_0 \in \overline{\Omega}_{r'}$, and if $Z'_{\nu} = MZ_{\nu}$ ($\nu = 1, 2, ...$) for a matrix $M \in \operatorname{Sp}(n, \mathbb{R})$, then we have r = r', $M \in \mathfrak{G}_r^n$, and $Z'_0 = \varpi_r(M)Z_0$. *Proof.* Suppose (Z_{ν}) converges to Z_0 and set

$$Z_{\nu} = X_{\nu} + iY_{\nu},$$

$$Y_{\nu} = {}^{t}W_{\nu}D_{\nu}W_{\nu},$$

$$D_{\nu} = \begin{pmatrix} D_{\nu,1} & 0\\ 0 & D_{\nu,2} \end{pmatrix},$$

$$X_{\nu} = \begin{pmatrix} X_{\nu,1} & X_{\nu,12}\\ t_{X_{\nu,12}} & X_{\nu,2} \end{pmatrix},$$

$$W_{\nu} = \begin{pmatrix} W_{\nu,1} & W_{\nu,12}\\ 0 & W_{\nu,2} \end{pmatrix},$$

$$Z_{0} = X_{0} + iY_{0},$$

$$W_{0} = {}^{t}W_{0}D_{0}W_{0};$$

then $X_{\nu,1} \longrightarrow X_0$, $W_{\nu,1} \longrightarrow W_0$, $D_{\nu,1} \longrightarrow D_0$.

By passing to a subsequence, we can moreover assume that (X_{ν}) and (W_{ν}) (and not only $(X_{\nu,1})$ and $(W_{\nu,1})$) converge, because for $Z \in \overline{\Omega}_n$ all the coefficients of X and of W are bounded; we have therefore

$$Z_{\nu}^{-1} = W_{\nu}^{-1} D_{\nu}^{-1/2} \left(iE + D_{\nu}^{-1/2} {}^{t} W_{\nu}^{-1} X_{\nu} W_{\nu}^{-1} D_{\nu}^{-1/2} \right)^{-1} D_{\nu}^{-1/2} {}^{t} W_{\nu}^{-1}$$
$$\longrightarrow \begin{pmatrix} W_{0}^{-1} & * \\ 0 & * \end{pmatrix} \begin{pmatrix} D_{0}^{-1/2} & 0 \\ 0 & 0 \end{pmatrix} \left(iE + M_{0} \right)^{-1} \begin{pmatrix} D_{0}^{-1/2} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} {}^{t} W_{0}^{-1} & 0 \\ * & * \end{pmatrix},$$

where

$$M_0 = \begin{pmatrix} D_0^{-1/2} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} {}^tW_0^{-1} & 0\\ * & * \end{pmatrix} \begin{pmatrix} X_0 & *\\ * & * \end{pmatrix} \begin{pmatrix} W_0^{-1} & *\\ 0 & * \end{pmatrix} \begin{pmatrix} D_0^{-1/2} & 0\\ 0 & 0 \end{pmatrix}.$$

This is equal to

$$\begin{pmatrix} W_0^{-1}D_0^{-1/2} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} iE + \begin{pmatrix} D_0^{-1/2} \ {}^tW_0^{-1}X_0W_0^{-1}D_0^{-1/2} & 0\\ 0 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} D_0^{-1/2} \ {}^tW_0^{-1} & 0\\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} W_0^{-1}D_0^{-1/2} (iE_r + D_0^{-1/2} \ {}^tW_0^{-1}X_0W_0^{-1}D_0^{-1/2})^{-1}D_0^{-1/2} \ {}^tW_0^{-1} & 0\\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} Z_0^{-1} & 0\\ 0 & 0 \end{pmatrix},$$

whence the first statement in 1° . The converse follows immediately from this and the fact that every sequence in $\overline{\Omega}_n$ has a converging subsequence.

Now let (Z'_{ν}) be another sequence converging to $Z'_0\in\overline{\Omega}_r$, and let

$$Z'_{\nu} = (AZ_{\nu} + B)(CZ_{\nu} + D)^{-1} \text{ with } M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(n, \mathbb{R});$$

without loss of generality $r' \leq r$. We have then

$$(Z'_{\nu})^{-1} = \left(DZ_{\nu}^{-1} + C\right) \left(BZ_{\nu}^{-1} + A\right)^{-1}$$

and, by passage to the limit,

$$\begin{pmatrix} (Z'_0)^{-1} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} B_1 & B_{12}\\ B_{21} & B_2 \end{pmatrix} \begin{pmatrix} Z_0^{-1} & 0\\ 0 & 0 \end{pmatrix} + \begin{pmatrix} A_1 & A_{12}\\ A_{21} & A_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} D_1 & D_{12}\\ D_{21} & D_2 \end{pmatrix} \begin{pmatrix} Z_0^{-1} & 0\\ 0 & 0 \end{pmatrix} + \begin{pmatrix} C_1 & C_{12}\\ C_{21} & C_2 \end{pmatrix},$$

where the blocks are (r, n - r). By comparing the corresponding coefficients, we get the relations

(1.8)
$$\begin{pmatrix} (Z'_0)^{-1} & 0\\ 0 & 0 \end{pmatrix} (B_1 Z_0^{-1} + A_1) = D_1 Z_0^{-1} + C_1,$$

(1.9)
$$\begin{pmatrix} (Z'_0)^{-1} & 0\\ 0 & 0 \end{pmatrix} A_{12} = C_{12},$$

(1.10)
$$0 = D_{21}Z_0^{-1} + C_{21},$$

$$(1.10) 0 = D_{21} Z_0^{-1}$$

(1.11)
$$0 = C_2.$$

As the imaginary part Y_0 of Z_0 is $\gg 0$, it follows from (1.10) that $C_{21} = D_{21} = 0$, which, together with (1.11), shows that $M \in \mathfrak{G}_r^n$; we have therefore that

$$M_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \in \operatorname{Sp}(r, \mathbb{R})$$

and then (1.8) shows that $\begin{pmatrix} (Z'_0)^{-1} & 0\\ 0 & 0 \end{pmatrix}$ has rank r; hence r = r' and $Z'_0 = M_1 Z_0$.

2 Construction of the space \mathfrak{S}_n^*

We now construct the space \mathfrak{S}^* which is a generalization to the case of arbitrary *n* of the \mathfrak{S}_1^* stated above. We could use the bounded model of the Siegel space, i.e. the space of complex symmetric matrices W of degree n such that $\overline{W}W \ll E_n$. But we will instead construct directly the space corresponding to the half-plane \mathfrak{S}_n .

Let $\Gamma = \Gamma_n$ be the Siegel modular group; consider the set of pairs (M, Z) with $M \in \Gamma$, $Z \in \mathfrak{S}_r$ ($0 \le r \le n$); take the equivalence relation defined by

$$(M,Z) \sim (M',Z'), Z \in \mathfrak{S}_r, Z' \in \mathfrak{S}_{r'} \iff r = r', (M')^{-1}M \in \mathfrak{G}_r^n, Z' = \varpi_r \big((M')^{-1}M \big) Z.$$

This is clearly an equivalence relation; we write M.Z for the equivalence class of (M, Z) and we denote by \mathfrak{S}_n^* the set of equivalence classes. We can view \mathfrak{S}_r as a subset of \mathfrak{S}_n^* via the natural injective map $Z \mapsto 1.Z$; similarly we can make Γ act on \mathfrak{S}_n^* via the obvious formula $M_1(M,Z) = (M_1M)Z$, since $(M,Z) \sim (M',Z')$ obviously implies that $(M_1M, Z) \sim (M_1M', Z')$. All of this agrees with the usual notations when n = r.

We have therefore

(2.1)
$$\mathfrak{S}_n^* = \bigcup_{0 \le r \le n} \Gamma \mathfrak{S}_r.$$

More precisely, if we decompose Γ into right cosets for $\Gamma \cap \mathfrak{G}_r^n$:

(2.2)
$$\Gamma = \bigcup_{i} M_{r,i} \big(\Gamma \cap \mathfrak{G}_{r}^{n} \big),$$

we have the following decomposition of \mathfrak{S}_n^* :

(2.3)
$$\mathfrak{S}_n^* = \bigsqcup_{r,i} M_{r,i} \mathfrak{S}_r.$$

Note that we can consider $\Omega_n^* \subset \mathfrak{S}_n^*$ and obtain $\mathfrak{S}_n^* = \Gamma \Omega_n^*$.

We now define a topology on \mathfrak{S}_n^* ; we are interested in a topology \mathcal{T} on \mathfrak{S}_n^* satisfying

- 1° \mathcal{T} induces the "natural" topology on Ω_n^* .
- 2° The actions of $M \in \Gamma$ on \mathfrak{S}_n^* are continuous maps.

- 3° If two points x, x' of \mathfrak{S}_n^* are not Γ -equivalent, there exist neighborhoods U of x and U' of x' such that $\Gamma U \cap U' = \emptyset$.
- 4° Each point $x \in \mathfrak{S}_n^*$ has a system of open neighborhoods $\{U\}$ such that $\Gamma_x U = U$ and if $MU \cap U \neq \emptyset$ then $M \in \Gamma_x$, where Γ_x is the stabilizer of x in Γ .

Our main results consist of the following theorems:

Theorem 1. Among the topologies satisfying conditions 1° and 2° , there is a finest one, denoted \mathcal{T}^{Γ} ; it also satisfies condition 3° .

Theorem 2. There exists a unique topology, denoted \mathcal{T}_0^{Γ} , satisfying conditions 1°, 2°, 3° , and 4° .

Before giving the proofs, we discuss the consequences of these theorems. We start by considering the quotient space $\Gamma \backslash \mathfrak{S}_n^*$ with the topology induced by \mathcal{T}^{Γ} : the open sets of $\Gamma \backslash \mathfrak{S}_n^*$ are the images of the \mathcal{T}^{Γ} -open sets of \mathfrak{S}_n^* under the canonical projection $\pi_n^*: \mathfrak{S}_n^* \longrightarrow \Gamma \backslash \mathfrak{S}_n^*$. We have then

Theorem 3. The quotient space $\Gamma \setminus \mathfrak{S}_n^*$ is Hausdorff and compact.

Proof. The space is Hausdorff by condition 3° above; it is compact since it is the continuous image of the compact space Ω_n^* .

We now have

$$\Gamma \backslash \mathfrak{S}_n^* = \bigcup_{0 \le r \le n} \Gamma \backslash \Gamma \mathfrak{S}_r$$

by (2.1); as the stabilizer of \mathfrak{S}_r in Γ is $\Gamma \cap \mathfrak{G}_r^n$ and the action of $\Gamma \cap \mathfrak{G}_r^n$ on \mathfrak{S}_r is the same as that of $\varpi_r(\Gamma \cap \mathfrak{G}_r^n) = \Gamma_r$, $\Gamma \setminus \Gamma \mathfrak{S}_r$ is canonically identified with $\Gamma_r \setminus \mathfrak{S}_r$; we have therefore

(2.4)
$$\Gamma \backslash \mathfrak{S}_n^* = \bigcup_{0 \le r \le n} \Gamma_r \backslash \mathfrak{S}_r.$$

There are several topologies satisfying conditions 1° and 2° ; but they all induce the same topology on any finite union of $M_i\Omega_n^*$ ($M_i \in \Gamma$). If they also satisfy condition 3° , they induce the same topology on the quotient space $\Gamma \setminus \mathfrak{S}_n^*$, so that we can assume in Theorem 3 that the topology on $\Gamma \setminus \mathfrak{S}_n^*$ is defined by any topology on \mathfrak{S}_n^* satisfying conditions 1° , 2° , and 3° .

3 Proof of Theorems 1 and 2

We first define the topology \mathcal{T}^{Γ} , as follows: we declare a subset F of \mathfrak{S}_n^* to be \mathcal{T}^{Γ} -closed if and only if for all $M \in \Gamma$ we have that $MF \cap \Omega_n^*$ is closed in the "natural" topology on Ω_n^* . It is clear that this defines a topology \mathcal{T}^{Γ} and that the latter satisfies condition 2° . To verify condition 1° , it suffices to prove that if F is closed in Ω_n^* (in the "natural" topology), then $MF \cap \Omega_n^*$ is also closed, for all $M \in \Gamma$; but this follows immediately from Lemma 1. It is clear that \mathcal{T}^{Γ} is the finest topology satisfying conditions 1° and 2° .

To prove the last statement of Theorem 1, we need several lemmas:

Lemma 2. For each r there exists a finite number of $M_i^{(r)} \in \mathfrak{G}_r^n$ such that the relations $M\overline{\Omega}_r \cap \overline{\Omega}_r \neq \emptyset$ for $M \in \Gamma$ (and hence $M \in \mathfrak{G}_r^n$) imply that $\varpi_r(M) = \varpi_r(M_i^{(r)})$ for some i.

This is an immediate consequence of the fact that Ω_r is a "fundamental open" of Γ_r . We note in fact that, if r < n, there are **infinitely many** $M \in \Gamma$ such that $M\overline{\Omega}_r \cap \overline{\Omega}_r \neq \emptyset$. **Lemma 3.** For each $Z \in \overline{\Omega}_r$, there exists a neighborhood U of Z in Ω_n^* such that

1° if $M \in \Gamma$ and $MU \cap \Omega^* \neq \emptyset$, then $M \in \mathfrak{G}_r^n$ and $MZ \in \overline{\Omega}_r$;

 2° if $M \in \Gamma$ and $MU \cap U \neq \emptyset$, then $M \in \Gamma_Z$, the stabilizer of Z in Γ .

Proof. Suppose $M \in \Gamma$ is fixed. It is clear that if $MU \cap \Omega_n^* \neq \emptyset$ for all neighborhoods U of Z in Ω_n^* , then $MZ \in \Omega_n^*$ and hence $M \in \mathfrak{G}_r^n$, $MZ \in \overline{\Omega}_r$. Therefore we can take a neighborhood U of Z such that

$$U \subset \bigcup_{r \le s \le n} \overline{\Omega}_s$$

and that the statement of the Lemma holds for all $M_i^{(s)}$ $(r \le s \le n)$ stated in Lemma 2. We then prove that the statement of the Lemma holds for all $M \in \Gamma$. Indeed, if $MU \cap \Omega_n^* \ne \emptyset$, there exists s $(r \le s \le n)$ such that $MU \cap \overline{\Omega}_s \ne \emptyset$; by Lemma 2 we then have $M \in \mathfrak{G}_s^n$ and $\varpi_s(M) = \varpi_s \left(M_i^{(s)}\right)$. Hence $M_i^{(s)} \cap \overline{\Omega}_s \ne \emptyset$ and by our choice of U we have $M_i^{(s)} \in \mathfrak{G}_r^n$, $M_i^{(s)}Z \in \overline{\Omega}_r$; next $\varpi_s(M) = \varpi_s \left(M_i^{(s)}\right) \in \mathfrak{G}_r^s$, hence $M \in \mathfrak{G}_r^n$, $\varpi_r(M) = \varpi_r \left(M_i^{(s)}\right)$ and so $MZ = M_i^{(s)}Z \in \overline{\Omega}_r$, which proves the first statement in the Lemma. The second statement can be proved similarly.

Lemma 4. Let $Z \in \Omega_r$; if U is a neighborhood of Z in Ω_n^* , then $\tilde{U} = \Gamma_Z U$ is a \mathcal{T}^{Γ} -neighborhood of Z.

Proof. We may assume that U satisfies property 1° stated in Lemma 3; therefore if $M\tilde{U} \cap \Omega_n^* \neq \emptyset$ with $M \in \Gamma$ then $M \in \mathfrak{G}_r^n$, $MZ \in \overline{\Omega}_r$. So there are only finitely many possibilities for M (up to right multiplication by Γ_Z) such that $MU \cap \Omega_n^* \neq \emptyset$. Hence it suffices to prove that $M\tilde{U} \cap \Omega_n^*$ is a neighborhood of MZ in Ω_n^* for these finitely many representatives M modulo Γ_Z . Let $r \leq s \leq n$, $U_s = U \cap \overline{\Omega}_s$; then

$$M\tilde{U}\cap\Omega_n^* = \bigcup_{r\leq s\leq n} M\Gamma_Z U_s\cap\overline{\Omega}_s.$$

But as $\Gamma_Z \supset \Gamma \cap \mathfrak{N}_r^n$ and $\Gamma = \iota_n(\Gamma_r) \ltimes (\Gamma \cap \mathfrak{N}_r^n)$, we can take M such that $M \in \iota_n(\Gamma_r)$. Then $M\Gamma_Z U_s \cap \overline{\Omega}_s$ contains all the matrices $Z^{(s)} \in \overline{\Omega}_s$ such that

$$Z^{(s)} = \begin{pmatrix} Z_1^{(r)} & Z_{12} \\ {}^t Z_{12} & Z_2 \end{pmatrix} = X + iY, \quad Y = {}^t WDW, \quad D = (d_i \delta_{ij}),$$

with $Z_1^{(r)}$ close enough to MZ and d_{r+1} sufficiently large. (This follows from the Proposition proven in the Appendix.) Therefore $M\tilde{U} \cap \Omega_n^*$ is a neighborhood of MZ in Ω_n^* .

We now prove the last statement of Theorem 1. Let x, x' be two points of \mathfrak{S}_n^* that are not Γ -equivalent; we need to construct neighborhoods \tilde{U} and \tilde{U}' of x, respectively x', that are Γ -saturated and disjoint; it suffices to do this for two points

$$Z, Z' \in \bigcup_{0 \le r \le n} \Omega_r.$$

Let U, U' be respective neighborhoods of Z and Z' in Ω_n^* such that $M_i^{(r)}U \cap U' = \emptyset$ for all $M_i^{(r)}$ from Lemma 2; it is clear then that $MU \cap U' = \emptyset$ for all $M \in \Gamma$. Let $\tilde{U} = \Gamma U$, $\tilde{U}' = \Gamma U'$; by Lemma 4 these are \mathcal{T}^{Γ} -neighborhoods of Z and Z' in \mathfrak{S}_n^* , and they are Γ -saturated and disjoint, from which we deduce the desired statement.

We now prove Theorem 2. We define the topology \mathcal{T}_0^{Γ} as follows: we say that U is a \mathcal{T}_0^{Γ} -neighborhood of $x \in \mathfrak{S}_n^*$ if and only if U is a Γ_x -saturated \mathcal{T}^{Γ} -neighborhood of x. For

$$Z \in \bigcup_{0 \le r \le n} \Omega_r$$

such a neighborhood always contains a neighborhood $\tilde{U} = \Gamma_Z U$ as given in Lemma 4; taking U sufficiently small so that condition 2° of Lemma 3 is satisfied, $\tilde{U} = \Gamma_Z U$ is a \mathcal{T}_0^{Γ} -neighborhood of Z satisfying condition 4°; it follows immediately that the conditions for the systems of neighborhoods are satisfied for \mathcal{T}_0^{Γ} ; it is then clear that \mathcal{T}_0^{Γ} is a topology satisfying conditions 1°, 2°, 3°, and 4°; condition 1° is satisfied since for $U = \Gamma_Z U$, we can make

$$\tilde{U} \cap \Omega_n^* = \bigcup_{M_i^{(s)} \in \Gamma_Z} M_i^{(s)} U \cap \Omega_n^*$$

as small as we want by taking U to be sufficiently small.

Finally, we prove the uniqueness of the topology satisfying conditions 1° , 2° , 3° , and 4°. Let \mathcal{T} be such a topology and let U_1 be a \mathcal{T} -neighborhood of $Z \in \Omega_r$ satisfying condition 4°; setting $U = \tilde{U}_1 \cap \Omega_n^*$, $\tilde{U} = \Gamma_Z U$, we get a \mathcal{T}_0^{Γ} -neighborhood \tilde{U} of Z, clearly contained in \tilde{U}_1 ; conversely let $\tilde{U} = \Gamma_Z U$ be a \mathcal{T}_0^{Γ} -neighborhood of $Z \in \Omega_r$; we may assume that U is contained in a \mathcal{T} -neighborhood of U_1 of Z satisfying condition 4°; let $U_2 = \Gamma U$; U_2 is a \mathcal{T} -neighborhood of Z, because it is a Γ -saturated \mathcal{T}_0^{Γ} -neighborhood of Z, and because \mathcal{T} and \mathcal{T}_0^{Γ} define the same topology on the quotient space $\Gamma ackslash \mathfrak{S}_n^*$ due to conditions 1° , 2° , and 3° ; we have then

$$\tilde{U}_1 \cap \tilde{U}_2 = \tilde{U}_1 \cap \bigcup_{M_i \in \Gamma/\Gamma_Z} M_i \tilde{U} = \tilde{U}_1 \cap \tilde{U} = \tilde{U},$$

hence U is a \mathcal{T} -neighborhood of Z, which proves our statement.

The classical topology of \mathfrak{S}_1^* is \mathcal{T}_0^{Γ} ; we see easily that the two topologies \mathcal{T}^{Γ} and \mathcal{T}_0^{Γ} are in fact different; we note also that these topologies are not locally compact. We also note that the topologies \mathcal{T}^{Γ} and \mathcal{T}_0^{Γ} induce the same topology on \mathfrak{S}_r $(0 \leq r \leq n)$, namely the original topology on \mathfrak{S}_r .

Appendix

We complete here the proof of Lemma 4. By changing notation, this involves the following setup: let U_r and U'_r be neighborhoods of $Z_0 \in \Omega_r$ in Ω_r ; let K and K' be positive numbers, $U_s = V^{(s)}(U_r, K)$ the set of all matrices $Z \in \Omega_s$ such that

$$Z = \begin{pmatrix} Z_1 & Z_{12} \\ {}^tZ_{12} & Z_2 \end{pmatrix} = X + iY, \quad Y = {}^tWDW, \quad D = (d_i\delta_{ij}),$$

with $Z_1 \in U_r$, $d_{r+1} > K$. Let U'_s the analogue of U_s obtained by replacing Ω_s , U_r , and Kby $M_0^{-1}\Omega_s$, U'_r , and K', where M_0 is an element of $\iota_s(\Gamma_r)$. We have to prove that, given U_r , K, and M_0 , we can choose U'_r and K' such that

$$(3.1) U'_s \subset (\Gamma_s)_{Z_0} U_s.$$

Then it suffices to take K'' such that

$$M_0^{-1}V^{(s)}(M_0U'_r,K'') \subset U'_s,$$

which is possible thanks to the continuity of M_0^{-1} in $\Omega_s^* \cup M_0^{-1} \Omega_s^*$.

We will use the following result:

Proposition. With the above notation, given M_0 and a bounded U'_r , we can choose K' such that U'_s is contained in $(\Gamma_s \cap \mathfrak{N}^s_r)\Omega_s$.

The statement we want to prove follows from the Proposition: indeed we get finitely many $M_i \in \Gamma_s \cap \mathfrak{N}_r^s$ such that

$$U_s' \subset \bigcup_i M_i \Omega_s$$

and hence, modifying U'_r and K' so that

$$(M_i^{-1}U'_s) \cap \Omega_s \subset U_s$$
 for all i

(which is possible thanks to the continuity of M_i^{-1} in Ω_s^*), we get

$$U'_s \subset \bigcup_i M_i U_s,$$

and therefore (3.1).

So it remains to prove the Proposition. Let

$$Z' = \begin{pmatrix} Z'_1 & Z'_{12} \\ {}^t Z'_{12} & Z'_2 \end{pmatrix} \in U'_s.$$

We will show that, if we take K' sufficiently large, there exists $M \in \Gamma_s \cap \mathfrak{N}_r^s$ such that $MZ' \in \Omega_s$. But the group $\Gamma_s \cap \mathfrak{N}_r^s$ is generated by transformations of the form

(i) $M = \begin{pmatrix} tU & 0 \\ 0 & U^{-1} \end{pmatrix}$, with $U = \begin{pmatrix} E & 0 \\ 0 & U_2 \end{pmatrix}$, U_2 being integral and unimodular;

(ii)
$$M = \begin{pmatrix} tU & 0\\ 0 & U^{-1} \end{pmatrix}$$
, with $U = \begin{pmatrix} E & U_{12}\\ 0 & E \end{pmatrix}$, U_{12} integral;

(iii) $M = \begin{pmatrix} E & T \\ 0 & E \end{pmatrix}$, with $T = \begin{pmatrix} 0 & T_{12} \\ {}^tT_{12} & T_2 \end{pmatrix}$, where T_{12} and T_2 are integral, and $T_2 = {}^tT_2$.

If we set

$$Z' = X' + iY', \qquad X' = \begin{pmatrix} X'_1 & X'_{12} \\ tX'_{12} & X'_2 \end{pmatrix},$$
$$Y' = {}^tW'D'W', \qquad W' = \begin{pmatrix} W'_1 & W'_{12} \\ 0 & W'_2 \end{pmatrix}, \qquad D' = \begin{pmatrix} D'_1 & 0 \\ 0 & D'_2 \end{pmatrix},$$

then these transformations act as follows:

- (i) $W'_{12} \mapsto W'_{12}U'_2, \quad {}^tW'_2D'_2W'_2 \mapsto {}^tU_2 {}^tW'_2D'_2W'_2U_2;$
- (ii) $W_{12}'\longmapsto W_{12}'+W_1'U_{12}, \quad {}^tW_2'D_2'W_2'$ unchanged;
- (iii) $X'_{12} \longmapsto X'_{12} + T_{12}, \quad X'_2 \longmapsto X'_2 + T_2, \quad Y'$ unchanged;

and these transformations do not change X'_1 , W'_1 , and D'_1 . By setting Z'' = MZ' for some M of type (i), we can arrange that ${}^tW''_2D''_2W''_2 \in S'(u)$ (in the notation of [6, 5]), that is that

$$|w_{ij}''| < u$$
 (for $r+1 \le i < j \le s$), $d_i'' < u d_{i+1}''$ (for $r+1 \le i < s$).

Next, using a transformation of type (ii), we can arrange that

$$|w_{ij}''| \le \frac{1}{2}$$
 (for $1 \le i \le r$, $r+1 \le j \le s$).

Finally, using a transformation of type (iii), we can arrange that

$$|x_{ij}''| \leq rac{1}{2}$$
 (for $r+1 \leq j \leq s$, any i).

Under all these transformations $Z''_1 = Z'_1$ does not change. Finally, we see that we can choose $M \in \Gamma_s \cap \mathfrak{N}^s_r$ so that Z'' = MZ' satisfies all the conditions of belonging to Ω_s , with the exception of

$$d_r'' < u d_{r+1}''.$$

But $d''_r = d'_r$ is bounded as Z'_1 ranges through U'_r . Moreover, there are only finitely many transformations of type (i) as Z' ranges through $M_0^{-1}\Omega_s$ such that $Z'_1 \in U'_r$ (indeed, for $Z' = M_0^{-1}Z \in M_0^{-1}\Omega_s$ and $Z'_1 \in U'_r$, all the coefficients of $Y'_2 - Y_2$ are bounded). We can therefore choose K' depending only on U'_r , u, and M_0 , in such a way that, for all $Z' \in U'_s$, Z'' = MZ' also satisfies $d''_r < ud''_{r+1}$, that is $MZ' \in \Omega_s$. This concludes the proof of the Proposition.

Bibliographic note

The above compactification was given in [3] (but without using the space \mathfrak{S}_n^*). Lemma 2 of [3] corresponds to Lemma 1 of the present talk, but the proof is much simplified by an idea of Godement. In any case the introduction of the space \mathfrak{S}_n^* is preferable, especially in view of its usefulness in the consideration of groups commensurable to Γ .

Other methods of compactification can be found in [2, 4].

References

- [1] Henri Cartan. Ouverts fondamentaux pour le groupe modulaire. In *Séminaire Henri Cartan*, volume 10. E.N.S., 1957–1958. No. 1, Talk no. 3, 12 p.
- [2] Ichiro Satake. On Siegel's modular functions. In Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pages 107–129. Science Council of Japan, Tokyo, 1956.
- [3] Ichiro Satake. On the compactification of the Siegel space. J. Indian Math. Soc. (N.S.), 20:259–281, 1956.
- [4] Carl Ludwig Siegel. Zur Theorie der Modulfunktionen *n*-ten Grades. *Comm. Pure Appl. Math.*, 8:677–681, 1955.
- [5] André Weil. Groupes des formes quadratiques indéfinies et des formes bilinéaires alternées. In Séminaire Henri Cartan, volume 10. E.N.S., 1957–1958. No. 1, Talk no. 2, 14 p.
- [6] André Weil. Réduction des formes quadratiques. In Séminaire Henri Cartan, volume 10. E.N.S., 1957–1958. No. 1, Talk no. 1, 9 p.